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THE DIRICHLET PROBLEM FOR SECOND ORDER

PARABOLIC OPERATORS IN DIVERGENCE FORM

by Pascal Auscher, Moritz Egert & Kaj Nyström

Abstract. — We study parabolic operators H = ∂t − divλ,xA(x, t)∇λ,x in the parabolic
upper half space Rn+2

+ = {(λ, x, t) : λ > 0}. We assume that the coefficients are real, bounded,
measurable, uniformly elliptic, but not necessarily symmetric. We prove that the associated
parabolic measure is absolutely continuous with respect to the surface measure on Rn+1 in the
sense defined by A∞(dxdt). Our argument also gives a simplified proof of the corresponding
result for elliptic measure.

Résumé (Le problème de Dirichlet pour les opérateurs paraboliques sous forme divergence)
Nous étudions des opérateurs paraboliques H = ∂t − divλ,xA(x, t)∇λ,x dans le demi-

espace supérieur parabolique Rn+2
+ = {(λ, x, t) : λ > 0}. Nous supposons que les coefficients

sont réels, bornés, mesurables, uniformément elliptiques, mais pas nécessairement symétriques.
Nous montrons que la mesure parabolique associée est absolument continue par rapport à la
mesure de surface sur Rn+1 au sens défini par A∞(dx dt). Notre argument donne aussi une
preuve simplifiée du résultat correspondant pour la mesure elliptique.
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1. Introduction and statement of main results

A classical result due to Dahlberg [8] states in the context of Lipschitz domains that
harmonic measure is absolutely continuous with respect to surface measure, and that
the Poisson kernel (its Radon-Nikodym derivative) satisfies a scale-invariant reverse
Hölder inequality in L2. Equivalently, the Dirichlet problem with L2-data can be
solved with L2-control of a non-tangential maximal function. Ever since Dahlberg’s
original work the study of elliptic measure has been a very active area of research and
a number of fine results have been established, see [1, 14, 19] for recent accounts of
the state of the art.

In contrast to the study of elliptic measure, the fine properties of parabolic measure
are considerably less understood. In [13] a parabolic version of Dahlberg’s result was
established for the heat equation in time-independent Lipschitz cylinders. A major
contribution in the study of boundary value problems and parabolic measure for the
heat equation in time-dependent Lipschitz type domains was achieved in [22, 21,
16]. In these papers the correct notion of time-dependent Lipschitz type cylinders,
correct from the perspective of parabolic measure and parabolic layer potentials, was
found. In particular, in [22, 21] the mutual absolute continuity of parabolic measure
and surface measure and the A∞-property were established and in [16] the authors
obtained a version of Dahlberg’s result for parabolic measure associated to the heat
equation in time-dependent Lipschitz-type domains. In this context the properties of
parabolic measures were further analyzed in the influential work [15], parts of which
have been simplified in [28].

Very recently, there have been advances in the theory of boundary value problems
for second order parabolic equations (and systems) of the form

(1.1) H u := ∂tu− divλ,xA(x, t)∇λ,xu = 0,

in the upper-half parabolic space Rn+2
+ := {(λ, x, t) ∈ R × Rn × R : λ > 0}, n > 1,

with boundary determined by λ = 0, assuming only bounded, measurable, uniformly
elliptic and complex coefficients. In [26, 6, 27], the solvability for Dirichlet, regularity
and Neumann problems with L2-data were established for the class of parabolic equa-
tions (1.1) under the additional assumptions that the elliptic part is also independent
of the time variable t and that it has either constant (complex) coefficients, real sym-
metric coefficients, or small perturbations thereof. Focusing on parabolic measure,
a particular consequence of [6, Th. 1.3] is the generalization of [13] to equations of
the form (1.1) but with A real, symmetric and time-independent. This analysis was
advanced further in [4], where a first order strategy to study boundary value prob-
lems of parabolic systems with second order elliptic part in the upper half-space was
developed. The outcome of [4] was the possibility to address arbitrary parabolic equa-
tions (and systems) as in (1.1) with coefficients depending also on time and on the
transverse variable with additional transversal regularity.

In this paper we advance the study of parabolic boundary value problems and para-
bolic measure even further. We consider parabolic equations as in (1.1), assuming that
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the coefficients are real, bounded, measurable, uniformly elliptic, but not necessarily
symmetric. We prove that the associated parabolic measure is absolutely continuous
with respect to the surface measure dxdt on Rn+1 in the sense defined by the Mucken-
houpt class A∞(dxdt). As consequences, the associated Poisson kernel exists, satisfies
a scale-invariant reverse Hölder inequality in Lp for some p ∈ (1,∞), and the Dirichlet
problem with Lq-data, q being the index dual to p, can be solved with appropriate
control of non-tangential maximal functions. In particular, our main result, which is
new already in the case when A is symmetric and time-dependent, gives a parabolic
analogue of the main result in [14] concerning elliptic measure. Our proof heavily re-
lies on square function estimates and non-tangential estimates for parabolic operators
with time-dependent coefficients that were only recently obtained by us in [4] as well
as the reduction to a Carleson measure estimate proved in [9]. As we shall avoid the
change of variables utilized in [14], this also gives a simpler and more direct proof of
the A∞-property of elliptic measure.

1.1. The coefficients. — We assume that A = A(x, t) = {Ai,j(x, t)}ni,j=0 is a real-
valued (n+ 1)× (n+ 1)-dimensional matrix, not necessarily symmetric, satisfying

(1.2) κ|ξ|2 6
n∑

i,j=0

Ai,j(x, t)ξiξj , |A(x, t)ξ · ζ| 6 C|ξ| |ζ|,

for some κ,C ∈ (0,∞), which we refer to as the ellipticity constants of A, and for all
ξ, ζ ∈ Rn+1, (x, t) ∈ Rn+1. Here, given u = (u0, . . . , un), v = (v0, . . . , vn) ∈ Rn+1 we
write u · v := u0v0 + · · ·+ unvn.

1.2. Weak solutions. — If Ω is an open subset of Rn+1, we let H1(Ω) = W1,2(Ω) be
the standard Sobolev space of complex valued functions v defined on Ω, such that v
and ∇v are in L2(Ω) and L2(Ω;Cn), respectively. A subscripted ‘loc’ will indicate that
these conditions hold locally. A function u is called a weak solution to the equation
H u = 0 on Rn+1

+ × R if it satisfies u ∈ L2
loc(R; W1,2

loc(Rn+1
+ )) and∫

R

∫∫
Rn+1

+

A∇λ,xu · ∇λ,xφ dxdtdλ−
∫
R

∫∫
Rn+1

+

u · ∂tφ dx dtdλ = 0

for all φ ∈ C∞0 (Rn+2
+ ).

1.3. Parabolic measure. — Given (x, t) ∈ Rn+1 and r > 0 we let Q = Qr(x) :=

B(x, r) ⊂ Rn be the standard Euclidean ball centered at x and of radius r, and we
let I = Ir(t) := (t − r2, t + r2). We let ∆ = ∆r(x, t) = Qr(x) × Ir(t) and write
`(∆) := r. We will use the convention that cQ and cI denote the dilates of balls and
intervals, respectively, keeping the center fixed and dilating the radius by c and we
let c∆ := cQ× c2I.

Given A real, satisfying (1.2), and f continuous and compactly supported in
Rn+1, there exists a unique (weak) solution u to the continuous Dirichlet prob-
lem H u = (∂t − divλ,xA(x, t)∇λ,x)u = 0 in Rn+2

+ , u continuous in Rn+2
+ and

u(0, x, t) = f(x, t) whenever (x, t) ∈ Rn+1. Indeed, assume f > 0 and let uk, k > 1,
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410 P. Auscher, M. Egert & K. Nyström

be the unique weak solution to H u = 0 in Ωk := (0, k) × ∆k(0, 0), with boundary
values f(x, t)ψ(‖(x, t)‖/k) on ∆k(0, 0), and zero otherwise. Here, ‖(x, t)‖ := |x|+|t|1/2
and ψ is a continuous decreasing function on [0,∞) such that 0 6 ψ 6 1, ψ(r) = 1

for 0 6 r 6 1/2, and ψ(r) = 0 for r > 3/4. Then 0 6 uk 6 uk+1 6 ‖f‖∞ in Ωk and
one can deduce, by the maximum principle and the Harnack inequality, see [25] for
these estimates, that

sup
Ωl

|uk − uj | 6 c(uk − uj)(l, 0, 4l2), if k > j � l.

In particular, u can be constructed as the monotone and uniform limit of {uk} as
k → ∞ on the closure of Ωl for each l > 1. Uniqueness follows from the maximum
principle. Furthermore, by the maximum principle and the Riesz representation the-
orem we deduce

u(λ, x, t) =

∫∫
Rn+1

f(y, s) dω(λ, x, t, y, s), for all (λ, x, t) ∈ Rn+2
+ ,

where {ω(λ, x, t, ·) : (λ, x, t) ∈ Rn+2
+ } is a family of regular Borel measures on Rn+1

and we refer to ω(λ, x, t, ·) as H -parabolic measure, or simply parabolic measure (at
(λ, x, t)).

Given r > 0 and (x0, t0) ∈ Rn+1 we let

A+
r (x0, t0) := (4r, x0, t0 + 16r2).

Assume that A satisfies (1.2). Then parabolic measure is a doubling measure in the
sense that there exists a constant c, 1 6 c < ∞, depending only on n and the
ellipticity constants such that the following is true. Let (x0, t0) ∈ Rn+1, 0 < r0 <∞,
∆0 := ∆r0(x0, t0). Then

ω
(
A+

4r0
(x0, t0), 2∆

)
6 cω

(
A+

4r0
(x0, t0),∆

)
whenever ∆ ⊂ 4∆0. We refer to [11], [12] and [25] for details. The doubling property of
parabolic measure serves as a starting point for further investigation. In this paper we
are interested in scale invariant quantitative version of absolute continuity of parabolic
measure with respect to the measure dxdt on Rn+1. Given a set E ⊂ Rn+1 we let |E|
denote the Lebesgue measure of E.

Definition 1.1. — Let (x0, t0) ∈ Rn+1, 0 < r0 < ∞, ∆0 := ∆r0(x0, t0). We say
that parabolic measure associated to H = ∂t − divλ,xA(x, t)∇λ,x at A+

4r0
(x0, t0) is

in A∞(∆0, dxdt) if for every ε > 0 there exists δ = δ(ε) > 0 such that if E ⊂ ∆ for
some ∆ ⊂ ∆0, then

ω
(
A+

4r0
(x0, t0), E

)
ω
(
A+

4r0
(x0, t0),∆

) < δ =⇒ |E|
|∆|

< ε.

Parabolic measure ω belongs to A∞(dxdt) if ω
(
A+

4r0
(x0, t0), ·

)
∈ A∞(∆0, dxdt) for

all ∆0 as above and with uniform constants.

J.É.P. — M., 2018, tome 5



The Dirichlet problem for second order parabolic operators 411

If ω belongs to A∞(dxdt), then ω(A+
4r0

(x0, t0), ·) and dx dt are mutually absolutely
continuous and hence one can write

dω
(
A+

4r0
(x0, t0), x, t

)
= K

(
A+

4r0
(x0, t0), x, t

)
dxdt.

We refer to K
(
A+

4r0
(x0, t0), x, t

)
as the associated Poisson kernel (at A+

4r0
(x0, t0)).

Definition 1.2. — For p ∈ (1,∞) we say that ω belongs to the reverse Hölder class
Bp(dxdt) if there exists a constant c, 1 6 c <∞, such that for all ∆0 := ∆r0(x0, t0)

the Poisson kernel K
(
A+

4r0
(x0, t0), ·

)
satisfies the reverse Hölder inequality(

−
∫
−
∫

∆

(K
(
A+

4r0
(x0, t0), x, t

)
)p dx dt

)1/p

6 c−
∫
−
∫

∆

K
(
A+

4r0
(x0, t0), x, t

)
dxdt

whenever ∆ ⊂ ∆0.

Note that as parabolic measure has the doubling property the statement that par-
abolic measure ω belongs to A∞(dxdt) has several equivalent formulations. Further-
more, A∞(dxdt) =

⋃
p>1Bp(dx dt). We refer to [7] for more on A∞. For (x, t) ∈ Rn+1,

and a function F , we define the non-tangential maximal function
(1.3) N∗F (x, t) = sup

λ>0
sup

Λ×Q×I
|F (µ, y, s)|,

where Λ = (λ/2, λ), Q = B(x, λ) and I = (t − λ2, t + λ2). Given (x0, t0) ∈ Rn+1,
η > 0, we also introduce the parabolic cone
(1.4) Γη(x0, t0) := {(λ, x, t) ∈ Rn+2

+ : ‖(x− x0, t− t0)‖ < ηλ}.

Definition 1.3. — Let q ∈ (1,∞). We say that the Dirichlet problem for H in
Rn+2

+ with data in Lq(Rn+1), Dq for short, is solvable if the following holds. Given
f ∈ Lq(Rn+1) then there exists a weak solution u such that

H u = 0 in Rn+2
+ ,

lim
λ→0

u(λ, ·, ·) = f(·, ·) in Lq(Rn+1) and n.t.,

‖N∗u‖q <∞.

Here, n.t. is short for non-tangentially and means u(λ, x, t) → f(x0, t0) for almost
every (x0, t0) ∈ Rn+1 as (λ, x, t) → (x0, t0) through the parabolic cone Γη(x0, t0) for
some η > 0. Furthermore, we say that Dq uniquely solvable if Dq is solvable and if
the solution is unique.

Assume that parabolic measure ω belongs to A∞(dxdt) and, in particular, that ω
belongs to Bp(dxdt) for some p ∈ (1,∞). The latter is equivalent to the statement
that Dq for H is solvable, q being the dual index to p, see for example [25, Th. 6.2].
While the results in [25] are derived under the assumption of symmetric coefficients,
the lemmas underlying the proof of [25, Th. 6.2] do not rely on this assumption.

Remark 1.4. — Concerning Dq being uniquely solvable, establishing a criteria for
this in terms of parabolic measure is more complicated and forces one to also consider
the adjoint parabolic measure. The adjoint parabolic measure ω∗ is the parabolic
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412 P. Auscher, M. Egert & K. Nyström

measure associated to H ∗ := −∂t−divλ,xA
∗(x, t)∇λ,x, A∗ being the transpose of A.

Definition 1.1 and Definition 1.2 for ω∗ are as stated but with the point A+
4r0

(x0, t0)

replace by A−4r0(x0, t0), where A−r (x0, t0) := (4r, x0, t0 − 16r2) for r > 0. We claim
that one can prove that if ω belongs to BH

p (dx dt) and ω∗ belongs to BH ∗

p (dx dt),
then Dq for H is uniquely solvable, q still being the dual index to p. The assumption
that ω∗ belongs to BH ∗

p (dxdt) is used to conclude the uniqueness. The proof of the
claim is akin to the elliptic argument in [20, Th. 1.7.7].

1.4. Statement of the main result. — The following theorem is our main result.

Theorem 1.5. — Assume that A satisfies (1.2). Then parabolic measure ω belongs to
A∞(dxdt) with constants depending only n and the ellipticity constants. In particular,
there exists p ∈ (1,∞) such that ω belongs to the reverse Hölder class Bp(dx dt) with p
and the constant in the reverse Hölder inequality depending only n and the ellipticity
constants. Equivalently, Dq, where q is the index dual to p, is solvable.

Theorem 1.5 is new and gives the parabolic counterpart of the corresponding recent
result for elliptic measure obtained in [14], with a simplified argument compared
to [14]. As mentioned before, Theorem 1.5 is new even in the case when A is symmetric
and time-dependent. Note that in [17] the result of Dahlberg was proved for elliptic
measure associated to the elliptic counterpart of (1.1) with symmetric A, that is, in
this case the associated Poisson kernel exists and belongs to B2. In contrast, in the
parabolic case it is not clear if such a result holds true if we allow for time-dependent
coefficients (the case of time-independent coefficients was treated in [6] and does
give B2).

Theorem 1.5 generalizes immediately to the setting of time-independent Lipschitz
domains in the following sense. Consider the domain {(x0, x, t) : x0 > ϕ(x)} above
the graph of the time-independent Lipschitz function ϕ and consider the equation

∂tu− divx0,xA(x, t)∇x0,xu = 0

in this domain. Using the simple change of variables (λ, x, t) 7→ (λ + ϕ(x), x, t), this
equation is equivalent to an equation in the upper parabolic half space to which
Theorem 1.5 applies. In contrast, this argument does not apply to a time-dependent
domain of the form {(x0, x, t) : x0 > ϕ(x, t)} as the change of variables (λ, x, t) 7→
(λ + ϕ(x, t), x, t) with ϕ Lipschitz in both x and t destroys the structure of the
equations studied here. If ϕ is only Lipschitz with respect to the parabolic metric,
that is, Lipschitz continuous in x and 1/2-Hölder continuous in t, then more elaborate
changes of variables have to be employed but this changes the nature of the assumption
on the coefficients, see [15] for details.

1.5. Outline of the proof of Theorem 1.5. — The proof consists of three parts:
a reduction to a Carleson measure estimate, the construction of a particular set F ,
and the proof of the Carleson measure estimate by partial integration. These three
parts have four sources of insights [19, 14, 4, 9]. In general, c will denote a generic
constant, not necessarily the same at each instance, which, unless otherwise stated,
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only depends on n and the ellipticity constants. We often write c1 . c2 when we mean
that c1/c2 is bounded by a constant depending only n and the ellipticity constants.

Reduction to a Carleson measure estimate. — The key insight in [19] is that the
A∞-property of elliptic measure follows once a certain Carleson measure condition is
verified. More recently, this idea has also been implemented in the parabolic context:
On pp.1172–1175 in [9] it is shown that in order to conclude ω ∈ A∞(dxdt) it suffices
to prove the following result, which we state here as our second main theorem.

Theorem 1.6. — Let S ⊂ Rn+1 be a bounded Borel set and let u(λ, x, t) := ω(λ, x, t, S)

be the corresponding weak solution to (1.1) created by the H -parabolic measure ω.
Then u satisfies the following Carleson measure estimate: for all parabolic cubes
∆ ⊂ Rn+1,

(1.5)
∫ `(∆)

0

∫∫
∆

|∇λ,xu|2 λ dxdtdλ . |∆|.

Remark 1.7. — Theorem 1.6 is a priori equivalent to the statement that (1.5) holds
for all parabolic cubes whenever u is the unique solution to the continuous Dirichlet
problem for H u = 0 with continuous compactly supported boundary data f satisfying
|f | 6 1, see [9, Rem. 5]. Note that in this case |u| 6 1 by the maximum principle.
This reformulation has the advantage that it allows one to assume that A is smooth
as long as all bounds depend on A only through its ellipticity constants, see [15, p. 20]
for this type of reduction.

Based on Remark 1.7 we can assume qualitatively that A is smooth and we are left
with the task of proving the Carleson measure estimate (1.5) if u is any weak solution
to (1.1) bounded by |u| 6 1. The fact that u could be chosen continuous up to the
boundary will not enter the argument.

As a first reduction step we claim that instead of (1.5) it suffices to prove for all
parabolic cubes ∆,

(1.6)
∫ `(∆)

0

∫∫
∆

|∂λu|2 λ dxdtdλ . |∆|.

To see this, we truncate the integral on the left at 2ε > 0 and pick a piecewise linear
function η = η(λ), equal to 1 on (2ε, `(∆)) and equal to 0 on (0, ε) and (2`(∆),∞). In
particular, |λ∂λη| 6 2. Integration by parts in λ on the term η|∇λ,xu|2λ then leads to∫ `(∆)

2ε

∫∫
∆

|∇λ,xu|2 λ dxdtdλ

6 2

∫ 2ε

ε

∫∫
∆

|∇λ,xu|2 λ dxdtdλ+ 2

∫ 2`(∆)

`(∆)

∫∫
∆

|∇λ,xu|2 λ dxdtdλ

+
1

2

∫ `(∆)

2ε

∫∫
∆

|∇λ,xu|2 λ+
1

2

∫ `(∆)

2ε

∫∫
∆

|∇λ,x∂λu|2 λ3 dxdtdλ,
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414 P. Auscher, M. Egert & K. Nyström

where the third and fourth term arise from bounding (λ2/2)∂λ|∇λ,xu|2 via Young’s
inequality. The standard Caccioppoli inequality (see Lemma 2.1 below) along with the
uniform bound |u| 6 1 allows us to control the first two integrals on the right-hand
side by C|∆|, where C depends on n and the ellipticity constants. The third integral
is finite and can be absorbed into the left-hand side. Finally, for the fourth integral
we use that ∂λu is a solution to H u = 0 as well (A is independent of λ) and apply
Caccioppoli’s inequality on parabolic Whitney cubes covering (2ε, `(∆))×∆. In total,
we get

1

2

∫ `(∆)

2ε

∫∫
∆

|∇λ,xu|2 λ dxdtdλ . |∆|+
∫ 2`(∆)

ε

∫∫
2∆

|∂λu|2 λ dx dtdλ.

Passing to the limit ε→ 0, we see that having (1.6) for all parabolic cubes is sufficient
for having (1.5) for all parabolic cubes. Hence, we can concentrate on (1.6).

Furthermore, as our equations have real and uniformly elliptic coefficients, the solu-
tion ∂λu satisfies De Giorgi–Moser–Nash estimates, see for example [15, Lem. 3.3&3.4]
or [2]. From a John–Nirenberg Lemma for Carleson measures, see [5, Lem. 2.14], it
follows that for (1.6) it is sufficient to prove that the following holds: For each para-
bolic cube ∆ ⊂ Rn+1, r := `(∆), there is a Borel set F ⊂ 16∆ with |∆| . |F |, such
that
(1.7)

∫ r

0

∫∫
F

|∂λu|2 λ dxdtdλ . |∆|.

Indeed, let Hλ(x, t) := |∂λu(λ, x, t)|2λ2. Again from De Giorgi–Moser–Nash estimates
we can infer 0 6 Hλ(x, t) . 1 in (0,∞)× Rn+1 and

|Hλ(x, t)−Hλ(x′, t′)| . ‖(x− x
′, t− t′)‖α

λα
,

for some α = α(n, κ,C) > 0 whenever (λ, x, t), (λ, x′, t′) ∈ (0,∞) × Rn+1. Hence, we
are in the setup of [5, Lem. 2.14] with parabolic scaling. Its proof can then be readily
adapted to justify the reduction in (1.7).

Note that in (1.7) the set F is a degree of freedom subject to the restrictions.
This completes our reduction to a Carleson measure estimate. To avoid duplication
with [9] and for the sake of brevity, we will not give more details concerning these
facts. Instead we will simply prove Theorem 1.6 and Theorem 1.5 by verifying (1.7)
for a properly constructed set F and this is the main contribution of the paper.

Construction of the set F . — In the context of elliptic measure the freedom of having
a set F ⊂ ∆ at one’s disposal in (1.7) was cleverly brought into play in [14] via
an adapted Hodge decomposition. Inspired by this, we look for a parabolic Hodge
decomposition. To this end, we split the coefficient matrix A as

(1.8) A(x, t) =

[
A⊥⊥(x, t) A⊥‖(x, t)

A‖⊥(x, t) A‖‖(x, t)

]
.

Then A⊥‖ is an n-dimensional row vector and A‖⊥ is an n-dimensional column vector.
We have a similar decomposition of A∗, which is the transpose of A since A has real
coefficients.
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Introduce the parabolic operator H‖ := ∂t − divxA‖‖∇x and its adjoint H ∗
‖ :=

−∂t−divxA
∗
‖‖∇x on Rn+1. Let us recall that H‖ and H ∗

‖ admit the following hidden
coercivity used systematically in [26, 6, 27, 4]. In fact, it appeared already in [18].
First, we define the homogeneous energy space Ė(Rn+1) by taking the closure of test
functions v ∈ C∞0 (Rn+1) with respect to the norm

‖v‖2
Ė(Rn+1)

:=

∫∫
Rn+1

|∇xv|2 + |D1/2
t v|2 dxdt

and identifying functions that differ only by a constant. Here, the half-order
t-derivative D1/2

t is defined via the Fourier symbol |τ |1/2. This closure can be re-
alized in L2(Rn+1) + L∞(Rn+1) and modulo constants Ė(Rn+1) becomes a Hilbert
space, see for example [4, §3.2]. The corresponding inhomogeneous energy space
E(Rn+1) = Ė(Rn+1) ∩ L2(Rn+1) is equipped with the obvious Hilbertian norm.
Denoting by Ht the Hilbert transform with respect to the t-variable, we can factorize
∂t = D

1/2
t HtD

1/2
t and this in turn allows us to define H‖ as a bounded operator

from Ė(Rn+1) into its (anti)-dual Ė(Rn+1)∗ via

(H‖u)(v) :=

∫∫
Rn+1

D
1/2
t u ·HtD

1/2
t v +A‖‖∇xu · ∇xv dxdt.(1.9)

The hidden coercivity of the sesquilinear form on the right-hand side now pays for this
operator being invertible with operator norm depending only on n and the ellipticity
constants of A‖‖, see [18, Th. 1] or [6, Lem. 5.9]. An analogous construction applies
to H ∗

‖ . Considering a parabolic cube ∆ = ∆r ⊂ Rn+1, we let χ8∆ = χ8∆(x, t) be
a smooth cut off for 8∆ which is 1 on 8∆, vanishes outside of 16∆ and satisfies
r|∇xχ8∆|+ r2|∂tχ8∆| 6 c. Then, there exist ϕ, ϕ̃ ∈ Ė(Rn+1) solving

(1.10) H ∗
‖ ϕ = divx(A⊥‖χ8∆), H‖ϕ̃ = divx(A‖⊥χ8∆),

and satisfying the a priori estimates∫∫
Rn+1

|∇xϕ|2 + |HtD
1/2
t ϕ|2 dx dt .

∫∫
16∆

|A⊥‖|2 dxdt . |∆|,∫∫
Rn+1

|∇xϕ̃|2 + |HtD
1/2
t ϕ̃|2 dx dt .

∫∫
16∆

|A‖⊥|2 dxdt . |∆|.
(1.11)

We refer to ϕ and ϕ̃ as parabolic Hodge decompositions of the vector fields A⊥‖χ8∆

and A‖⊥χ8∆, respectively. These decompositions give representations of the vector
fields A⊥‖χ8∆, A‖⊥χ8∆ adapted to the operators H ∗

‖ , H‖, representations which
combined with the a priori estimates in (1.11) allow us to make use of the powerful
toolbox behind the solution of the parabolic Kato problem in [4]. Note that as we
can undo the factorization of ∂t leading to (1.9) if v is a test function, (1.10) holds a
fortiori in the usual weak sense. More in the spirit of operator theory, Lemma 4 in [3]
shows that the part of H‖ in L2(Rn+1) with maximal domain

D(H‖) = {u ∈ E(Rn+1) : H‖u ∈ L2(Rn+1)}

is maximal accretive, that is, for every µ ∈ C with Reµ > 0 the operator µ + H‖
is invertible and ‖(µ + H‖)

−1‖L2→L2 6 (Reµ)−1 holds. The recent resolution of the
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Kato problem for parabolic operators identifies the domain of its unique maximal
accretive square root as D(H

1/2
‖ ) = E(Rn+1) with a homogeneous estimate

‖H 1/2
‖ v‖2 ∼ ‖∇xv‖2 + ‖HtD

1/2
t v‖2 for v ∈ E(Rn+1),

see [4, Th. 2.6]. Thus, writing

(µ+ H‖)
−1v = H

−1/2
‖ (µ+ H‖)

−1H
1/2
‖ v,

we can extend (µ + H‖)
−1 by density from E(Rn+1) to a bounded and invertible

operator on Ė(Rn+1). Again we also have the analogous results for H ∗
‖ . In particular,

for m a natural number and λ > 0 we can introduce the higher order resolvents
of ϕ, ϕ̃,

(1.12) P ∗λϕ := (1 + λ2H ∗
‖ )−mϕ, Pλϕ̃ := (1 + λ2H‖)

−mϕ̃,

within the homogeneous energy space Ė(Rn+1). In the further course we will fix m
large enough (without trying to get optimal values) to have a number of estimates at
our disposal. In fact, as can be seen from the proof of Lemma 4.5 below, m = n + 1

is sufficient for our purposes as this allows us to prove pointwise estimates of certain
kernels needed in the proof of non-tangential maximal estimates of ∂λP ∗λϕ and ∂λPλϕ̃.
Coming back to the actual construction of F , we also introduce the parabolic maximal
differential operator

Dv(x, t) := sup
%>0
−
∫
−
∫

∆%(x,t)

|v(x, t)− v(y, s)|
‖(x− y, t− s)‖

dy ds, v ∈ Ė(Rn+1),(1.13)

which maps boundedly into L2(Rn+1) as we shall prove later on in Lemma 2.3. Here,
‖·‖ indicates again the parabolic distance. In particular, (1.11) implies

(1.14) ‖Dϕ‖2 + ‖Dϕ̃‖2 . |∆|1/2.

The non-tangential maximal function operator N∗ acting on measurable functions F
on Rn+2

+ was introduced in (1.3). For (x, t) ∈ Rn+1 we also introduce the integrated
non-tangential maximal function

(1.15) Ñ∗F (x, t) = sup
λ>0

(
−
∫
−
∫
−
∫

Λ×Q×I
|F (µ, y, s)|2 dµdy ds

)1/2

,

where Λ = (λ/2, λ), Q = B(x, λ) and I = (t− λ2, t+ λ2). If g : Rn+1 → R and is lo-
cally integrable we let M (g) be the (n+1)-dimensional (parabolic) Hardy-Littlewood
maximal function

M (g)(x, t) = sup
%>0
−
∫
−
∫

∆%(x,t)

|g|dy ds

and we let M x and M t denote the standard (euclidean) Hardy-Littlewood maximal
operators in the x and t variables only. Our construction of F is then done through
the following definition.
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Definition 1.8. — Let ∆ be fixed and also fix m = n + 1. Given κ0 � 1, we let
F ⊂ 16∆ be the set of all (x, t) ∈ 16∆ such that the following requirements are met:

(i) M (|∇xϕ|2)(x, t) + M (|∇xϕ̃|2)(x, t) 6 κ2
0,

(ii) M x M t(|HtD
1/2
t ϕ|)(x, t) + M x M t(|HtD

1/2
t ϕ̃|)(x, t) 6 κ0,

(iii) Dϕ(x, t) + Dϕ̃(x, t) 6 κ0,

(iv) N∗(∂λP
∗
λϕ)(x, t) +N∗(∂λPλϕ̃)(x, t) 6 κ0,

(v) Ñ∗(∇xP ∗λϕ)(x, t) + Ñ∗(∇xPλϕ̃)(x, t) 6 κ0.

Given ∆ and κ0 � 1, let F be defined as above. Then, using the weak type (1, 1)

of M , the strong type (2, 2) of M x M t, the estimates (1.11) and (1.14) and the
L2-bounds for the non-tangential maximal functions that will later be obtained in
Lemma 4.2 and Lemma 4.5, it follows that

|16∆ r F | . (κ−2
0 + κ−1

0 )|16∆|.

In particular, we can now choose κ0, depending only on n and the ellipticity constants,
so that

(1.16) |16∆ r F |
|16∆|

6 1/1000.

This completes our construction of the set F and from now on κ0 is fixed as stated
ensuring that (1.16) holds.

Proof of the Carleson measure estimate. — Based on the previous steps, the proofs of
Theorem 1.5 and Theorem 1.6 are reduced to verifying (1.7). To do this we construct,
given ∆ = ∆r, F ⊂ ∆ a Borel set and ε > 0, a parabolic sawtooth region above F
using parabolic cones of aperture 0 < η � 1. The parameter η is an important
degree of freedom in the argument. In (5.4) we will construct a (smooth) cut-off
function Ψ = Ψη,ε such that Ψ(λ, x, t) = 1 on F × (2ε, 2r) and Ψ(λ, x, t) = 0 if
λ ∈ (0, ε) ∪ (4r,∞), and we let

Jη,ε :=

∫∫∫
Rn+2

+

A∇λ,xu · ∇λ,xuΨ2λ dxdtdλ.

Then, by ellipticity of A,

(1.17)
∫ r

2ε

∫∫
F

|∂λu|2 λ dx dtdλ . Jη,ε.

Since Ψ has compact support in the upper half space, we can ensure finiteness of Jη,ε
and hence everything boils down to the following key lemma:

Lemma 1.9 (Key Lemma). — Let σ, η ∈ (0, 1) be given degrees of freedom. Then there
exist a finite constant c depending only on n and the ellipticity constants, and a finite
constant c̃ depending additionally on σ and η, such that

Jη,ε 6 (σ + cη)Jη,ε + c̃|∆|.
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Indeed, choosing σ and η small, both depending at most on n and the ellipticity
constants, we first derive

Jη,ε 6 2c̃|∆|,
where now η is fixed but c̃ is still independent of ε. On letting ε → 0, we see from
(1.17) that the estimate (1.7) holds. As discussed before, this completes the proofs of
Theorem 1.6 and Theorem 1.5.

1.6. Organization of the paper. — Section 2 is partly of preliminary nature and we
here prove (1.14). Section 3 is devoted to the important square function estimates
underlying the proof of Theorem 1.9. These estimates rely on recent results estab-
lished in [4]. In Section 4 we prove the non-tangential maximal function estimates
underlying the statements in Definition 1.8 (iv)–(v). Based on the material of Sec-
tions 2–4 the set F introduced in Definition 1.8 is well-defined and we can ensure
(1.16). In particular, thereby the set F ⊂ 16∆ is fixed as we proceed into Section 5
and Section 6. In Section 5 we then introduce sawtooth domains above F , we define
the cut-off function Ψ = Ψη,ε referred to above and we prove some auxiliary Carleson
measure estimates. The proof of Lemma 1.9 is given in Section 6.

2. Technical tools

In this section we collect three technical lemmas that shall prove useful in the
further course. We begin with standard Caccioppoli estimate which we here state
without proof.

Lemma 2.1 (Caccioppoli estimate). — Let u be a weak solution to

∂tu− divλ,xA∇λ,xu+ αu = 0

on Rn+2
+ , where α ∈ L∞(Rn+2

+ ), α > 0, and let ψ ∈ C∞0 (Rn+2
+ ). Then∫∫∫

|∇λ,xu|2ψ2 dx dλ dt 6 c
∫∫∫

|u|2
(
|∇λ,xψ|2 + |ψ| |∂tψ|

)
dxdλ dt

for some finite constant c depending on n and the ellipticity constants of A.

Next, we record a Poincaré-type estimate for functions in the homogeneous en-
ergy space Ė(Rn+1). We use the standard notation for parabolic cubes introduced in
Section 1.3.

Lemma 2.2. — Let v ∈ Ė(Rn+1) and let ∆% = ∆%(x0, t0) ⊂ Rn+1 be a parabolic cube.
Then

1

%
−
∫
−
∫

∆%

∣∣∣∣v − −∫−∫
∆%

v

∣∣∣∣ dx dt .M (|∇xv|)(x0, t0) + M x M t(|HtD
1/2
t v|)(x0, t0).

Proof. — We write ∆% = Q% × I% and we let

f(t) := −
∫
Q%

v(x, t) dx,
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noting that this function is contained in the homogeneous fractional Sobolev space
Ḣ1/2(R), see [4, §3.1]. Then

−
∫
−
∫

∆%

∣∣∣∣v − −∫−∫
∆%

v

∣∣∣∣ dx dt . %M (|∇xv|)(x0, t0) + −
∫
I%

∣∣∣∣f − −∫
I%

f

∣∣∣∣ dt

by Poincaré’s inequality in the spatial variable x only. Furthermore, for f ∈ Ḣ1/2(R)

we have at hand the non-local Poincaré inequality

−
∫
I%

∣∣∣∣f − −∫
I%

f

∣∣∣∣ dt 6 %
∑
k∈Z

1

1 + |k|3/2
−
∫
k%2+I%

|HtD
1/2
t f | dt,

see [4, Lem. 8.3]. Rearranging the covering of the real line by translates of I% into a
covering by dyadic annuli, we obtain

−
∫
I%

∣∣∣∣f − −∫
I%

f

∣∣∣∣ dt 6 %
∑
m>0

2−m−
∫

4mI%

|HtD
1/2
t f | dσ

6 %
∑
m>0

2−m−
∫
−
∫
Q×4mI%

|HtD
1/2
t v| dx dt

6 2%M x(M t(|HtD
1/2
t v|)(x0, t0),

where the second step can rigorously be justified using Fubini’s theorem, see
[4, Lem. 3.10]. �

As a consequence, we obtain an important estimate for the parabolic maximal
differential operator D defined in (1.13).

Lemma 2.3. — The operator D maps Ė(Rn+1) boundedly into L2(Rn+1).

Proof. — Let v ∈ Ė(Rn+1). We first claim that

(2.1) |v(x, t)− v(y, s)|
‖(x− y, t− s)‖

.M (|∇xv|)(x, t) + M x M t(|HtD
1/2
t v|)(x, t)

+ M (|∇xv|)(y, s) + M x M t(|HtD
1/2
t v|)(y, s)

holds for almost every (x, t), (y, s) ∈ Rn+1. Indeed, let (x, t) be a Lebesgue point for v
and for % > 0 let v% denote the average of v over the parabolic cube ∆% := ∆%(x, t).
Then, by a telescoping sum and an application of Lemma 2.2,

|v(x, t)− v%| 6
∞∑
k=0

|v2−k−1% − v2−k%|

.
∞∑
k=0

2−k%
(
M (|∇xv|)(x, t) + M x M t(|HtD

1/2
t v|)(x, t)

)
6 2%

(
M (|∇xv|)(x, t) + M x M t(|HtD

1/2
t v|)(x, t)

)
.
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Furthermore, let also (y, s) be a Lebesgue point for v and assume that (y, s) ∈ ∆%(x, t).
Then ∆%(x, t) ⊂ ∆2%(y, s) and we obtain as above,

|v(y, s)− v%| 6
∣∣∣∣v(y, s)− −

∫
−
∫

∆2%(y,s)

v

∣∣∣∣+

∣∣∣∣−∫−∫
∆2%(y,s)

v − v%
∣∣∣∣

. %
(
M (|∇xv|)(y, s) + M x M t(|HtD

1/2
t v|)(y, s)

)
.

Now, for (x, t) 6= (y, s) as above we can specify % := ‖(x− y, t− s)‖ and (2.1) follows
by adding up the previous two estimates. In particular, we obtain

Dv(x, t) .M (|∇xv|)(x, t) + M x M t(|HtD
1/2
t v|)(x, t)

+ M M (|∇xv|)(x, t) + M M x M t(|HtD
1/2
t ϕ|)(x, t)

for almost every (x, t) ∈ Rn+1 and since all occurring maximal operators are
L2-bounded, we conclude ‖Dv‖2 . ‖∇xv‖2 + ‖HtD

1/2
t v‖2 as required. �

3. Functional calculus and square function estimates

In this section we prove the important square function estimates for H‖ and H ∗
‖

underlying the proof of Lemma 1.9. Most of this material is taken from [4].
Given µ ∈ (0, π/2) we let

Sµ := {z ∈ C : | arg z| < µ or | arg z − π| < µ}

denote the open double sector of angle µ. We let

Ψ(Sµ) := {ψ ∈ H∞(Sµ) : ∃ α > 0, C > 0, such that |ψ(z)| 6 C min{|z|α, |z|−α}},

where H∞(Sµ) is the set of all bounded holomorphic functions on Sµ. Furthermore,
recall that an operator T in a Hilbert space is bisectorial of angle ω ∈ (0, π/2) if its
spectrum is contained in the closure of Sω and if, for each µ ∈ (ω, π/2), the map
z 7→ z(z − T )−1 is uniformly bounded on C r Sµ. In this case a bounded operator
ψ(T ) is defined by the functional calculus for bisectorial operators and we refer to [24]
or [10] for the few essentials of this theory used in this section. Turning to concrete
operators, we represent vectors h ∈ Cn+2 as

h =

h⊥h‖
hθ

 ,
where the normal part h⊥ is scalar valued, the tangential part h‖ is valued in Cn and
the time part hθ is again scalar valued and let

P :=

 0 divx −D1/2
t

−∇x 0 0

−HtD
1/2
t 0 0

 , M :=

1 0 0

0 A‖‖ 0

0 0 1

.
Here, M is considered as a bounded multiplication operator on L2(Rn+1;Cn+2) and
the parabolic Dirac operator P is an unbounded operator in L2(Rn+1;Cn+2) with
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maximal domain. The link with the parabolic operator H‖ is that (PM)2 and (MP )2

are operator matrices in block form

(3.1) (PM)2 =

H‖ 0 0

0 ∗ ∗
0 ∗ ∗

 , (MP )2 =

H‖ 0 0

0 ∗ ∗
0 ∗ ∗

 ,
where the entries ∗ do not play any role in the following but of course they could
be computed explicitly. Note that taking adjoints in (3.1), hence using (P ∗M∗)2

or (M∗P ∗)2, allows to obtain H ∗
‖ . The following theorem provides square function

estimates.

Theorem 3.1. — The operator PM is a bisectorial operator in L2(Rn+1;Cn+2) with
angle ω of bisectoriality depending only upon n and the ellipticity constants of A
and the same range as P , that is, R(PM) = R(P ). Let µ ∈ (ω, π/2) and consider
ψ ∈ Ψ(Sµ) non vanishing on each connected component of Sµ. Then∫ ∞

0

‖ψ(λPM)h‖22
dλ

λ
∼ ‖h‖22 if h ∈ R(PM)

and the implicit constants in this estimate depend only upon n, the ellipticity constants
of A, µ and ψ. The same holds true for MP on R(MP ) = MR(P ) and with PM ,
MP , replaced by P ∗M∗, M∗P ∗.

Proof. — For PM , this is a mere consequence of [4, Th. 2.3]: Indeed, this theorem
states all assertions apart from that only the quadratic estimate∫ ∞

0

‖λPM(1 +λ2PMPM)−1h‖22
dλ

λ
∼ ‖h‖22 for h ∈ R(PM)

is mentioned. But due to a general result on quadratic estimates for bisectorial op-
erators on Hilbert spaces, see [24] or [10, Th. 3.4.11], this quadratic estimate is in
fact equivalent to the set of quadratic estimates stated above. The statement for MP

follows from the fact that this operator is similar to PM on their respective ranges by
MP = M(PM)M−1. The statements for P ∗M∗, M∗P ∗ follow by duality, see again
[24, 10]. �

Below, we single out some particular instances of the theorem above and reformu-
late them in terms of H‖ and H ∗

‖ to have direct references later on. Throughout, we
let ϕ, ϕ̃ be as in (1.10), (1.11) and we recall that the resolvent operators P ∗λ , Pλ were
defined in (1.12) for the moment with m unspecified.
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Lemma 3.2. — There exists c, 1 6 c < ∞, depending only on n, the ellipticity con-
stants and m > 1 such that

(i)

∫∫∫
Rn+2

+

|∂λP ∗λϕ|2 + |∂λPλϕ̃|2
dx dtdλ

λ
6 c|∆|,

(ii)

∫∫∫
Rn+2

+

|λ∇x∂λP ∗λϕ|2 + |λ∇x∂λPλϕ̃|2
dxdtdλ

λ
6 c|∆|,

(iii)

∫∫∫
Rn+2

+

|λH ∗
‖ P
∗
λϕ|2 + |λH‖Pλϕ̃|2

dxdtdλ

λ
6 c|∆|,

(iv)

∫∫∫
Rn+2

+

|λ2H ∗
‖ ∂λP

∗
λϕ|2 + |λ2H‖∂λPλϕ̃|2

dxdtdλ

λ
6 c|∆|.

Proof. — In the following we will only prove the estimates for Pλϕ̃, the estimates
for P ∗λϕ being proved similarly with P ∗ and M∗ replacing P and M . Note that
ϕ̃ ∈ Ė(Rn+1) and hence the following calculations can be justified, for example, by
approximating ϕ̃ by smooth and compactly supported functions in the semi-norm of
Ė(Rn+1). Keeping this in mind, we may directly argue with ϕ̃. We begin with (iii).
Let

h :=

 0

−∇xϕ̃
−HtD

1/2
t ϕ̃

 = P

 ϕ̃0
0

 ∈ R(P ) = R(PM),

and note, using (3.1) and elementary manipulations of resolvents of PM and MP ,
thatλH‖Pλϕ̃

0

0

 = λ(MP )2(1 + (λMP )2)−m

 ϕ̃0
0

 = M(λPM)(1 + (λPM)2)−mP

 ϕ̃0
0


= Mψ(λPM)h

where ψ(z) := z(1 + z2)−m. Hence,∫∫∫
Rn+2

+

|λH‖Pλϕ̃|2
dxdtdλ

λ
. ‖h‖22 = ‖∇xϕ̃‖22 + ‖HtD

1/2
t ϕ̃‖22 . |∆|,

by an application of Theorem 3.1 and (1.11). This proves (iii). Likewise, (i) and (iv)
follow with ψ(z) = −2mz2(1+z2)−m−1 and ψ(z) = −2mz3(1+z2)−m−1, respectively.
Finally, to prove (ii) we write analogously 0

−λ∇x∂λPλϕ̃
−λHtD

1/2
t ∂λPλϕ̃

 = P

λ∂λPλϕ̃0

0

 = −2mP (λMP )2(1 + (λMP )2)−m−1

 ϕ̃0
0


= ψ̃(λPM)h

with ψ̃(z) = −2mz2(1 + z2)−m−1 and the claim follows by yet another application of
Theorem 3.1. �
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Lemma 3.3. — There exists c, 1 6 c < ∞, depending only on n, the ellipticity con-
stants and m > 1 such that∫∫∫

Rn+2
+

|(I − P ∗λ )ϕ|2 + |(I − Pλ)ϕ̃|2 dxdtdλ

λ3
6 c|∆|.

Proof. — We have

(I − Pλ)ϕ̃ =

∫ λ

0

∂σPσϕ̃ dσ.

Applying Hardy’s inequality and Lemma 3.2 (i) we see that∫∫∫
Rn+2

+

|(I − Pλ)ϕ̃|2 dx dtdλ

λ3
.
∫∫∫

Rn+2
+

|∂λPλϕ̃|2
dx dtdλ

λ
6 c|∆|.

The proof of the estimate for (I − P ∗λ )ϕ is similar. �

4. Non-tangential maximal function estimates

The pointwise non-tangential maximal operator N∗ was introduced in (1.3) and
its integrated version Ñ∗ was defined in (1.15). In this section we use the previously
obtained square function estimates to derive bounds for these maximal functions.

Theorem 4.1. — Let h ∈ R(PM) and let F (λ, x, t) = (e−λ[PM ]h)(x, t), with [PM ] :=√
(PM)2. Then

‖Ñ∗F‖2 ∼ ‖h‖2,
where the implicit constants depend only on dimension and the ellipticity constants
of A. The conclusion remains true also with PM replaced by P ∗M∗.

Proof. — For PM , this is [4, Th. 2.12]. The same statement can be proved for P ∗M∗.
�

In the following P ∗λϕ, Pλϕ̃ are again as defined in (1.12).

Lemma 4.2. — There exists c, 1 6 c < ∞, depending only on n, the ellipticity con-
stants and m > 1 such that

‖Ñ∗(∇xP ∗λϕ)‖22 + ‖Ñ∗(∇xPλϕ̃)‖22 6 c|∆|.

Proof. — We only give the proof of the estimate of Ñ∗(∇xPλϕ̃). To start the proof
we first note as in the proof of Lemma 3.2 (ii) that 0

−∇xPλϕ̃
−HtD

1/2
t Pλϕ̃

 = ϑ(λPM)h, h =

 0

−∇xϕ̃
−HtD

1/2
t ϕ̃

 = P

 ϕ̃0
0

 ∈ R(PM)

where now ϑ(z) = (1+z2)−m. Thus,−∇xPλϕ̃ = (ϑ(λPM)h)‖ and we have to estimate
‖Ñ∗(ϑ(λPM)h)‖2. To this end, we first note

(4.1) ‖Ñ∗(e−λ[PM ]h)‖22 . ‖h‖22 = ‖∇xϕ̃‖22 + ‖HtD
1/2
t ϕ̃‖22 . |∆|,
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using Theorem 4.1, the construction of h and (1.11). Now let ψ(z) := ϑ(z) − e−
√
z2 .

Tonelli’s theorem yields

‖Ñ∗(ψ(λPM)h)‖22 .
∫ ∞

0

‖ψ(λPM)h‖22
dλ

λ
,

see for example [4, Lem. 8.10] for an explicit proof. Since ψ ∈ Ψ(Sµ) for every µ ∈
(0, π/2), we deduce from Theorem 3.1 that

‖Ñ∗(ψ(λPM)h)‖22 . ‖h‖22 . |∆|,

which in combination with (4.1) yields the claim. �

For the λ-derivatives of P ∗λϕ and Pλϕ̃ we could get L2-bounds for the integrated
non-tangential maximal function immediately from the square function estimate in
Lemma 3.2 (i). However, this would not be enough for our purpose. To derive the
required bounds for the pointwise non-tangential maximal function, we need the fol-
lowing lemma.

Lemma 4.3. — For λ > 0 and m > 1, the resolvent Pλ = (1 + λ2H‖)
−m, defined

as a bounded operator on L2(Rn+1), is represented by an integral kernel Kλ,m with
pointwise bounds

(4.2) |Kλ,m(x, t, y, s)| 6
C1(0,∞)(t− s)

λ2m
(t− s)−n/2+m−1e−(t−s)/λ2

e−c|x−y|
2/(t−s),

where C, c > 0 depend only on n, the ellipticity constants and m. An analogous
representation holds for (1 + λ2H ∗

‖ )−m with adjoint kernel K∗λ,m.

Proof. — It suffices to do it when m = 1 as iterated convolution in (x, t) of the
estimate on the right hand side of (4.2) with m = 1 yields the result.

Let f ∈ C∞0 (Rn+1). Let u = (1 + λ2H‖)
−1f given by the functional calculus of

H‖. Then u ∈ L2(Rn+1) and, in particular, u is a weak solution to

λ2∂tu− λ2 divxA‖‖∇xu+ u = f.

On the other hand, by Aronson’s result [2], the operator H‖ has a fundamental
solution, denoted by K(x, t, y, s), having bounds

|K(x, t, y, s)| 6 C1(0,∞)(t− s) · (t− s)−n/2e−c|x−y|
2/(t−s) for x, y ∈ Rn, t, s ∈ R

with constants C, c depending only on dimension and the ellipticity constants, and
satisfying

(4.3)
∫
Rn
K(x, t, y, s) dy = 1 for x ∈ Rn, t, s ∈ R, t > s.

Set

Kλ,1(x, t, y, s) = λ−2K(x, t, y, s)e−(t−s)/λ2

v(x, t) =

∫∫
Rn+1

Kλ,1(x, t, y, s)f(y, s) dy ds.and
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Aronson’s estimate implies v ∈ L2(Rn+1) and a calculation shows that v is a weak
solution to the same equation as u. Thus, w := u− v is a weak solution of

∂tw − divxA‖‖∇xw + λ−2w = 0

and we may use the Caccioppoli estimate of Lemma 2.1 in Rn+1. Choosing test
functions ψ that converge to 1 reveals ∇xw = 0 as w ∈ L2(Rn+1). Hence w depends
only on t. Again, as w ∈ L2(Rn+1), w must be 0. This shows that Pλf has the desired
representation for all f ∈ C∞0 (Rn+1) and we conclude by density. �

Remark 4.4. — The kernel representation from Lemma 4.3 can be extended from
L2(Rn+1) to Ė(Rn+1) since the latter embeds continuously into L2(Rn+1)+L∞(Rn+1)

modulo constants, see for example [4, Lem. 3.11]. In this sense (1 + λ2H‖)
−m1 = 1

holds due to (4.3).

Lemma 4.5. — Fix m = n + 1 in the definitions of P ∗λ and Pλ. There exists c, with
1 6 c <∞, depending only on n and the ellipticity constants such that

‖N∗(∂λP ∗λϕ)‖22 + ‖N∗(∂λPλϕ̃)‖22 6 c|∆|.

Proof. — By symmetry of definitions, we only have to prove one of the estimate and
we do the one of N∗(∂λP ∗λϕ) for a change.

To start the proof, we set Λλ = (λ/2, λ), Qλ(x) = B(x, λ) and we let Iλ(t) =

(t − λ2, t + λ2) be one of the Whitney regions used in the definition of N∗. Recall
that ∆λ(x, t) = Qλ(x) × Iλ(t). Let us set W (λ, x, t) := Λλ × Qλ(x) × Iλ(t) and fix
(µ, y, s) ∈ W (λ, x, t). Let σ ∈ Λλ be arbitrary for the moment. We note that within
the functional calculus for H ∗

‖ ,

∂µP
∗
µ = −2mµH ∗

‖ (1 + µ2H ∗
‖ )−m−1,

and we introduce P̃ ∗µ := (1 + µ2H ∗
‖ )−1 to write

∂µP
∗
µϕ = −2mµ

σ
(1 + µ2H ∗

‖ )−m(1 + µ2H ∗
‖ )−1(1 + σ2H ∗

‖ )σH ∗
‖ P̃
∗
σϕ.

It is convenient to expand this identity as

(4.4) ∂µP
∗
µϕ = −2mµ

σ
(1 + µ2H ∗

‖ )−m
(σ2

µ2
+
(

1− σ2

µ2

)
(1 + µ2H ∗

‖ )−1
)
σH ∗
‖ P̃
∗
σϕ

since this reveals ∂µP ∗µϕ = T (σH ∗
‖ P̃
∗
σϕ), where the operator T is given by a lin-

ear combination of the resolvent kernels K∗µ,m and K∗µ,m+1 provided by Lemma 4.3.
Setting G0(x, t) := ∆2λ(x, t) and Gj(x, t) := ∆2j+1λ(x, t) r ∆2jλ(x, t), j > 1, since
(µ, y, s) ∈ Λλ ×∆λ(x, t), we can infer pointwise estimates

|K∗µ,m+k(y, s, z, τ)| 6 C

λn+2
e−c4

j

if (z, τ) ∈ Gj(x, t), j > 0, m+ k > n/2 + 1,

where C, c > 0 depend only on n, the ellipticity constants and m + k. Note that
the bound for j = 0 only holds since m + k > m = n + 1 > n/2 + 1 guarantees
that K∗µ,m+k is bounded. As we have λ/2 < σ < λ, the kernel K∗ of the operator
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acting on σH ∗
‖ P̃
∗
σϕ on the right-hand side of (4.4) has analogous bounds and we can

eventually record

|∂µP ∗µϕ(y, s)| =
∣∣∣∣ ∫∫

Rn+1

K∗(y, s, z, τ)σH ∗
‖ P̃
∗
σϕ(z, τ) dz dτ

∣∣∣∣
6
∞∑
j=0

C2j(n+2)e−c4
j

−
∫
−
∫
Gj(x,t)

|σH ∗
‖ P̃
∗
σϕ(z, τ)| dz dτ

with C, c > 0 depending only on n and the ellipticity constants. As (µ, y, s) ∈
W (λ, x, t) was arbitrary in this argument, we have in fact

(4.5) sup
(µ,y,s)∈W (λ,x,t)

|∂µP ∗µϕ(y, s)|2

.
∞∑
j=0

e−c4
j

−
∫
−
∫

2j+1Qλ(x)×4j+2Iλ(t)

|σH ∗
‖ P̃
∗
σϕ(z, τ)|2 dz dτ,

where we have also used Cauchy-Schwarz to switch to L2-averages and exploited the
exponential decay. Since only the right-hand side depends on σ ∈ Λλ, we can average
in σ and take the supremum in λ to find

N∗(∂λP
∗
λϕ)(x, t)2

.
∞∑
j=0

e−c4
j

sup
λ>0

∫ λ

λ/2

−
∫
−
∫

2j+1Qλ(x)×4j+2Iλ(t)

|σH ∗
‖ P̃
∗
σϕ(z, τ)|2 dz dτ dσ

σ
.

By a direct application of Tonelli’s theorem, see [4, Lem. 8.10] for an explicit proof,
this implies∫∫

Rn+1

|N∗(∂λP ∗λϕ)(x, t)|2 dxdt .
∞∑
j=0

e−c4
j

∫∫∫
Rn+2

+

|σH ∗
‖ P̃
∗
σϕ(z, τ)|2 dz dτ dσ

σ

and hence the claim follows from Lemma 3.2 (i) applied with m = 1. �

5. Parabolic sawtooth domains associated with F

Throughout this section, let ∆ and κ0�1 be given and let F ⊂16∆ be the set intro-
duced in Definition 1.8 with Pλ=(1+λ2H‖)

−n−1, P ∗λ =(1+λ2H ∗
‖ )−n−1 from now on.

Let us recall that the non-tangential maximal operators N∗ and Ñ∗ at (x0, t0) ∈ Rn+1

are defined with reference to the Whitney regions Λλ ×Qλ(x0)× Iλ(x0), where
Λλ = (λ/2, λ), Qλ(x0) = B(x0, λ), Iλ(t0) = (t0 − λ2, t0 + λ2), and that Γ(x0, t0)

denotes the parabolic cone with vertex (x0, t0) and aperture one, see (1.4). In
particular, we have

Γ(x0, t0) ⊂
⋃
λ>0

Λλ ×Qλ(x0)× Iλ(t0).

Next, we introduce a sawtooth domain associated with F ,
Ω :=

⋃
(x0,t0)∈F∩∆

Γ(x0, t0),

and establish pointwise estimates for the differences

θλ := ϕ− P ∗λϕ, θ̃λ := ϕ̃− Pλϕ̃.
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Lemma 5.1. — We have

(i) |θλ(x, t)|+ |θ̃λ(x, t)| 6 κ0λ if (λ, x, t) ∈ (0,∞)× F ,
(ii) |∂λθλ(x, t)|+ |∂λθ̃λ(x, t)| = |∂λP ∗λϕ(x, t)|+ |∂λPλϕ̃(x, t)| 6 κ0 if (λ, x, t) ∈ Ω,

(iii) |Ñ∗(∇xθλ)(x, t)|+ |Ñ∗(∇xθ̃λ)(x, t)| 6 2κ0 if (x, t) ∈ F .

Proof. — If (x, t) ∈ F , then by the fundamental theorem of calculus and the con-
struction of the set F , see Definition 1.8 (iv),

|θλ(x, t)|+ |θ̃λ(x, t)| =
∫ λ

0

|∂σP ∗σϕ(x, t)|+ |∂σPσϕ̃(x, t)| dσ 6 κ0λ.

This proves (i). Similarly, consider (λ, x, t) ∈ Ω. Then (λ, x, t) ∈ Γ(x0, t0) for some
(x0, t0) ∈ F and since ϕ and ϕ̃ are functions of (x, t) only, we obtain

|∂λθλ(x, t)| = |∂λP ∗λϕ(x, t)| 6 N∗(∂σP ∗σϕ)(x0, t0)

together with an analogous estimate for ∂λθ̃λ(x, t). Hence, (ii) is again a consequence
of Definition 1.8 (iv). As ϕ and ϕ̃ do not depend on λ, we also have

|Ñ∗(∇xθλ)(x, t)|+ |Ñ∗(∇xθ̃λ)(x, t)| 6M (|∇xϕ|2)(x, t)1/2 + M (|∇xϕ̃|2)(x, t)1/2

+ |Ñ∗(∇xP ∗λϕ)(x, t)|+ |Ñ∗(∇xPλϕ̃)(x, t)|,

showing that (iii) is a consequence of parts (i) and (v) in Definition 1.8. �

Our next lemma extends the bound in part (ii) above to the whole sawtooth region.

Lemma 5.2. — |θλ(x, t)|+ |θ̃λ(x, t)| . κ0λ for (λ, x, t) ∈ Ω.

Proof. — By symmetry of the definitions it suffices to prove the bound for θλ. As a
preliminary observation note that if (λ, x, t) ∈ Ω, then (λ, x, t) ∈ Γ(x0, t0) for some
(x0, t0) ∈ F and in particular (x, t) ∈ ∆λ(x0, t0). Since ϕ is a weak solution to the
equation H ∗

‖ ϕ = divx(A⊥‖χ8∆) on Rn+1, we can then use the classical local estimates
for weak solutions with real coefficients, see e.g. [23, Th. 6.17], to the effect that

sup
(x,t)∈∆λ(x0,t0)

|ϕ(x, t)− ϕ(x0, t0)| . λ+ −
∫
−
∫

∆2λ(x0,t0)

|ϕ(x, t)− ϕ(x0, t0)| dxdt.

Hence, using the construction of the set F , see Definition 1.8 (iii), we deduce

(5.1) sup
(x,t)∈∆λ(x0,t0)

|ϕ(x, t)− ϕ(x0, t0)| . λ+ λDϕ(x0, t0) 6 λ+ κ0λ.

To start with the actual proof of the estimate stated in the lemma, we let (λ, x, t)

and (x0, t0) be fixed as above and we denote by ϕ2λ the average of ϕ over the set
∆2λ(x0, t0). Thinking of P ∗λ as given by kernel representation from Lemma 4.3, see
also Remark 4.4, we have P ∗λ1 = 1 and consequently,

|θλ(x, t)| = |(I − P ∗λ )ϕ(x, t)| 6 |ϕ(x, t)− ϕ(x0, t0)|+ |(I − P ∗λ )ϕ(x0, t0)|
+ |P ∗λ (ϕ− ϕ2λ)(x0, t0)|+ |P ∗λ (ϕ− ϕ2λ)(x, t)|.
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Hence, using (5.1) and Lemma 5.1 (i), we deduce

(5.2) |θλ(x, t)| . κ0λ+ |P ∗λ (ϕ− ϕ2λ)(x0, t0)|+ |P ∗λ (ϕ− ϕ2λ)(x, t)|.

To estimate the remaining two terms on the right, we bring in the kernel of P ∗λ
explicitly. Indeed, Lemma 4.3 yields

P ∗λ (ϕ− ϕ2λ)(x0, t0) =

∫∫
Rn+1

K∗λ,n+1(x0, t0, z, τ)(ϕ(z, τ)− ϕ2λ) dz dτ

with a kernel enjoying the bound

|K∗λ,n+1(x0, t0, z, τ)| 61(0,∞)(τ − t0)
C|t0 − τ |−n/2+n+1−1

λ2+2n
e−|t0−τ |/λ

2

e−c|x0−z|2/|t0−τ |

.1(0,∞)(τ − t0)
C

λn+2
e−|t0−τ |/λ

2

e−c|x0−z|2/|t0−τ |

for some constants C, c > 0 depending only on dimension and ellipticity. So, splitting
Rn+2 into ∆2λ(x0, t0) and annuli ∆2j+1λ(x0, t0) r ∆2jλ(x0, t0), j > 1, we can infer
that

(5.3) |P ∗λ (ϕ− ϕ2λ)(x0, t0)| .
∞∑
j=0

2(n+2)je−c4
j

−
∫
−
∫

∆2j+1λ(x0,t0)

|ϕ(z, τ)− ϕ2λ| dz dτ.

Next, by a telescopic sum and Lemma 2.2 we deduce that

−
∫
−
∫

∆2j+1λ(x0,t0)

|ϕ(z, τ)− ϕ2λ| dz dτ 6
j+1∑
k=1

−
∫
−
∫

∆
2kλ

(x0,t0)

|ϕ(z, τ)− ϕ2kλ| dz dτ

6 2j+2λ
(
M (|∇xϕ|)(x0, t0) + M x M t(|HtD

1/2
t ϕ|)(x0, t0)

)
and parts (i) and (ii) of Definition 1.8 guarantee that the last term is no larger than
2j+3λκ0. In particular, summing up in (5.3), we can conclude |P ∗λ (ϕ−ϕ2λ)(x0, t0)| .
κ0λ. The estimate of |P ∗λ (ϕ − ϕ2λ)(x, t)| can be done similarly, taking into account
∆λ(x0, t0) ⊂ ∆2λ(x, t) when writing out the telescopic sum of averages. Now, the
claim follows from (5.2). �

5.1. An adapted cut-off and associated Carleson measures. — Here, we bring into
play the degree of freedom 0 < η � 1 and the parameter 0 < ε � r that already
appeared in the outline of Section 1.5.

Writing Γη(x0, t0) for the parabolic cone with vertex (x0, t0) and aperture η, we
define the thinner sawtooth domains

Ωη :=
⋃

(x0,t0)∈F∩∆

Γη/8(x0, t0).

Then Ωη ⊂ Ω. We are now going to define a smooth cut off adapted to Ωη.
Let Φ ∈ C∞0 (R) be such that Φ(%) = 1 if % 6 1/16 and Φ(%) = 0 if % > 1/8 and

let Υ ∈ C∞0 (Rn+2) be supported in B(0, 1/2048) ⊂ Rn+2 and satisfy 0 6 Υ 6 1
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and
∫
Rn+2 Υ(µ, y, s) dµdy ds = 1. We then set
Ψ(λ, x, t) := Ψη,ε(λ, x, t)

:= Φ(λ/32r)
(
1− Φ(λ/32ε)

) ∫
Ωη/2

Υ
(λ− µ

λ
,
x− y
λη

,
s− t
(λη)2

) dµdy ds

λ(λη)n+2
.

(5.4)

By construction, we have Ψ ∈ C∞0 (Rn+2
+ ), 0 6 Ψ 6 1, Ψ = 1 on the open set

Ωη/4 ∩ ((2ε, 2r)×Rn+1) and in particular on (F ∩∆)× (2ε, 2r) and the support of Ψ

is a subset of Ωη ∩ ((ε, 4r)× 2∆). Making the link with the sawtooth domain Ω from
the previous section, we note

(λ, x, t) ∈ supp Ψ =⇒ (ηλ, x, t) ∈ Ω.

Now, let δ(x, t) denote the parabolic distance from the point (x, t)∈Rn+1 to F ⊂Rn+1

and let
E1 := {(λ, x, t) ∈ (0, 4r)× 2∆ : ηλ/32 6 δ(x, t) 6 ηλ/8},
E2 := {(λ, x, t) ∈ (2r, 4r)× 2∆ : δ(x, t) 6 ηλ/8},
E3 := {(λ, x, t) ∈ (ε, 2ε)× 2∆ : δ(x, t) 6 ηλ/8}.

(5.5)

Let (α, β, γ) = (α, β1, . . . , βn, γ) ∈ Nn+2r{0} be a multiindex. Again by construction
of Ψ there exists a constant c̃ depending only on α, β, γ, η and n such that∣∣∣∣ ∂α+|β|+γ

∂λα∂xβ∂tγ
Ψ(λ, x, t)

∣∣∣∣ 6 c̃

|λ|α+|β|+2γ
1E1∪E2∪E3(λ, x, t).(5.6)

The following Carleson lemma is also important in the next section.

Lemma 5.3. — It holds∫∫∫
E1∪E2∪E3

dλ dx dt

λ
6 log(8)2n+2|∆|.

In particular, let η, ε and Ψ = Ψη,ε be as above, let (α, β, γ) = (α, β1, . . . , βn, γ) ∈
Nn+2r{0} be a multiindex and let p ∈ (0,∞). Then there exists c̃ = c̃(α, β, γ, p, n, η) <

∞, such that∫∫∫
Rn+2

+

∣∣∣∣ ∂α+|β|+γ

∂λα∂xβ∂tγ
Ψ(λ, x, t)

∣∣∣∣p λp(α+|β|+2γ)−1 dλ dxdt 6 c̃|∆|.

Proof. — By definition of the sets E1, E2 and E3, integration in (x, t) takes place
only on the cube 2∆ and for (x, t) ∈ 2∆ fixed, integration in λ is at most over the
intervals (8δ(x, t)/η, 32δ(x, t)/η), (2r, 4r) and (ε, 2ε), yielding a total contribution of
log(8). Hence, the first claim follows from Tonelli’s theorem and then the second one
is a consequence of (5.6) �

6. Proof of the Key Lemma

We are now ready to prove the Key Lemma, hence completing the proof of Theo-
rem 1.5. As discussed in Section 1.5, throughout the proof we can qualitatively assume
that A is smooth. In that case, one can see that qualitatively ϕ, ϕ̃, Pλϕ̃ and P ∗λϕ as
well as u are smooth by interior parabolic regularity. Furthermore, we will simply
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write J for Jη,ε and we note – and this is a consequence of the introduction of ε –
that no boundary terms will survive when we perform partial integration. Similarly,
we will write Ψ for Ψη,ε defined in Section 5.1. Throughout, σ will denote a positive
degree of freedom and c will denote a generic constant (not necessarily the same at
each instance), which depends only on the dimension n and the ellipticity constants.
In contrast, c̃ will denote a generic constant that may additionally depend on σ and η.
The fact that |u| 6 1 will be used repeatedly in the proof.

To start the estimate of J we first note that uΨ2λ is a test function for the weak
formulation of the equation for u. Hence,

(6.1) 0 =

∫∫∫
Rn+2

+

A∇λ,xu · ∇λ,x(uΨ2λ) + ∂tu(uΨ2λ) dxdtdλ.

As
∇λ,x(uΨ2λ) = (∇λ,xu)Ψ2λ+ uλ∇λ,xΨ2 + uΨ2∇λ,xλ,

we have

J =

∫∫∫
Rn+2

+

A∇λ,xu · ∇λ,x(uΨ2λ) dxdtdλ−
∫∫∫

Rn+2
+

(A∇λ,xu · ∇λ,xΨ2)uλdxdtdλ

−
∫∫∫

Rn+2
+

(A∇λ,xu · ∇λ,xλ)uΨ2 dxdtdλ.

Combining this with (6.1), we see that J = J1 + J2 + J3, where

J1 := −
∫∫∫

Rn+2
+

(A∇λ,xu · ∇λ,xΨ2)uλdx dtdλ,

J2 := −
∫∫∫

Rn+2
+

(A∇λ,xu · ∇λ,xλ)uΨ2 dx dtdλ,

J3 := −
∫∫∫

Rn+2
+

∂tu(uΨ2λ) dx dtdλ.

The estimates of J1 and J3 turn out to be straightforward: Indeed, by the Cauchy-
Schwarz inequality

|J1| 6 c
(∫∫∫

Rn+2
+

|∇λ,xu|2Ψ2 λ dx dtdλ

)1/2(∫∫∫
Rn+2

+

|∇λ,xΨ|2 λ dx dtdλ

)1/2

and hence, using the elementary Young’s inequality, ellipticity of A and the Carleson
measure estimates in Lemma 5.3,

|J1| 6 σJ + c̃|∆|.

Furthermore,

J3 = −1

2

∫∫∫
Rn+2

+

(∂tu
2)Ψ2λ dxdtdλ =

1

2

∫∫∫
Rn+2

+

u2∂t(Ψ
2)λ dxdtdλ.

Thus, by the Carleson measure estimates in Lemma 5.3 and as |u|, |Ψ| 6 1,

|J3| 6 c
∫∫∫

Rn+2
+

|∂tΨ|λ dxdtdλ 6 c̃|∆|.

J.É.P. — M., 2018, tome 5



The Dirichlet problem for second order parabolic operators 431

As for J2, we first use the decomposition (1.8) of the coefficients and split J2 =

J21 + J22, where

J21 := −
∫∫∫

Rn+2
+

(
A⊥‖ · ∇xu

)
uΨ2 dxdtdλ,

J22 := −
∫∫∫

Rn+2
+

(
A⊥⊥∂λu

)
uΨ2 dxdtdλ.

Since A does not depend on λ, integration by parts yields

J22 = −1

2

∫∫∫
Rn+2

+

A⊥⊥∂λu
2Ψ2 dxdtdλ =

1

2

∫∫∫
Rn+2

+

A⊥⊥u
2∂λΨ2 dxdtdλ

and hence |J22| 6 c̃|∆| follows again by Lemma 5.3. To estimate J21 we use that

A⊥‖ · ∇x
(
u2Ψ2/2

)
= (A⊥‖ · ∇xu)uΨ2 + (A⊥‖ · ∇xΨ)u2Ψ

and we write J21 = J211 + J212, where

J211 := −
∫∫∫

Rn+2
+

A⊥‖ · ∇x
(
u2Ψ2/2

)
dxdtdλ,

J212 :=

∫∫∫
Rn+2

+

(A⊥‖ · ∇xΨ)u2Ψ dx dt dλ.

Once again, |J212| 6 c̃|∆| follows by Lemma 5.3. In order to handle J211, we intro-
duce ϕ as in (1.10), that is, as the energy solution on Rn+1 to the problem

divx(A⊥‖χ8∆) = −∂tϕ− divx(A∗‖‖∇xϕ) = H ∗
‖ ϕ.

The weak formulation with φ = u2Ψ2(λ, ·, ·)/2 as test function for λ > 0 fixed, which
by construction of Ψ is supported in 8∆, yields

J211 =

∫
R+

∫∫
Rn+1

ϕ∂t
(
u2Ψ2/2

)
dxdtdλ+

∫
R+

∫∫
Rn+1

A∗‖‖∇xϕ·∇x
(
u2Ψ2/2

)
dxdtdλ.

Recall that we write θηλ = ϕ−P ∗ηλϕ. Then, splitting ϕ = θηλ+P ∗ηλϕ in both integrals,
we may write

(6.2) J211 = J2111 + J2112 + J2113 + J2114,

where

J2111 :=

∫∫∫
Rn+2

+

(θηλ)∂t
(
u2Ψ2/2

)
dxdtdλ,

J2112 :=

∫∫∫
Rn+2

+

(P ∗ηλϕ)∂t
(
u2Ψ2/2

)
dxdtdλ,

J2113 :=

∫∫∫
Rn+2

+

A∗‖‖∇xθηλ · ∇x
(
u2Ψ2/2

)
dx dtdλ,

J2114 :=

∫∫∫
Rn+2

+

A∗‖‖∇xP
∗
ηλϕ · ∇x

(
u2Ψ2/2

)
dxdtdλ.
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For the time being, let us concentrate on the second and fourth term in (6.2).
Integrating by parts with respect to λ leads us to

J2112 + J2114 =−
∫∫∫

Rn+2
+

(∂λP
∗
ηλϕ)∂t

(
u2Ψ2/2

)
λdx dtdλ

−
∫∫∫

Rn+2
+

(P ∗ηλϕ)∂t∂λ
(
u2Ψ2/2

)
λdx dtdλ

−
∫∫∫

Rn+2
+

(A∗‖‖∇x∂λP
∗
ηλϕ) · ∇x

(
u2Ψ2/2

)
λ dxdtdλ

−
∫∫∫

Rn+2
+

(A∗‖‖∇xP
∗
ηλϕ) · ∇x∂λ

(
u2Ψ2/2

)
λ dxdtdλ,

where we have again used the λ-independence of the coefficients. We stress that
throughout (and with a slight abuse of notation) ∂λP ∗ηλϕ denotes the derivative in λ
of the function λ 7→ P ∗ηλϕ, so that there is a factor η showing up in front by the chain
rule. A similar notational convention will apply to ∂λθηλ. Taking into account the
definition of the parabolic operator H ∗

‖ , we can regroup these terms as

J2112 + J2114 = I1 + I2 + I3,

where

I1 := −
∫∫∫

Rn+2
+

(∂λP
∗
ηλϕ)∂t

(
u2Ψ2/2

)
λ dxdtdλ,

I2 := −
∫∫∫

Rn+2
+

(A∗‖‖∇x∂λP
∗
ηλϕ) · ∇x

(
u2Ψ2/2

)
λ dx dtdλ,

I3 :=

∫∫∫
Rn+2

+

(H ∗
‖ P
∗
ηλϕ)∂λ

(
u2Ψ2/2

)
λ dxdtdλ.

By the Cauchy-Schwarz inequality and the square function estimates stated in
parts (ii) and (iii) of Lemma 3.2 we first deduce that

|I2|+ |I3| 6 c̃|∆|1/2
(∫∫∫

Rn+2
+

∣∣∇λ,x(u2Ψ2/2
)∣∣2 λ dxdtdλ

)1/2

6 c̃|∆|1/2
(∫∫∫

Rn+2
+

|∇λ,xu|2Ψ + |∇λ,xΨ|2 λ dxdtdλ

)1/2

and then, by Lemma 5.3 and Young’s inequality, we can conclude |I2|+|I3| 6 σJ+c̃|∆|.
To estimate I1, we write I1 = I11 + I12, where

I11 := −
∫∫∫

Rn+2
+

(∂λP
∗
ηλϕ)u2∂t

(
Ψ2/2

)
λ dx dtdλ,

I12 := −
∫∫∫

Rn+2
+

(∂λP
∗
ηλϕ)u∂tuΨ2 λ dxdtdλ.

By a familiar argument relying on Cauchy-Schwarz, Lemma 3.2 and Lemma 5.3 we
deduce |I11| 6 c̃|∆|. The estimate of I12 is more involved. Here, we first use the
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equation ∂tu = divλ,xA∇λ,xu, which thanks to our smoothness assumption may be
interpreted in the classical (pointwise) sense, in order to split I12 = I121 + I122, where

I121 := −
∫∫∫

Rn+2
+

(∂λP
∗
ηλϕ)udivx(A∇λ,xu)‖Ψ

2 λ dxdtdλ,

I122 := −
∫∫∫

Rn+2
+

(∂λP
∗
ηλϕ)u(A∇λ,x∂λu)⊥Ψ2 λ dxdtdλ.

Then,

I121 =

∫∫∫
Rn+2

+

∇x(∂λP
∗
ηλϕ)u · (A∇λ,xu)‖Ψ

2 λ dx dtdλ

+

∫∫∫
Rn+2

+

(∂λP
∗
ηλϕ)∇xu · (A∇λ,xu)‖Ψ

2 λ dxdtdλ

+

∫∫∫
Rn+2

+

(∂λP
∗
ηλϕ)u(A∇λ,xu)‖ · ∇xΨ2 λ dxdtdλ.

For the first term on the right-hand side we can infer control by σJ + c̃|∆| using
Cauchy-Schwarz, Lemma 3.2 and Young’s inequality in a by now familiar manner. For
the other two terms we shall use for the first time the definition of the set F . More
precisely, in virtue of Lemma 5.1 we can replace the resolvent by its pointwise upper
bound |∂λP ∗ηλϕ(x, t)| 6 cη 6 c noting that (λ, x, t) ∈ supp(Ψ) implies (ηλ, x, t) ∈ Ω

by construction, see Section 5.1. Having done this, the second integral on the right-
hand side is bounded by ηJ thanks to ellipticity of A and for the third one we obtain
a bound c̃J1/2|∆|1/2 by applying Cauchy-Schwarz and Lemma 5.3. Put together, we
have

|I121| 6 (σ + cη)J + c̃|∆|.

Also, using Lemma 3.2 we immediately have

(6.3) |I122| 6 σI1221 + c̃|∆|,

where

I1221 :=

∫∫∫
Rn+2

+

|∇λ,x∂λu|2Ψ2 λ3 dxdtdλ.

This term can be estimated using a Whitney type covering argument, the fact that ∂λu
is a solution and Caccioppoli’s inequality: Indeed, let W = {Wi} denote a partitioning
of Rn+2

+ into (parabolic) Whitney cubes, that is, each Wi has dyadic (parabolic)
sidelength `(Wi) and is located at distance 4`(Wi) to the boundary. Let φi ∈ C∞0 (2Wi)

be a standard cut-off for Wi such that 0 6 φi 6 1, |∇λ,xφi|+ |∂tφi|1/2 6 c/`(Wi) and
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∑
i φ

2
i (λ, x, t) = 1 for all (λ, x, t) ∈ Rn+2

+ . Then

I1221 =
∑
i

∫∫∫
Rn+2

+

|∇λ,x∂λu|2φ2
iΨ

2 λ3 dxdtdλ

6 c
∑
i

∫∫∫
Rn+2

+

|∂λu|2|∇λ,x(φiΨ)|2 λ3 dxdtdλ

+ c
∑
i

∫∫∫
Rn+2

+

|∂λu|2|φiΨ||∂t(φiΨ)|λ3 dx dtdλ,

by an application of Lemma 2.1 and hence, taking into account the finite overlap of
the Whitney cubes,

I1221 6 c
∫∫∫

Rn+2
+

|∂λu|2Ψ2 λ dxdtdλ+ c

∫∫∫
Rn+2

+

|∂λu|2|∇λ,xΨ|2 λ3 dxdtdλ

+ c

∫∫∫
Rn+2

+

|∂λu|2|∂tΨ|λ3 dxdtdλ.

Crudely employing ellipticity, the first integral on the right-hand side is under control
by cJ . Since λ|∂λu| 6 c in a pointwise fashion, as follows easily from DeGiorgi–Moser–
Nash interior estimates, Caccioppoli’s inequality and |u| 6 1, we can apply Lemma 5.3
to bound the second and third integral by c̃|∆|. So, as to (6.3), we have

|I122| 6 σJ + c̃|∆|.
Put together we can conclude that the second and fourth term all the way back in
(6.2) can be estimated by

|J2112 + J2114| 6 σJ + c̃|∆|.

At this stage of the proof it only remains to focus on J2111 + J2113 and we note
that by definition

J2111 + J2113 = −
∫∫∫

Rn+2
+

θηλ∂t
(
u2Ψ2/2

)
dxdtdλ

+

∫∫∫
Rn+2

+

A∗‖‖∇xθηλ · ∇x
(
u2Ψ2/2

)
dxdtdλ

= II 1 + II 2 + II 3,

where

II 1 :=

∫∫∫
Rn+2

+

∂tu(θηλuΨ2) dxdtdλ+

∫∫∫
Rn+2

+

∇xθηλ ·A‖‖∇xu(uΨ2) dxdtdλ,

II 2 :=
1

2

∫∫∫
Rn+2

+

θηλu
2∂tΨ

2 dxdtdλ,

II 3 :=
1

2

∫∫∫
Rn+2

+

∇xθηλ ·A‖‖∇xΨ2(u2) dxdtdλ.

Using Lemma 5.2, we have |θηλ(x, t)| 6 cηλ 6 cλ for (λ, x, t) in the support of Ψ

and hence we can conclude, using Lemma 5.3, that |II 2| 6 c̃|∆| holds. Similarly,
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for II 3 we would like to bring into play the (integrated) non-tangential control for
∇xθλ provided by Lemma 5.1 (iii). To this end, we use an “averaging trick” justified
by Tonelli’s theorem in order to write

II 3 6 c̃
∫∫∫

Rn+2
+

(
−
∫
−
∫
−
∫
Wη/64(σ,y,s)

|∇xθηλ ·A‖‖∇xΨ2(u2)| dλ dxdt

)
dσ dy ds,

where Wη/64(σ, y, s) denotes the Whitney region (σ/2, σ) × Qησ/64(y) × Iησ/64(s).
Now, letting

Ẽ1 := {(σ, y, s) ∈ (0, 4r)× 2∆ : ησ/64 6 δ(y, s) 6 ησ/4},

Ẽ2 := {(σ, y, s) ∈ (2r, 8r)× 4∆ : δ(y, s) 6 ησ/4},

Ẽ3 := {(σ, y, s) ∈ (ε, 4ε)× 4∆ : δ(y, s) 6 ησ/4},

where again δ(x, t) denotes the parabolic distance from (x, t) to the set F , we deduce
from (5.5) and (5.6) that the integrand on the right-hand side vanishes outside of
Ẽ1 ∪ Ẽ2 ∪ Ẽ3 and that we have a bound

II 3 6 c̃
∫∫∫

Ẽ1∪Ẽ2∪Ẽ3

(
−
∫
−
∫
−
∫
Wη/64(σ,y,s)

|∇xθηλ| dλ dxdt

)
dσ dy ds

σ

6 c̃
∫∫∫

Ẽ1∪Ẽ2∪Ẽ3

(
−
∫
−
∫
−
∫
Wη/64(ησ,y,s)

|∇xθλ|2 dλ dxdt

)1/2
dσ dy ds

σ
,

the second step following from Cauchy-Schwarz and a simple change of variables.
The definition of Ẽ1 ∪ Ẽ2 ∪ Ẽ3 entails that for (σ, y, s) in this union, the Whitney
region Wη/64(ησ, y, s) is contained in a cone Γ1/2(x0, t0) with vertex (x0, t0) ∈ F . In
particular, Wη/64(ησ, y, s) can be covered by a finite number (depending only on n)
of Whitney regions Λ×Q× I showing up in the definition of the integrated maximal
function Ñ∗ on the set F . Consequently, Lemma 5.1 yields

II 3 6 c̃
∫∫∫

Rn+2
+

1Ẽ1∪Ẽ2∪Ẽ3
(σ, y, s)

dσ dy ds

σ
.

Up to a change of parameters, the sets Ẽ1, Ẽ2, Ẽ3 are similar to E1, E2, E3 defined
Subsection 5.1 and so we can rely on Lemma 5.3 to conclude II 3 6 c̃|∆|. To estimate
II 1, we start out with the identity

∇x(θηλuΨ2) = (∇xθηλ)uΨ2 + θηλ(∇xu)Ψ2 + θηλu∇x(Ψ2)

to see that II 1 = II 11 + II 12, where

II 11 :=

∫∫∫
Rn+2

+

∂tu(θηλuΨ2) dxdtdλ+

∫∫∫
Rn+2

+

∇x(θηλuΨ2) ·A‖‖∇xu dx dtdλ,

II 12 :=−
∫∫∫

Rn+2
+

∇xu ·A‖‖∇xu(θηλΨ2) dxdtdλ

−
∫∫∫

Rn+2
+

∇xΨ2 ·A‖‖∇xu(uθηλ) dxdtdλ.
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Using again the fact that |θηλ| 6 cηλ holds on the support of Ψ along with Cauchy-
Schwarz and Lemma 5.3, we deduce the estimate

|II 12| 6 cηJ + c̃|∆|1/2J1/2 6 (σ + cη)J + c̃|∆|.

To estimate II 11, we capitalize again that the smoothness of our coefficients allows us
to plug in the equation ∂tu = divλ,xA∇λ,xu in the pointwise sense. Then, splitting A
according to (1.8), we can write II 11 = II 111 + II 112 + II 113, where

II 111 := −
∫∫∫

Rn+2
+

A‖⊥ · ∇x(θηλuΨ2)∂λu dxdtdλ,

II 112 := −
∫∫∫

Rn+2
+

A⊥‖ · ∇xu∂λ(θηλuΨ2) dxdtdλ,

II 113 := −
∫∫∫

Rn+2
+

A⊥⊥∂λ(θηλuΨ2)∂λu dxdtdλ.

Unwinding the derivative in λ and using once more the bound |θηλ| 6 cηλ on the
support of Ψ,

|II 112 +II 113| 6 c
∫∫∫

Rn+2
+

ηλ|∇λ,xu(∂λu)Ψ2|+λ|∇λ,xu∂λΨ2|+ |∇λ,xu∂λθηλ| dxdtdλ.

Here, the first term gives a contribution cη|∆|, the second one can be treated by the
familiar combination of Young’s inequality and Lemma 5.3, whereas for the third term
we make use of Lemma 3.2 (i) instead, noting that ∂λθηλ = ∂λP

∗
ηλϕ holds since ϕ does

not depend on λ. By these means, we find

|II 112 + II 113| 6 (σ + cη)J + c̃|∆|.

Similarly, we obtain
|II 111 − II 1111| 6 cηJ + c̃|∆|,

where
II 1111 :=

∫∫∫
Rn+2

+

A‖⊥ · ∇xθηλuΨ2∂λu dxdtdλ.

To estimate II 1111 we first integrate by parts in λ and regroup derivatives to find

II 1111 =
1

2

∫∫∫
Rn+2

+

A‖⊥ · ∇xθηλΨ2∂λu
2 dxdtdλ

= − 1

2

∫∫∫
Rn+2

+

A‖⊥ · ∇xθηλ∂λΨ2(u2) dx dtdλ

− 1

2

∫∫∫
Rn+2

+

A‖⊥ · ∇x(∂λP
∗
ηλϕΨ2u2) dxdtdλ

+
1

2

∫∫∫
Rn+2

+

A‖⊥ · ∂λP ∗ηλϕ∇x(Ψ2u2) dxdtdλ.

Note that the first term on the right-hand side has the same structure as II 3 with the
only exception that we have a λ-derivative on Ψ instead of an x-derivative. Hence, we
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can derive a bound c̃|∆| by the very same methods. Also the third term on the right-
hand side is of the same kind as a term we encountered earlier in the proof—I2 in
this case—which we already know how to bound by σJ + c̃|∆|.

All in all, we have reached a stage of the proof, where the only term that remains
to be estimated is

III 1 :=

∫∫∫
Rn+2

+

A‖⊥ · ∇x(Ψ2u2∂λP
∗
ηλϕ) dxdtdλ

and we remark that this final term resembles J211 except that we have an additional
factor ∂λP ∗ηλϕ acting to our favor. We now introduce ϕ̃ as in (1.10), that is, as the
energy solution to the problem

divx(A‖⊥χ8∆) = ∂tϕ̃− divx(A‖‖∇xϕ̃) = H‖ϕ̃

on Rn+1. We remark that Ψ2u2∂λP
∗
ηλϕ is qualitatively smooth and compactly sup-

ported, therefore it can be used as test function for the equation above in order to
rewrite III 1. More precisely, we also recall θ̃ηλ = ϕ̃− Pηλϕ̃ and write
(6.4) III 1 = III 11 + III 12 + III 13,

where
III 11 := −

∫∫∫
Rn+2

+

∂tθ̃ηλ(Ψ2u2∂λP
∗
ηλϕ) dxdtdλ,

III 12 := −
∫∫∫

Rn+2
+

A‖‖∇xθ̃ηλ · ∇x(Ψ2u2∂λP
∗
ηλϕ) dxdtdλ,

III 13 := −
∫∫∫

Rn+2
+

H‖Pηλϕ̃(Ψ2u2∂λP
∗
ηλϕ) dx dtdλ.

The estimate |III 13| 6 c̃|∆| is a consequence of the square function estimate in
Lemma 3.2 (i) and (iii). To estimate III 12, we write III 12 = III 121 + III 122 + III 123,
where

III 121 := −
∫∫∫

Rn+2
+

A‖‖∇xθ̃ηλ · ∇x(u2)(Ψ2∂λP
∗
ηλϕ) dxdtdλ,

III 122 := −
∫∫∫

Rn+2
+

A‖‖∇xθ̃ηλ · ∇x(Ψ2)(u2∂λP
∗
ηλϕ) dxdtdλ,

III 123 := −
∫∫∫

Rn+2
+

A‖‖∇xθ̃ηλ · ∇x∂λP ∗ηλϕ(u2Ψ2) dxdtdλ.

Once having applied the pointwise bound |∂λP ∗ηλϕ| 6 cη 6 c on the support of Ψ, see
Lemma 5.1 (iii), the estimate of III 122 reduces to that of II 3 with θ̃ηλ in lieu of θηλ.
As the latter two functions share identical estimates, we can record |III 122| 6 c̃|∆|.
To estimate III 121 we first note, using Cauchy-Schwarz’ and Young’s inequality, that

|III 121| 6 cIII 1211 + σJ,

where
III 1211 :=

∫∫∫
Rn+2

+

Ψ2|∂λP ∗ηλϕ|2|∇xθ̃ηλ|2
dx dtdλ

λ
.
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Now, by the averaging trick already used in the estimate of II 3,

III 1211 6 c̃
∫∫∫

Rn+2
+

(
−
∫
−
∫
−
∫
Wη/64(σ,y,s)

(
Ψ2|∂λP ∗ηλϕ|2|∇xθ̃ηλ|2

)
dxdtdλ

)
dy dsdσ

σ

6 c̃
∫∫∫

Rn+2
+

(
sup

(λ,x,t)∈Wη/64(σ,y,s)

|∂λP ∗ηλϕ(x, t)|
)2 dy dsdσ

σ
,

where the second step follows again by Lemma 5.1 (iii) and elementary geometric
considerations as in the estimate for II 3. As before, we write

Wη/64(σ, y, s) := Λσ ×Qησ/64(y)× Iησ/64(s).

From (4.5) we obtain(
sup

(λ,x,t)∈Wη/64(σ,y,s)

|∂λP ∗ηλϕ(x, t)|
)2

6 c̃
∞∑
j=1

e−c4
j

−
∫
−
∫

2j+1Qσ(y)×4j+1Iσ(s)

|σH ∗
‖ P̃
∗
σϕ(x, t)|2 dxdt,

where P̃ ∗σ = (1 + σ2H ∗
‖ )−1. Hence, using an averaging trick in the (x, t)-variables

only,

III 1211 6 c̃
∫∫∫

Rn+2
+

∞∑
j=1

e−c4
j

−
∫
−
∫

2j+1Qσ(y)×4j+1Iσ(s)

|σH ∗
‖ P̃
∗
σϕ(x, t)|2 dxdt

dy dsdσ

σ

= c̃

∞∑
j=1

e−c4
j

∫∫∫
Rn+2

+

|σH ∗
‖ P̃
∗
σϕ(x, t)|2 dxdtdσ

σ
6 c̃|∆|,

where the final estimate follows from Lemma 3.2. So, we can conclude |III 121| 6
σJ + c̃|∆|. To estimate III 123 we use that u is scalar-valued and write

III 123 =

∫∫∫
Rn+2

+

∇x(θ̃ηλu
2Ψ2) ·A∗‖‖∇x∂λP

∗
ηλϕ dx dtdλ

+

∫∫∫
Rn+2

+

θ̃ηλ∇x(u2Ψ2) ·A∗‖‖∇x∂λP
∗
ηλϕ dxdtdλ.

Note that so far we have neglected III 11 appearing in (6.4). Now, we come back to
this term and combine it with the first integral on the right-hand side above to obtain

III 11 + III 123 = −
∫∫∫

Rn+2
+

θ̃ηλu
2Ψ2(H ∗

‖ ∂λP
∗
ηλϕ) dxdtdλ

+

∫∫∫
Rn+2

+

θ̃ηλ∇x(u2Ψ2) ·A∗‖‖∇x∂λP
∗
ηλϕ dxdtdλ

+

∫∫∫
Rn+2

+

θ̃ηλ∂t(Ψ
2u2)∂λP

∗
ηλϕ dxdtdλ.

The first term on the right can be bounded by(∫∫∫
Rn+2

+

|θ̃ηλ|2
dxdtdλ

λ3

)1/2(∫∫∫
Rn+2

+

|λ2H ∗
‖ ∂λP

∗
ηλϕ|2

dx dtdλ

λ

)1/2

,
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which in itself is bounded by c̃|∆| by square function estimates, see Lemma 3.2 (iv)
and Lemma 3.3. As for the second term on the right, having applied the pointwise
bound |θ̃ηλ| 6 cηλ 6 cλ on the support of Ψ, we are left with the task of estimating I2,
which we have done before.

Altogether,

I θ̃1 :=

∫∫∫
Rn+2

+

θ̃ηλ∂t(Ψ
2u2)∂λP

∗
ηλϕ dxdtdλ

is now the only term that remains to be estimated. It is instructive to observe that –
upon replacing |θ̃ηλ| by its pointwise upper bound cλ on the support of Ψ – this is the
same term as 2I1. Hence, we can follow the treatment of the latter almost verbatim,
using the pointwise bound whenever feasible in order to reduce matters to estimates
that have already been completed. So, we shall only outline the differences in this
argument: To start the estimate we write I θ̃1 = I θ̃11 + I θ̃12, where

I θ̃11 :=

∫∫∫
Rn+2

+

θ̃ηλ∂t(Ψ
2)u2∂λP

∗
ηλϕ dx dtdλ,

I θ̃12 := 2

∫∫∫
Rn+2

+

θ̃ηλu∂tuΨ2∂λP
∗
ηλϕ dxdtdλ.

The estimate for I θ̃11 follows from that of I11. To estimate I θ̃12 we use the equation
for u and write I θ̃12 = I θ̃121 + I θ̃122, where

I θ̃121 := 2

∫∫∫
Rn+2

+

θ̃ηλudivx(A∇λ,xu)‖Ψ
2∂λP

∗
ηλϕ dxdtdλ,

I θ̃122 := 2

∫∫∫
Rn+2

+

θ̃ηλu(A∇λ,x∂λu)⊥Ψ2∂λP
∗
ηλϕ dxdtdλ.

Again, the estimate of I θ̃122 follows from the bound for its counterpart I122. Further-
more,

I θ̃121 =2

∫∫∫
Rn+2

+

θ̃ηλu(A∇λ,xu)‖Ψ
2 · ∇x∂λP ∗ηλϕ dxdtdλ

+ 2

∫∫∫
Rn+2

+

θ̃ηλ∇xu · (A∇λ,xu)‖Ψ
2∂λP

∗
ηλϕ dx dtdλ

+ 2

∫∫∫
Rn+2

+

θ̃ηλu(A∇λ,xu)‖ · ∇xΨ2∂λP
∗
ηλϕ dxdtdλ

+ 2

∫∫∫
Rn+2

+

∇xθ̃ηλu(A∇λ,xu)‖Ψ
2∂λP

∗
ηλϕ dx dtdλ,

where the estimate for the first three terms follows from the bound for I121 as before.
Eventually, the fourth term, which shows up since unlike λ the functions θ̃ηλ does also
depend on x, can be bounded by J1/2|III 1211|1/2 6 σJ + c̃|∆| using Cauchy-Schwarz
and the previously obtained bound for III 1211. Put together this completes the proof
of the Key Lemma, Lemma 1.9.
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