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GIVENTAL ACTION AND TRIVIALISATION OF

CIRCLE ACTION

by Vladimir Dotsenko, Sergey Shadrin & Bruno Vallette

Abstract. — In this paper, we show that the Givental group action on genus zero cohomo-
logical field theories, also known as formal Frobenius manifolds or hypercommutative algebras,
naturally arises in the deformation theory of Batalin–Vilkovisky algebras. We prove that the
Givental action is equal to an action of the trivialisations of the trivial circle action. This result
relies on the equality of two Lie algebra actions coming from two apparently remote domains:
geometry and homotopical algebra.

Résumé (Action de Givental et trivialisation de l’action du cercle). — Dans cet article, nous
montrons que l’action du groupe de Givental sur les théories cohomologiques des champs de
genre 0, aussi appelées variétés de Frobenius formelles ou algèbres hypercommutatives, naît
naturellement de la théorie de la déformation des algèbres de Batalin-Vilkovisky. Nous démon-
trons que l’action de Givental est égale à une action provenant des trivialisations des actions du
cercle. Ce résultat repose sur l’égalité des actions de deux algèbres de Lie apparentant a priori
à deux domaines distincts : la géométrie et l’algèbre homotopique.
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Introduction

In this paper, we study in depth symmetries of algebras over the homology operad of
the moduli spaces of genus 0 stable curves H•(M 0,n+1), known, in different contexts
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214 V. Dotsenko, S. Shadrin & B. Vallette

and with small differences in definitions, under the names of a hypercommutative
algebra, a formal Frobenius manifold, a genus 0 reduction of Gromov–Witten theory,
or a genus 0 cohomological field theory, see [Man99]. This structure plays a crucial
role in a range of questions arising in string theory, enumerative algebraic geometry,
and integrable hierarchies, and is one of the basic structures underlying the classical
mirror phenomena in genus 0. In this paper, we choose to take an algebraic viewpoint
on this structure, and refer to its instances as hypercommutative algebras.

Algebraically, a hypercommutative algebra structure on a graded vector space A
is a representation of the operad HyperCom := H•(M 0,n+1) in the endomorphism
operad of A. The operad HyperCom is well studied; for instance, it is proved to
be Koszul in [Get95]. For our purposes, it is important that its internal structure
can be described in terms of the intersection theory on the moduli spaces of curves
of genus 0 and that it is a crucial ingredient in the homotopy theory of Batalin–
Vilkovisky algebras [Man99, DCV13, KMS13].

Let us consider the space of hypercommutative algebra structures on a given vector
space A. Looking at the universal structure of the localisation formulas in Gromov–
Witten theory, Givental observed in [Giv01a, Giv01b] that this space is equipped
with an action of a big group of “formal Taylor loops of GL(A)”, which we call in
this context the Givental group. The Givental group is the main tool used to study
various universal properties of hypercommutative algebras, and is behind important
results in cohomological field theory and its relations to integrable hierarchies, matrix
models, mirror symmetry, and homotopical algebra.

Representations of any operad admit a canonical deformation theory, along the
lines of [MV09], but the resulting group action is not an action of such a big group.
This phenomenon certainly deserves a conceptual explanation. One such explanation
was announced by M. Kontsevich in 2003, see also [Cos05]. Basically, Kontsevich
made two claims which together explain what is so special about the operad of hyper-
commutative algebras. First, he claimed that the operad of moduli spaces of genus 0

stable curves is a homotopy quotient of the operad of framed little disks by the cir-
cle action. Second, he announced that the arising action of changes of trivialisations
of a homotopically trivial circle action on representations of the operad HyperCom

coincides with the action of the Givental group. The first statement is established in
[DCV13, DC14, KMS13], and the identification of the Givental action with the action
of trivialisations of the circle action is obtained in [KMS13].

In this paper, we show that the Givental action naturally arises in the deformation
theory of Batalin–Vilkovisky (BV) algebras. In particular, it allows us to prove the
above-mentioned claim of Kontsevich about the Givental action in a functorial way,
which does not require any computations on the level of the vector space A. Moreover,
in the more general set-up of homotopy hypercommutative algebras, it turns out that
this claim can be formulated in a simpler way, i.e., using trivialisations of a (strictly)
trivial circle action.
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Givental action and trivialisation of circle action 215

To develop the deformation theory of BV-algebras, we require the more general
notion of homotopy BV-algebras. Roughly speaking, the data of a homotopy
BV-algebra is made up of a homotopy hypercommutative algebra and a homotopy
circle action, see [DCV13]. For any Koszul operad, there exists a dg Lie algebra which
controls the deformation theory of its algebras, see [LV12, Chap. 12]. It turns out
that in the case of homotopy BV-algebras, one needs to use a certain homotopy Lie
algebra lBV.

The first step we undertake amounts to re-interpreting the infinitesimal Givental
action. A representation of the operad HyperCom in a given vector space A is encoded
by a Maurer–Cartan element in a certain dg Lie algebra gHyperCom. It so happens
that this dg Lie algebra is a subalgebra of the homotopy Lie algebra lBV, which is
an extension of gHyperCom by a dg Lie algebra g∆ = z End(A)[[z]]. The degree zero
elements of the latter Lie algebra form the Lie algebra of the Givental group. In a
homotopy Lie algebra, the degree zero elements define vector fields on the variety of
Maurer–Cartan elements, which are infinitesimal gauge symmetries of the Maurer–
Cartan elements [Get09]. The first main result of this paper is the following theorem.

Theorem (Th. 5). — For any hypercommutative algebra structure on a graded vector
space A encoded by a Maurer–Cartan element α ∈ gHyperCom and for any degree 0

element r(z) ∈ g∆, the infinitesimal Givental action of r(z) on α is equal to the gauge
symmetry action of r(z) on α viewed as a homotopy BV-algebra structure:

r̂(z) · α = `α1 (r(z)).

We proceed with integrating the infinitesimal action to a group action. This allows
us to interpret the Givental group in a functorial way using operads as follows. We con-
sider the operad tBV∞ encoding homotopy BV-algebras together with a bit of extra
data: a trivialisation of the (homotopy) circle action. We use gauge symmetries to
construct a quasi-isomorphism

G : HyperCom∞ −→ tBV∞,

which we call the Givental morphism. (This gives another proof of the first claim
of Kontsevich). Using the Givental morphism, we define a morphism G̃ from the
operad HyperCom∞ to the quotient of the operad tBV∞ that encodes homotopy
hypercommutative algebras together with a trivialisation of the trivial circle action.

Let us now explain how this approach allows us to prove the second claim of Kont-
sevich. For a graded vector space A, the Givental group can be identified with the
group of trivialisations of the trivial circle action on A. Pulling back a hypercom-
mutative algebra structure on A by the morphism G̃, we recover the Givental group
action.

Theorem (Th. 6). — Let α be a hypercommutative algebra and let R(z) be a trivialisa-
tion of the trivial circle action. The pullback hypercommutative algebra G̃∗(α,R(z)−1)

is equal to the hypercommutative algebra, or CohFT, obtained by the Givental group
action of the element R(z).
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216 V. Dotsenko, S. Shadrin & B. Vallette

Note that the results of this paper provide us with a direct generalisation of the
Givental action to an (∞-groupoid) action on homotopy hypercommutative algebra
structures. Besides its structural importance for the foundations of the Givental the-
ory, this creates a framework for the development of the Gromov–Witten theory on
the chain level: a theory where the space of Gromov–Witten classes may be a chain
complex (think about the evaluations of differential forms rather than the cohomology
classes) that produces a homotopy HyperCom-algebra structure on the cohomology
of the target variety.

Layout. — The paper is organised as follows. In Section 1, we recall the definitions,
constructions, and results used in the sequel. Since our main results rely on bringing
together methods from two fairly different areas, we made that section quite elaborate
to benefit readers coming from either of those areas. In Section 2, we define a partic-
ular L∞-algebra that controls the deformation theory of homotopy BV-algebras. In
Section 3, we identify the infinitesimal Givental action with gauge symmetries inside
that L∞-algebra. Finally, in Section 4, we integrate the infinitesimal action, give a
functorial construction of the Givental group action, and prove that it amounts to
the action of trivialisations of the trivial circle action.

Acknowledgements. — This paper was completed during the authors’ stays at Univer-
sity of Amsterdam, Newton Institute for Mathematical Sciences at the University of
Cambridge (supported through the programme “Grothendieck–Teichmüller Groups,
Deformation and Operads”), Trinity College Dublin (supported through “Visiting
Professorships and Fellowships Benefaction Fund”), and University Nice Sophia An-
tipolis. The authors would like to thank these institutions for the excellent working
conditions enjoyed during their stay there. The second author would like to thank
A. Losev for the useful discussion of a possible set-up for the Gromov–Witten theory
on the chain level. We express our appreciation to the anonymous referees for their
useful comments.

1. Recollections

In this section, we recall necessary background information from various areas invo-
ked in this paper. We assume working knowledge of standard results of homotopical
algebra for operads, and encourage the reader to consult [LV12] for details on that.

Throughout the text, we work over a field K of characteristic 0. We denote by s the
suspension operator of degree 1: (sC)•+1 := sC•. We use the “topologist’s notation”
for finite sets, putting n := {1, . . . , n}. The notation � stands for the ‘symmetric’
tensor product, that is, the quotient of the tensor product under the permutation of
terms.

1.1. Hypercommutative algebras and cohomological field theories

Definition 1 (Hypercommutative algebra). — A hypercommutative algebra is an alge-
bra over the operad HyperCom := H•(M 0,n+1) made up of the homology of the
Deligne–Mumford–Knudsen moduli spaces of stable genus 0 curves.

J.É.P. — M., 2015, tome 2



Givental action and trivialisation of circle action 217

Such a structure is given by a morphism of operads H•(M 0,n+1) → EndA, and
so amounts to a collection of symmetric multilinear maps µn : A⊗n → A of degree
2(n− 2) for each n > 2 that satisfy certain quadratic relations, see [Man99]. The first
of those relations is the associativity of µ2, and further ones are higher associativity
relations mixing operations together, hence the name “hypercommutative”.

The operad H•(M 0,n+1) is Koszul, with the Koszul dual cooperad

H•(M 0,n+1)¡ = H•+1(M0,n+1),

the cohomology groups of the moduli spaces of genus 0 curves. So the operadic cobar
construction

ΩH•+1(M0,n+1)
∼−−→ H•(M 0,n+1)

provides a resolution of the former operad, see [Get95].

Definition 2 (Homotopy hypercommutative algebras). — A homotopy hypercommu-
tative algebra is an algebra over the operad ΩH•+1(M0,n+1).

This data amounts to an operadic twisting morphism H•+1(M0,n+1) → EndA.
The operations defining such a structure are parametrised by H•+1(M0,n+1). Hence,
a homotopy hypercommutative algebra structure on a chain complex with trivial
differential is made up of an infinite sequence of strata of multilinear operations,
whose first stratum forms a hypercommutative algebra.

Definition 3 (Genus 0 CohFT [KM94]). — Given a graded vector space A, a genus 0

cohomological field theory (CohFT) on A is defined as a system of classes αn ∈
H•(M 0,n+1)⊗ EndA(n) of total degree 0 satisfying the following properties.

– The classes αn are equivariant with respect to the actions of the symmetric
group Sn on the labels of marked points and on the factors of EndV (n).

– The pullbacks via the natural mappings ρ : M 0,n1+1 ×M 0,n2+1 → M 0,n1+n2

produce the composition of the multilinear maps at the point corresponding to the
preimage of the node on the first curve:

ρ∗α0,n1+n2
= α0,n1+1◦̃i α0,n2+1,

where ◦̃i incorporates the composition in the endomorphism operad and the Künneth
isomorphism.

Remark. — A CohFT is often required to have a unit e1 ∈ A; this corresponds to
making use of the natural mappings π : M 0,n+1 → M 0,n. We shall not force that,
and use all necessary formulae without the unit. Also, a CohFT in all genera needs A to
have a scalar product, and is defined using the language of modular operads. However,
in genus 0, it is possible to eliminate it completely on the stage of applying the forgetful
functor from modular operads to operads. The main advantage for doing so is to
incorporate infinite dimensional spaces. An interested reader is referred to [DSV13,
KMS13] for details.
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218 V. Dotsenko, S. Shadrin & B. Vallette

Summing up, the above definitions of a hypercommutative algebra and of a genus 0

CohFT are the same.

1.2. Intersection theory on moduli spaces. — The Givental group action, we dis-
cuss below, makes use of the ψ-classes on moduli spaces of curves.

Definition 4 (ψ-classes). — Both the moduli space M0,n and its compactification
M 0,n have n tautological line bundles Li. The fibre of Li over a point represented
by a curve C with marked points x1, . . . , xn is equal to the cotangent line T ∗xiC. The
cohomology class ψi of M 0,n is defined as the first Chern class of the line bundle Li:
ψi = c1(Li) ∈ H2(M 0,n).

Recall that one can define the push-forward maps ρ∗ on the cohomology using the
Poincaré duality and the push-forward on the homology:

H•(M 0,n1+1)⊗H•(M 0,n2+1) −→ H•(M 0,n1+1 ×M 0,n2+1)

−→ Hd−•(M 0,n1+1 ×M 0,n2+1) −→ Hd−•(M 0,n1+n2+1) −→ H•+2(M 0,n1+n2+1),

where the dimension d is equal to +2n1 +2n2−8. Throughout the paper, we will only
use the gluing along the point marked by 1 on the first curve and the point marked
by 0 on the second one.

The main ingredients needed for computation with ψ-classes are the following
formulae. They correspond to the expression the ψ-classes in terms of divisors, see
e.g. [Man99, §VI.3.].

Proposition 1. — The Poincaré duals βn ∈ H0(M 0,n+1) of the fundamental classes
of the moduli spaces satisfy the following properties.

– For all i1, i2 ∈ n,

(1.1) ψ0 =
∑

ItJ=n
i1,i2∈I

ρ∗(β|J|+1 ⊗ β|I|).

– For all i ∈ n,

(1.2) ψi + ψ0 =
∑

ItJ=n
i∈I

ρ∗(β|J|+1 ⊗ β|I|).

1.3. Givental action on CohFTs. — In the case of genus 0 CohFTs, it is possible to
extend the action of the Lie algebra [Lee09] of the Givental group [Giv01a, Giv01b]
to the Lie algebra z End(A)[[z]] dropping the assumption on (skew-)symmetry of the
components of operators [KMS13, Tel12]. Let us recall the corresponding formulae,
which we shall later identify from the homotopy viewpoint. For a genus 0 CohFT
given by a system of classes αn ∈ H•(M 0,n+1) ⊗ EndA(n), this action is defined by
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Givental action and trivialisation of circle action 219

the formula

(1.3) (r̂kzk · {α})n = (−1)k+1rk ◦1 αn · ψk0 +

n∑
m=1

αn · ψkm ◦m rk+

+
∑

ItJ=n,|I|>2,
i+j=k−1

(−1)i+1 ρ̃∗

((
α|J|+1 · ψj1

)
⊗
(
rk ◦1 α|I| · ψi0

))
.

Here we assume that the output of every operadic element corresponds to the point
marked by 0 on the curve. In the last term, the map ρ̃∗ is defined by ρ∗ ⊗ ◦1, i.e., an
enrichment of the push-forward map on H•(M 0,n+1) with the operadic composition
on EndA.

1.4. Trees. — A reduced rooted tree is a rooted tree whose vertices have at least one
input. We consider the category of reduced rooted trees with leaves labelled bijectively
from 1 to n, denoted by Tree. The trivial tree | is considered to be part of Tree.

A shuffle tree, see [Hof10, §2.8] and [DK10, §3.1], is a reduced planar rooted tree
equipped satisfying the following condition. Suppose that we put labels on all edges
by going down from the leaves to the root and labelling each edge by the minimum
of the labels of the inputs of its top endpoint. Then, for each vertex, the labels of its
inputs, read from left to right, should appear in the increasing order.

6 7

1 4 8 3 5

6

1

2

3

Figure 1.1. Example of a shuffle tree

Shuffle trees provide us with choices of planar representatives for trees in space. In
the sequel, we will need shuffle binary trees, that we denote by SBTn. The labels of
the leaves of a shuffle tree t, read from left to right, provide us with a permutation σt
of Sn. In the example of Figure 1.1, this permutation is σt = [14823567].

The underlying S-module of the (conilpotent) cofree cooperad T c(M) on an
S-module M is given by the direct sum

⊕
t∈Tree t(M), where t(M) is the treewise

tensor module obtained by labelling every vertex of the tree t with an element of M
according to the arity and the action of the symmetric groups. Its decomposition
map is given by cutting the trees horizontally; see [LV12, Chap. 5] for more details.

The subcategory of trees with n vertices is denoted by Tree(n). The number of ver-
tices endows the cofree cooperad T c(M) ∼=

⊕
n∈N T c(M)(n) with a weight grading.

J.É.P. — M., 2015, tome 2



220 V. Dotsenko, S. Shadrin & B. Vallette

1.5. Homotopy Lie algebra

Definition 5 (L∞-algebra). — An L∞-algebra structure on a dg module (A, dA) is a
family of totally skew-symmetric maps `n : A⊗n → A of degree |`n| = n − 2, for all
n > 2, satisfying the relations

∂A(`n) =
∑

p+q=n+1
p,q>1

∑
σ∈Sh−1

p,q−1

sgn(σ)(−1)(p−1)q(`p ◦1 `q)σ, for n > 2,

where ∂A is the differential of EndA induced by dA and where Shp,q−1 denotes the set
of (p, q − 1)-shuffles.

For any shuffle binary tree t with n leaves, we consider its underlying planar binary
tree t with n − 1 vertices. To this planar binary tree, we associate a permutation of
Sn−1 as follows. First, we put the vertices on n−1 distinct upward levels. This means
that, among the trees with levels that represent t, we choose the tree whose levels
of the vertices, which are at the same level in t, go upward when moving from left
to right. We label the levels by {1, . . . , n − 1} from top to bottom and we label the
vertices by {1, . . . , n − 1} from left to right. The assignment which gives the level of
each vertex defines a permutation σt of Sn−1.

Example

1 2 3

1 oo

2 oo

3 oo

In this example, the associated permutation is σt = [132].

Theorem 1 (Homotopy Transfer Theorem, see [LV12]). — Let (V, dV ) be a homotopy
retract of (A, dA):

(A, dA)h
%% p

// (V, dV )
i

oo

idA − ip = dAh+ hdA, i quasi-isomorphism.

Let the bracket [ , ] : A⊗2 → A endow A with a dg Lie algebra structure. The maps
{`n : V ⊗n → V }n>2 defined by

`n :=
∑

t∈SBTn

sgn(σt) sgn(σt) p t([ , ], h) i⊗n,

J.É.P. — M., 2015, tome 2
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where the notation t([ , ], h) stands for the n-multilinear operation on A defined by the
composition scheme t with vertices labelled by [ , ] and internal edges labelled by h,
define an L∞-algebra structure on V .

Moreover, the maps i1 := i and

in :=
∑

t∈SBTn

sgn(σt) sgn(σt) h t([ , ], h) i⊗n, for n > 2,

define an ∞-quasi-isomorphism from the transferred L∞-algebra (V, dV , {`n}n>2) to
the dg Lie algebra (A, dA, [ , ]).

Proof. — Let us make explicit the signs in the proof of [LV12, Th. 10.3.3]. First
one easily checks that the map ψ yields no sign since one starts from a degree 0

Lie bracket. (The signs coming from the permutations of the suspensions s and the
homotopy h cancel.) The map sϕ has degree 2 and so produces no sign. There-
fore, the only sign is the one coming from the decomposition map of the cooperad
Lie¡ = EndcKs−1 ⊗H Com∗. The decomposition map of the cooperad Com∗ is given by
the sum of all the binary trees, that we choose to represent with shuffle trees. And
the decomposition map of the cooperad EndcKs−1 is given by the sum of all the shuffle
binary trees t with coefficient exactly sgn(σt) sgn(σt). �

1.6. Convolution algebras. — Let C be a dg cooperad and let P be a dg operad.
Recall that the collection Hom(C ,P) := {Hom(C (n),P(n))}n∈N forms an operad
called the convolution operad, see [LV12]. This structure induces a dg pre-Lie algebra
structure and hence a dg Lie algebra structure on equivariant maps

HomS(C ,P) :=

(∏
n∈N

HomSn(C (n),P(n)), ∂, [ , ]

)
.

Explicitly, the Lie bracket is given by

[f, g] := γP ◦
(
f ⊗ g − (−1)|f ||g|g ⊗ f

)
◦∆(1),

where ∆(1) : C → T (C )(2) is the partial decomposition map of the cooperad C . In
this convolution dg Lie algebra, we consider the Maurer–Cartan equation

∂(α) + 1
2 [α, α] = 0,

whose degree −1 solutions are called twisting morphisms and denoted Tw(C ,P).
When the cooperad C is coaugmented, we require that the twisting morphisms vanish
on the counit of C .

All the dg Lie algebras of this paper are of this form, where the cooperad is the
Koszul dual dg cooperad P ¡ of an operad P and where the operad is the endomor-
phism operad EndA:

gP :=

(∏
n∈N

HomS(P ¡(n),EndA(n)), ∂ := (∂A)∗ − (dP¡)∗, [ , ]

)
.
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222 V. Dotsenko, S. Shadrin & B. Vallette

Theorem 2 (“Rosetta Stone”, see [LV12]). — The set of homotopy P-algebra struc-
tures on a dg module A is equal to

HomdgOp (ΩP ¡,EndA) ∼= Tw(P ¡,EndA) ∼= Codiff(P ¡(A)).

There is a generalisation of cooperads, where the decomposition coproduct is
relaxed up to homotopy; this algebraic structure is called a homotopy cooperad. It
is made up of a dg S-module C equipped with a decomposition map ∆C : C →
T (C )(>2), which satisfies some relation, see [MV09]. This notion is dual to the no-
tion of homotopy operad of [VdL02].

When (C ,∆C ) is a homotopy cooperad and (P, γP) is a dg operad with the
induced composition map γ̃P : T (P)(>2) → P, the collection Hom(C ,P) is a ho-
motopy operad, called the convolution homotopy operad. The direct product of S-
invariants of this collection

HomS(C ,P) :=

(∏
n∈N

HomSn(C (n),P(n)), ∂, {`n}n>2

)
is an L∞-algebra [VdL02]. This algebra is referred to as the convolution L∞-algebra;
its structure maps `n are given by the formula

(1.4) `n(f1, . . . , fn) =
∑
σ∈Sn

(−1)sgn(σ,f1,...,fn)γ̃P ◦ (fσ(1) ⊗ · · · ⊗ fσ(n)) ◦∆
(n)
C ,

where ∆
(n)
C is the component of ∆C which maps C to T (C )(n), see [MV09, VdL02].

In such an algebra, we can consider the (generalised) Maurer–Cartan equation∑
n>1

1

n!
`n(α, . . . , α) = 0,

whose degree −1 solutions are called (generalised) twisting morphisms and denoted
by Tw(C ,P). Notice that this equation, as well as other formulae throughout this
paper, makes sense for homotopy convolution algebras, since for every element c ∈ C ,
its image under the decomposition map ∆C is a finite sum.

The data of a homotopy cooperad C is equivalent to the data of a quasi-free dg
operad structure Ω∞C on T (s−1C ). Generalised twisting morphisms are then in
one-to-one correspondence with morphisms of dg operads from Ω∞C to P:

HomdgOp (Ω∞C ,P) ∼= Tw(C ,P).

1.7. Gauge symmetries in homotopy Lie algebras. — Let
(
l, {`n}n>1

)
be an

L∞-algebra, and let α be a (generalised) Maurer–Cartan element of that algebra.
One can twist the original structure maps of l with α:

`αn(x1, . . . , xn) :=
∑
p>0

1

p!
`n+p(α, . . . , α︸ ︷︷ ︸

p

, x1, . . . , xn),

so that lα :=
(
l, {`αn}n>1

)
forms again an L∞-algebra, called a twisted L∞-algebra.

Recall that a degree −1 element τ ∈ l is an infinitesimal deformation of α, i.e.,

α+ ετ ∈ MC
(
l⊗K[ε]/(ε2)

)
,
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if and only if `α1 (τ) = 0. So the tangent space of the Maurer–Cartan variety at the
point α is equal to

Tα MC(l) = Ker `α1 .

In particular, if λ is an element of degree 0 in l, the element τλ = `α1 (λ) satisfies the
equation `α1 (τλ) = 0; so such an element defines an infinitesimal deformation of α.
The element τλ depends on α, and so defines a vector field; we just checked that
this vector field is a tangent vector field of the Maurer–Cartan variety. Its integral
curves give deformations of Maurer–Cartan elements, and define gauge symmetries
of Maurer–Cartan elements of a L∞-algebra, see [Get09]. (Notice that in loc. cit.,
the homotopy Lie algebras are required to be nilpotent for all the formulae to make
sense. Here, the convolution L∞-algebras satisfy the above-mentioned local nilpotent
condition which is enough.)

2. The homotopy Lie algebra encoding skeletal homotopy BV-algebras

In this section, we recall the notion of Batalin–Vilkovisky (BV) algebras and its
homotopy version. We develop the deformation theory of homotopy BV-algebras with
a particular convolution L∞-algebra inside which we shall be able to describe the
infinitesimal Givental action in the next section.

2.1. Homotopy BV-algebras and skeletal homotopy BV-algebras. — This section
is a brief summary of constructions and results of [GCTV12] and [DCV13] that we
use.

Definition 6 (dg BV-algebra). — A dg BV-algebra (A, d, •,∆) is a differential graded
commutative algebra equipped with a square-zero degree 1 operator ∆ of order at
most 2.

Notice that any BV-algebra includes a degree 1 Lie bracket 〈 -, - 〉 defined by

〈 -, - 〉 = ∆(- • -) − (∆(-) • -) − (- • ∆(-)).

This induces a quadratic-linear presentation T (•,∆, 〈 -, - 〉)/(R) for the operad BV

encoding BV-algebras, see [GCTV12, §1] for a complete exposition. Its Koszul dual
dg cooperad was proved to be equal to

BV¡ ∼= (G¡[δ], dϕ),

where G¡ stands for the Koszul dual cooperad of the operad G encoding Gerstenhaber
algebras, where δ := s∆ is a degree 2 element of arity 1 and where dϕ is the unique
coderivation extending

s•

s∆

−
s∆

s• −
s∆

s• 7−→ s〈 , 〉

.
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Theorem 3 ([GCTV12, Th. 6]). — The operad BV is a nonhomogeneous Koszul
operad, i.e., the cobar construction of BV¡ is a resolution of BV:

BV∞ := Ω BV¡ ∼−−→ BV .

Algebras over the Koszul resolution BV∞ are called homotopy BV-algebras. This
resolution is already much smaller than the bar-cobar resolution but is not minimal.
Let us explain, following [DCV13], how to derive the minimal resolution from it.

We consider the S-module M made up of the two elements µ and β, both of arity
two with trivial symmetric group action, in degrees 1 and 2 respectively:

M := K2 s •︸︷︷︸
µ

⊕K2 s〈 , 〉︸ ︷︷ ︸
β

.

Let ψ denote the degree one morphism of graded S-modules ψ : T c(M)→M which
first projects T c(M) to the cogenerators M and then takes µ to β and β to zero. The
map ψ extends uniquely to a degree one coderivation dψ of T c(M), which amounts
to applying ψ everywhere. So its image is equal to the sum over the vertices labelled µ
of trees where this µ is changed for a β.

The Koszul dual cooperad G¡ is a sub-cooperad of the cofree cooperad T c(M) and
the coderivation dϕ of G¡[δ] is equal to δ−1dψ.

Let t be a binary tree, that is a tree where all the vertices have total valence 3. Any
vertex v has some number of leaves mv above one of its incoming edges, and another
number nv above the other. Let the weight ω(v) be their product mvnv. The sum of
the weights of all the vertices of a binary tree with n leaves is equal to

(
n
2

)
.

Definition 7 (The map H). — Let H : M → M be the degree −1 morphism of
graded S-modules given by sending β to µ and µ to 0. We define the map H on a
decorated tree with n leaves in T c(M) as a sum over the vertices. For the vertex v, the
contribution to the sum is ω(v)/

(
n
2

)
times the decorated tree obtained by applying H

to v, including the Koszul sign.

So the map H has a similar flavour to extending H as a coderivation, but also
includes combinatorial factors.

Example. — The image of

3 5

1 4 2 µ

µ β

β
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under the map H is equal to

3

5

3 5

1 4 2 µ

µ β

µ

− 1

5

3 5

1 4 2 µ

µ µ

β

.

Proposition 2 ([DCV13]). — The maps H and dψ defined on T c(M) restrict to the
sub-cooperad G¡ ⊂ T c(M), and give rise to the following deformation retract:(

G¡[δ], dϕ = δ−1dψ
)

δH
'' pr

// //
(
T c(δ)⊕ ImHdψ, 0

)
,oooo

where pr is the sum of the projection onto T c(δ) in non-negative δ-degrees and the
projection Hdψ in δ-degree 0.

The right-hand side computes the Quillen homology HQ(BV) of the operad BV,
i.e., the homology of the bar construction of BV. We shall denote it by H ⊕ I for
brevity. It can be expressed in terms of the cohomology of the moduli space of curves
of genus 0:

H := H
Q

(BV) ∼= T
c
(δ)⊕ ImHdψ ∼= T

c
(δ)⊕H•+1(M0,n+1).

In [DCV13], the Homotopy Transfer Theorem for homotopy cooperads was used to
transfer the dg cooperad structure of BV¡ to a homotopy cooperad structure on H

via the above deformation retract. In operadic terms, the short exact sequence of
homotopy cooperads

T
c
(δ) // // H // // H•+1(M0,n+1)

is exact, i.e., H is an extension of the (non-unital) cooperads

T
c
(δ) = H•(S1)¡ and H•+1(M0,n+1) = H•(M 0,n+1)¡.

Theorem 4 ([DCV13]). — The cobar construction of the homotopy cooperad H is the
minimal model of the operad BV:

sBV∞ := Ω∞H
∼−−→ BV .

Algebras over the minimal model sBV∞ are called skeletal homotopy BV-algebras.

2.2. The three convolution dg Lie algebras. — The general construction of convo-
lution dg Lie algebras from Section 1.6 can be used to produce three dg Lie algebras
that we shall use in this paper. Applying the general construction to the dg coop-
erad C = BV¡, we obtain the convolution dg Lie algebra gBV that encodes homotopy
BV-algebras structures. The formulae of Section 2.1 show that

gBV
∼= (gG[[z]], z(dψ)∗),
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where z is a degree −2 element. Applying the general construction to the (non-unital)
cooperad C = T

c
(δ), we obtain the convolution dg Lie algebra

g∆ :=
(

Hom(T
c
(δ),End(A)), (∂A)∗

) ∼= (z End(A)[[z]], ∂A
)

that encodes multicomplex structures, see [DSV15a]. Notice that this dg Lie algebra
is equal to Givental dg Lie algebra of Section 1.3. Finally, applying the general con-
struction to the cooperad C = HyperCom¡, we obtain the convolution dg Lie algebra

gHyperCom :=
(

HomS(H•+1(M0,n+1),EndA), (∂A)∗
)
∼=
(

HomS(ImHdψ,EndA), (∂A)∗
)
,

which encodes homotopy hypercommutative algebra structures.

2.3. The convolution homotopy Lie algebra of skeletal homotopy BV-algebras

Applying the general construction of convolution homotopy Lie algebras to the
homotopy cooperad C = H , we obtain the convolution L∞-algebra

lBV :=

(∏
n>1

HomSn H (n),EndA(n)), (∂A)∗, {`n}n>2

)
.

Proposition 3 ([DCV13]). — The set of skeletal homotopy BV-algebra structures on
a dg module A is equal to

HomdgOp(sBV∞,EndA) ∼= Tw(H ,EndA).

The combinatorics of the homotopy transfer theorem for cooperads makes the com-
putations in the convolution L∞-algebra lBV unfeasible. To make them manageable,
we go the other way round, first considering the convolution Lie algebra gBV and then
applying the homotopy transfer theorem for homotopy Lie algebras (Theorem 1).

Proposition 4. — The above L∞-algebra structure lBV on HomS(H ,EndA) is iso-
morphic to the L∞-algebra structure obtained by transferring the dg Lie algebra struc-
ture of gBV under the formulae of Theorem 1 and the following deformation retract(

HomS(BV
¡
,EndA), ∂

)
(δH)∗

))
// //
(

HomS(H ,EndA), (∂A)∗
)
,oo

pr∗
oo

Proof. — This proposition follows from the following general result: the formulae for
the transferred homotopy cooperad [DCV13, Th. 3.3] and for the transferred homo-
topy Lie algebra (Theorem 1) commute under the convolution homotopy Lie algebra
functor

HomS(−,P) : homotopy cooperads −→ homotopy Lie algebras,

given in Section 1.6. Let (C ,∆, dC ) be a coaugmented dg cooperad and let (P, γ, dP)

be a dg operad. Writing the underlying homology groups H as a deformation retract
of (C , dC )

(C , dC )η
&& π // (H , 0)

ι
oo
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allows one to transfer a homotopy cooperad structure as follows. For any tree t ∈ Tree

with at least 2 vertices, we consider all the possible ways of writing it by successive
substitutions of trees with two vertices:

t = (((t1 ◦j1 t2) ◦j2 t3) · · · ) ◦jk tk+1,

where t ◦j s stands for the substitution of the tree s at the jth vertex of t. The
transferred structure map ∆̃t : H → t(H ), for t ∈ Tree, is then given by

∆̃t :=
∑
± t(π) ◦

(
(∆tk+1

η) ◦jk (· · · (∆t3η) ◦j2 ((∆t2η) ◦j1 ∆t1))
)
◦ ι,

where the notation (∆t′η) ◦j ∆t means the composite of ∆t with ∆t′η at the jth

vertex of the tree t. The induced L∞-algebra structure on the convolution algebra
HomS(H ,P) is then equals to

`n(f1, . . . , fn) : H
ι−−→ C −→ T (C )(n) T (π)

−−−−−→ T (H )(n) −→ T (P)(n) γ−−→P,

where the map T (H )(n) → T (P)(n) is
∑
σ∈Sn sgn(σ) T (fσ(1), . . . , fσ(n)) and where

the map from C to T (C )(n) is∑
t∈Tree(n)

∑
±
(
(∆tn−1η) ◦jn−2 (· · · (∆t3η) ◦j2 ((∆t2η) ◦j1 ∆t1))

)
.

This latter map is equal to the iteration of the infinitesimal decomposition map of
the cooperad C∑

jk∈{1,...,k+1}

sgn(σj)
(
(∆(1)η) ◦jn−2

(· · · (∆(1)η) ◦j2 ((∆(1)η) ◦j1 ∆(1)))
)
,

where the sign sgn(σj) is given by the permutation associated to the following planar
binary tree j with levels: any sequence of integers (j1, . . . , jn−2) gives rise to a with
n−1 vertices such that the binary vertex at level n−1−k is at place jk. All the other
signs are straightforward applications of the sign rule of the permutations of graded
elements.

On the other hand, the transferred L∞-algebra structure on HomS(H ,P) through
the pulled-back deformation retract

(HomS(C ,P), ∂)h := η∗
&& p := ι∗

// (HomS(H ,P), ∂)
i := π∗
oo

given by Theorem 1 is

ln :=
∑

t∈SBTn

sgn(σt) sgn(σt) i t([ , ], h) (p)⊗n,

where [ , ] is the bracket of the convolution Lie algebra HomS(C ,P) equal to

[f, g] : C
∆(1)−−−−−→ T (C )(2) T (f, g)−T (g, f)

−−−−−−−−−−−−−−−→ T (P )(2) γ−−→P.

So the map given by the labelled trees t([ , ], h) amounts to splitting the elements
of C in all possible ways via iterations of (∆(1)h). In the end, the map ln(f1, . . . , fn)
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is equal to

ln(f1, . . . , fn) : H
ι−−→ C −→ T (C )(n) −→ T (P)(n) γ−−→P,

where the map T (C )(n) → T (P)(n) is∑
σ∈Sn

sgn(σ) T (fσ(1)π, . . . , fσ(n)π)

and where the map from C to T (C )(n) is∑
jk∈{1,...,k+1}

sgn(σj)
(
(∆(1)η) ◦jn−2

(· · · (∆(1)η) ◦j2 ((∆(1)η) ◦j1 ∆(1)))
)
.

The sign sgn(σt) coincides with the sign sgn(σj), the other signs are direct conse-
quences of permutation of graded elements. Therefore, `n = ln. �

The L∞-algebra lBV whose underlying space satisfies

lBV = g∆ ⊕ gHyperCom

is an extension of the two dg Lie algebras g∆ and gHyperCom in the category of L∞-
algebras.

3. Gauge interpretation of infinitesimal Givental action

In this section, we use the L∞-algebra lBV to identify the Givental action with the
homotopy BV gauge symmetries.

3.1. The main theorem. — Any Maurer–Cartan element α in gHyperCom, representing
a homotopy hypercommutative algebra, is also a Maurer-Cartan element in lBV. We
shall deform α in the direction of g∆ in the L∞-algebra lBV. Let r(z) =

∑
l>1 rlz

l

be a degree 0 element of g∆. The general definition of gauge symmetries implies that
`α1 (r(z)) is an infinitesimal deformation of α. Note that although in general gauge
symmetries for L∞-algebras form an∞-groupoid [Get09], in our particular case g∆ is
a dg Lie subalgebra, so the respective symmetries form a group. A hypercommutative
algebra can also be viewed as a genus 0 CohFT, and as such can be deformed by the
infinitesimal Givental action. In this section, we show that these two deformations are
exactly the same, proving the following result.

Theorem 5. — For any hypercommutative algebra structure on A encoded by a
Maurer–Cartan element α ∈ gHyperCom and for any degree 0 element r(z) ∈ g∆, the
Givental action of r(z) on α is equal to the gauge symmetry action of r(z) on α

viewed as a homotopy BV-algebra structure:

r̂(z) · α = `α1 (r(z)).

The rest of this section is devoted to the proof of this formula.
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3.2. Gauge symmetries restrict to hypercommutative algebras. — Let us first
check that the formula of Theorem 5 makes sense by proving the following lemma.

Lemma 1. — The infinitesimal gauge symmetry action of r(z) on α deforms it in the
class of hypercommutative algebra structures, i.e.,

`α1 (r(z)) ∈ Tα MC(gHyperCom).

Proof. — Since neither A nor the homotopy cooperad H has a differential, the first
term in the formula

`α1 (r(z)) =
∑
n>1

1

(n− 1)!
`n(α, . . . , α, r(z))

for the infinitesimal gauge symmetry vanishes. Therefore, only the terms with n > 1

contribute to the above sum. Since the L∞-algebra lBV is a convolution algebra, it is
graded by arity of the maps minus one. So the map `α1 (r(z)) vanishes on the arity one
elements T c(δ).

Since α is a Maurer–Cartan element, any tree in the homotopy transfer formulae
which has two leaves with the same parent both labelled by i(α) contributes zero
to the terms `n(α, . . . , α, r(z)). Therefore the only non-trivial contributions to the
homotopy transfer formulae for

`n(α, . . . , α, r(z)) = (−1)n−1`n(r(z), α, . . . , α)

are given by “left combs”

i(r(z)) i(α)

[ , ]
h

i(α)

[ , ]

h
i(α)

[ , ]

p

where i = (pr)∗ and h = (δH)∗. To compute such a term as an element of lBV, we
should be able to evaluate it on any element b of H . For that, there is the following
recursive procedure. Such an element, viewed as an element in ImHdψ ⊂ G¡, should
be decomposed into two in all possible ways in the cooperad G¡. In the result b1 ◦i b2
of such a decomposition one should apply i(α) to one of the arguments, the remaining
part of our left comb to the other argument, and anti-symmetrise with respect to that
choice.

Recall from [DCV13] that ImHdψ is weight graded by the number of vertices
labelled by µ; we denote it by (ImHdψ)[k], for k > 1. This weight grading corresponds
to the usual weight grading of the Koszul dual cooperad under the isomorphism
ImHdψ ∼= HyperCom¡. So a hypercommutative algebra structure is equivalent to
a Maurer–Cartan element α ∈ MC(gHyperCom) which vanishes outside (ImHdψ)[1].
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Tracing the above recipe for computing the left comb as an element of lBV, one
sees that if α vanishes outside (ImHdψ)[1], then `n(r(z), α, . . . , α) satisfies the same
property. Indeed, suppose that we compute `n(r(z), α, . . . , α) on an element b from
(ImHdψ)[k]. Under the first decomposition we get one element to which we apply i(α)

right away, and another element, to which we apply the rest of our left comb, which
has h at the root, amounting to applying δH. The former element must belong to
(ImHdψ)[1] in order to be able to apply i(α) to it, hence the latter element will belong
to (ImHdψ)[k−1], and after applying δH will be back in (ImHdψ)[k]. At the leaf level
of the comb we shall end up with a zero contribution, since we shall be forced to
apply i(α) to an element from (ImHdψ)[k] (and since i(r) vanishes on ImHdψ). This
completes the proof. �

3.3. Proof of Theorem 5

Let us examine the formulae in question carefully. Shuffle trees that we always
use suggest that to make the notation most economic, we should replace each term
`n(α, . . . , α, r(z)) in the formula for the infinitesimal gauge symmetry by the equal
term (−1)n−1`n(r(z), α, . . . , α), and examine those terms without signs. At the stage
when we deal with the Givental formulae, we shall also modify them accordingly.
Let us note that the only non-trivial contributions to `α1 (r(z)) come from the terms
`n(rn−2z

n−2, α, . . . , α). Indeed, if we evaluate the homotopy transfer formula for
`n(α, . . . , α, r(z)) on a particular element b of ImHdψ, we see that in the inductive
computation of the result, as described in the proof of Lemma 1, the total power δn−2

accumulates (each for one occurrence of h). In the end, we apply r(z) to that power
of δ, so only rn−2 matters. Moreover, the contribution of `n(rn−2z

n−2, α, . . . , α) to
`α1 (r(z)) is precisely the left comb

i(rn−2z
n−2) i(α)

[ , ]
h

i(α)

[ , ]

h
i(α)

[ , ]

p

The coefficient 1/(n− 1)! disappears since there are (n − 1)! shuffle left combs of
arity n.

Since both sides of the formula, we want to prove, are linear in r(z), it is sufficient
to prove the equality for each component rk individually. Furthermore, due to the
factorisation property, a CohFT is completely defined by its values on fundamental
cycles, and equivalently, a hypercommutative algebra is defined once we defined its
generating operations. Since we know that both the Givental action and the gauge
action take a hypercommutative algebra to a hypercommutative algebra, it is sufficient
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to show that the Givental formula, once integrated over fundamental cycles gives the
same operations as the gauge symmetry formula on (ImHdψ)[1]. We shall prove that
by induction on k, showing that both satisfy the same kind of recursion relation.

Let us denote by λ(k)
n ∈ EndA(n) the value of the element (−1)k−1(r̂zk · α)n on

the fundamental cycle of M 0,n+1 (recall that we should change signs in the exact
same way as we did for the gauge action), and by θ

(k)
n ∈ EndA(n) the value of

`k+2(rzk, α, . . . , α) on the n-ary generator from (ImHdψ)[1]. Finally, let us denote
by νn the value of the element α on the fundamental cycle of M 0,n+1. We remark
that the elements λ(k)

n and θ(k)
n are well defined for k > 1.

For k = 0, although the corresponding elements do not literally belong to the
Givental formalism or to the gauge symmetries respectively, the actual formulae make
sense and are applicable as follows. The Givental action extends to the action of the Lie
algebra End(A)[[z]] under the same Formula (1.3). The gauge symmetry action can
be generalised by considering the transferred homotopy cooperad structure on the
augmented S-module H ⊕ I, where I is concentrated in arity one I = (0, id, 0, . . . ),
obtained from the extended cooperad structure on BV¡ given by

µ 7−→ ∆
BV

¡(µ) +

n∑
m=1

µ ◦m id + id ◦1µ.

It is straightforward to check that the image of H under the strictly higher structure
maps of the homotopy cooperad structure on H ⊕ I produced by the homotopy
transfer theorem for cooperads [DCV13, Th. 3.3] remains the same. Only the cooperad
part on H of this homotopy cooperad structure on H ⊕ I gets modified; it is given
by the same extended formula as above for ∆BV¡ . Writing H ⊕ I = T c(δ)⊕ ImHdψ,
we are now working in the L∞-algebra

Hom(T c(δ),End(A))⊕HomS(ImHdψ,End(A)) ∼= End(A)[[z]]⊕ gHyperCom.

In the end, this generalisation modifies only θ(0) by the preceding argument.
Both of these two generalisations give the commutator in the endomorphism op-

erad, for k = 0:

λ(0)
n = θ(0)

n = −r ◦1 νn+

n∑
m=1

νn ◦m r.

We show in the remaining part of this section that for each k > 0:

λ(k+1)
n =

∑
ItJ=n

(|I|
2

)(
n
2

) λ(k)
|J|+1 ◦1 ν|I| −

(
1−

(|I|
2

)(
n
2

) )ν|J|+1 ◦1 λ
(k)
|I| ,

θ(k+1)
n =

∑
ItJ=n

(|I|
2

)(
n
2

) θ(k)
|J|+1 ◦1 ν|I| −

(
1−

(|I|
2

)(
n
2

) )ν|J|+1 ◦1 θ
(k)
|I| .

These formulae, together with the fact that λ(0)
n = θ

(0)
n imply that λ(k)

n = θ
(k)
n for

all k, which concludes the proof. �
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3.4. Recursion relation for the Givental action. — In this section, we shall prove
the recursion relation for the Givental action stated above.

Lemma 2. — The components of the Givental action on the fundamental classes satisfy
the recurrence relation

(3.1) λ(k+1)
n =

∑
ItJ=n

(|I|
2

)(
n
2

) λ(k)
|J|+1 ◦1 ν|I| −

(
1−

(|I|
2

)(
n
2

) )ν|J|+1 ◦1 λ
(k)
|I| , for k > 0.

Proof. — Proving (3.1) essentially amounts to somewhat imaginative application of
Relations (1.1) and (1.2). Let us explain how that is done.

We evaluate (−1)k(r̂zk+1 · α)n using Formula (1.3) as

r ◦1 αn · ψk+1
0 + (−1)k+2

n∑
m=1

αn · ψk+1
m ◦m r+

+
∑

ItJ=n,|I|>2,
i+j=k

(−1)j+1ρ̃∗

((
α|J|+1 · ψj1

)
⊗
(
r ◦1 α|I| · ψi0

))
.

We shall represent this and subsequent formulae pictorially, so that

r ◦1 αn · ψk+1
0 =

. . .

n

rψk+1
, αn · ψk+1

m ◦m r =

. . . rψk+1 . . .

n ,

and

ρ̃∗

((
α|J|+1 · ψj1

)
⊗
(
r ◦1 α|I| · ψi0

))
=

· · ·
I

ψi

r

ψj . . .

J

,

so that the label of each vertex is the set of its “free” inputs.
First, let us rewrite the first term in the formula for the Givental action using

Formula (1.1). That formula depends on a choice of i1, i2 ∈ n, and to obtain something
symmetric, we shall average over all such choices. Using the factorisation property of
genus 0 CohFT, we obtain

(3.2)

. . .

n

rψk+1
=

∑
ItJ=n

(|I|
2

)(
n
2

)
. . .
I . . .

J

rψk

,

where the tree on the right-hand side represents ρ̃∗
(
(r ◦1 ψk0 · α|J|+1)⊗ α|I|

)
.
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To deal with the first sum in the formula, let us recall that, by Formula (1.2), we
have

. . . rψk+1 . . .

n +

. . . rψk . . .

n

ψ

=
∑

ItJ=n

. . . rψk . . .

I . . .

J

.

Since Formula (1.1) gives,

. . . rψk . . .

n

ψ

=
∑

ItJ=n

(|I|
2

)(
n
2

) . . . rψk . . .

I . . .

J

+
∑

ItJ=n

(|I|
2

)(
n
2

)
. . .

I rψk . . .

J
,

then we have

(3.3) (−1)k+2
. . . rψk+1 . . .

n = (−1)k+1
∑

ItJ=n

((|I|
2

)(
n
2

) − 1

) . . . rψk . . .

I . . .

J

+ (−1)k+1
∑

ItJ=n

(|I|
2

)(
n
2

)
. . .

I rψk . . .

J
.

Let us rewrite the second sum in the formula. Let us first outline our strategy. For
i, j > 0, we split the term

(−1)j+1

· · ·
I

ψi

r

ψj . . .

J

into two pieces,

(−1)j+1

(|I|
2

)(
n
2

)
· · ·
I

ψi

r

ψj . . .

J

and

(−1)j+1

(|J|
2

)
+ |I||J |(
n
2

)
· · ·
I

ψi

r

ψj . . .

J

.
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We rewrite the first term using Formula (1.1), as in the first case above, and the
second term using Formulae (1.2) and (1.1), as in the second case above. Then, we
shall again average over various choices, although in the second case, the choices have
to be somewhat more subtle than just all possibilities with equal coefficients. Finally,
we examine the contribution of extreme terms (where either i or j is equal to zero).
We split them in a similar fashion into a weighted sum of two, but then perform
similar computations with the two.

So rewriting

(−1)j+1

(|I|
2

)(
n
2

)
· · ·
I

ψi

r

ψj . . .

J

using Formula (1.1) yields

(3.4) (−1)j+1
∑

I1tI2tJ=n

(|I1|
2

)(
n
2

)
· · ·
I1 . . .

I2

ψi−1

r

ψj . . .

J

,

Let us keep the factor 1 −
(|I|

2

)
/
(
n
2

)
=
[(|J|

2

)
+ |I||J |

]
/
(
n
2

)
aside for the moment, and

rewrite

(−1)j+1

· · ·
I

ψi

r

ψj . . .

J

using Formula (1.2), which yields

(−1)j+1
∑

ItJ1tJ2=n

· · ·
I

ψi

r

ψj−1 . . .

J1 . . .
J2

− (−1)j+1

· · ·
I

ψi

r

ψj−1 . . .

J

ψ

.
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Recalling the constant factors, we shall keep

(3.5) (−1)j+1

(
1−

(|I|
2

)(
n
2

) ) ∑
ItJ1tJ2=n

· · ·
I

ψi

r

ψj−1 . . .

J1 . . .
J2

as is, and rewrite

(−1)j
(|J|

2

)
+ |I||J |(
n
2

)

· · ·
I

ψi

r

ψj−1 . . .

J

ψ

using Formula (1.1). We shall average it over the variety of
(|J|

2

)
+ |I||J | different

choices of two leaves:
(|J|

2

)
choices where both leaves belong to J , and “|I||J | choices

where one leaf belongs to I and the other leaf belongs to J”, or more precisely the
choices where one leaf belongs to J , and the other leaf is the “connector” between the
two corollas, taken with multiplicity |I|. The result is made up of

(3.6) (−1)j
|I||J1|(

n
2

) ∑
ItJ1tJ2=n

· · ·
I

ψi

r

ψj−1 . . .

J1 . . .

J2

,

(3.7) (−1)j
(|J1|

2

)(
n
2

) ∑
ItJ1tJ2=n

· · ·
I

ψi

r

ψj−1 . . .

J1 . . .
J2

,
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and

(3.8) (−1)j
(|J1|

2

)(
n
2

) ∑
ItJ1tJ2=n

· · ·
I

ψi

r . . .

ψj−1 . . . J1

J2

.

Let us remark that the terms (3.5), (3.6), and (3.7) collect altogether into

(3.9) (−1)j

((|ItJ1|
2

)(
n
2

) − 1

) ∑
ItJ1tJ2=n

· · ·
I

ψi

r

ψj−1 . . .

J1 . . .

J2

,

There are just two terms where some of our manipulations would not work (they
correspond to i = 0 and to j = 0, where either the top ψ-class or the bottom ψ-class
is missing, and therefore only one of the two weighted parts into which we split the
respective term would be rewritten). Those additional contributions are

(3.10) (−1)k+1

(|I|
2

)(
n
2

)
· · ·
I

r

ψk . . .

J

and

(3.11) −
(

1−
(|I|

2

)(
n
2

) )
· · ·
I

ψk

r . . .
J

.

Finally, we integrate all the above terms over M 0,|J|+2 ×M 0,|I|+1. We notice that
the term (|I|

2

)(
n
2

) λ(k)
|J|+1 ◦1 ν|I|

is assembled precisely out of the contributions of Formula (3.2), the second half of
Formula (3.3), and Formulae (3.4), (3.8), and (3.10), while the term

−
(

1−
(|I|

2

)(
n
2

) )ν|J|+1 ◦1 λ
(k)
|I|
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is assembled precisely out of the contributions of the first half of Formula (3.3), and
Formulae (3.9) and (3.11). �

3.5. Recursion relation for the gauge symmetries action. — Let us now prove the
same recursion relation for the gauge symmetries action.

Lemma 3. — The components of the gauge symmetries action on the generators of
HyperCom satisfy the recurrence relation

(3.12) θ(k+1)
n =

∑
ItJ=n

(|I|
2

)(
n
2

) θ(k)
|J|+1 ◦1 ν|I| −

(
1−

(|I|
2

)(
n
2

) )ν|J|+1 ◦1 θ
(k)
|I| , for k > 0.

Proof. — Recall from 3.3 that the left-hand side of this formula is given by the term
`k+3(rzk+1, α, . . . , α) inside `α1 (r(z)), which reduces to the left comb

C :=

i(rzk+1) i(α)

[ , ]
h

i(α)

[ , ]

h
i(α)

[ , ]

p

with the k+ 1 edges labelled by h. Let us start evaluating this map on the element b
of (ImHdψ)[1](n) representing the n-ary generator of HyperCom. It follows from
[DCV13] that b = H (

∑
t), where t ranges over all shuffle binary trees with n leaves

and with internal vertices labelled by β. Thus, the element b is equal to the weighted
sum of shuffle binary trees with one internal vertex labelled by µ and the others
labelled by β. The application of the left comb C to b amounts to computing the
weighted sum of elements

C ′(δH(b′)) ◦i i(α)(b′′)− i(α)(b′) ◦i C ′(δH(b′′)),

over all ways to split b as a decomposition b′ ◦i b′′, where b′ has the J t {i} as its set
of leaves, b′′ has I as its set of leaves, and where C ′ denotes the “top part” of the left
comb. Since α vanishes outside (ImHdψ)[1], we may only apply i(α) to the part of the
decomposition that contains the only corolla labelled by µ. This means that in the
term C ′(δH(b′)) ◦i i(α)(b′′) all weights coming from the formula for H are within b′′.
It follows that b′ is the sum of all shuffle binary trees with the set of leaves J t {i},
and C ′(δH(b′)) is nothing but θ(k)

|J|+1, since the additional occurrence of δ we now
have will only affect the power z at the last stage. To write b′′ as an element of the
image of H we just need to modify the denominators of the weights; all numerators
are automatically correct:

i(α)(b′′) =

(|I|
2

)(
n
2

) α(Hdψ(b′′)).
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Similarly, in the term i(α)(b′) ◦i C ′(δH(b′′)), all weights coming from the formula
for H are within b′, so b′′ is the sum of all shuffle binary trees with the set of leaves I,
and C ′(δH(b′′)) is nothing but θ(k)

|I| . In b
′ the weights are not quite correct, however,

when applying i(α) to b′, one uses the projection Hdψ, which turns out to create the
correct weights. Indeed, since each term in b′ is a tree monomial containing exactly
one vertex labelled µ, its image under dψ is is a tree monomial of the same shape
where all vertices are labelled β, and then the application of H to that monomial
creates correct weights. Thus i(α)(b′) differs from ν|J|+1 by a scalar multiple, which
is the sum of the H-weights of the vertices of b′ computed for those vertices viewed as
vertices of b. For each tree monomial that sum is equal to 1−

(|I|
2

)
/
(
n
2

)
since the total

sum of weights of all vertices of a given tree is equal to 1 and since we already noticed
that for b′′ the sum of weights is equal to

(|I|
2

)
/
(
n
2

)
. This completes the proof. �

3.6. Givental action on homotopy hypercommutative algebras. — If in Theorem 5
we assume A to be a chain complex with a non-zero differential, the result remains
true for the modified statement

`α1 (r(z)) = [dA, r(z)] + r̂(z) · α.

In particular, the Givental formulae define an action if we restrict ourselves to the sub-
algebra of the Givental Lie algebra consisting of elements that commute with dA. (This
restriction makes sense, as only this way the Givental formulae are homotopically
meaningful). A direct consequence of this theorem is that the Givental infinitesimal
action on hypercommutative algebras extends naturally to homotopy hypercommu-
tative algebras. This suggests the following definition.

Definition 8. — Let a homotopy hypercommutative algebra structure on a chain
complex A be encoded by a Maurer–Cartan element α ∈ gHyperCom, and let r(z) be a
degree 0 element of g∆ commuting with dA. The higher infinitesimal Givental action
is the gauge symmetry action of r(z) on α:

r̂(z) · α := `α1 (r(z)).

4. Givental action as an action of trivialisations of the circle action

In the previous sections, we have been able to describe the infinitesimal Givental
action as an infinitesimal gauge symmetry in the framework of homotopy Batalin–
Vilkovisky algebras. We now integrate this infinitesimal action and interpret Givental
group action as an action of trivialisations of the trivial circle action.

4.1. Homotopy BV-algebras with trivialisation of the circle action. — Up to ho-
motopy, the action of the circle is modelled by the Koszul resolution ΩH•(S1)¡ =(
T
(
s−1T

c
(δ)
)
, d
)
of the Koszul algebra H•(S1). Recall that modules over the dg

algebra ΩH•(S1)¡ are called multicomplexes. There is a notion of morphism of mul-
ticomplexes which encodes their homotopy properties; these morphisms are called
∞-morphisms and are actually made up of collections of maps, see [DSV15a]. An
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important class of invertible ∞-morphisms is ∞-isotopies; these are ∞-morphisms
whose first map is the identity. A (homotopy) trivialisation of a circle action amounts
to an ∞-isotopy from this structure to the trivial circle action, see [DSV15b].

The dg Lie algebra g∆ = Hom
(
T
c
(δ),End(A)

)
, which models multicomplex struc-

tures on A, embeds naturally into the unital dg associative algebra

a∆ := (Hom (T c(δ),End(A)) , ?) .

In this convolution algebra, we denote by 1 and by ∂ the maps defined respectively by

1 : 1 7−→ idA, ∂ : 1 7−→ ∂A, and δk 7−→ 0, for k > 1.

(Since the convolution algebra a∆ is weight graded connected, it admits exponential
and logarithm maps, see [DSV15b, §3] for more details.) The data of a trivialisation
of a circle action φ ∈ MC(g∆) on A amounts to a degree 0 element f ∈ g∆ satisfying
the following equation in the algebra a∆:

(1 + f) ? (φ+ ∂) = ∂ ? (1 + f).

This data is equivalent to a module structure over the quasi-free dg algebra(
T
(
s−1T

c
(δ)⊕ T c(δ)

)
, d1 + d′2 + d′′2

)
,

where the differential d1 is the unique derivation which extends the desuspension map
on the space of generators s−1 : T

c
(δ) → s−1T

c
(δ), where the differential d′2 is the

unique derivation which extends the coproduct map followed by the desuspension
map

T
c
(δ) −→ T

c
(δ)⊗ T c(δ) s−1

−−−−→ s−1T
c
(δ)⊗ T c(δ),

and where the differential d′′2 is the differential coming form the Koszul resolution
ΩH•(S1)¡.

Let us enlarge the picture one step further and consider now the data of homotopy
Batalin–Vilkovisky algebras together with a (homotopy) trivialisation of the circle
action. This data is encoded by the following quasi-free operad

tBV∞ :=
(
T
(
H•(M0,n+1)⊕ s−1T

c
(δ)⊕ T c(δ)

)
, d := d1 + d2 + d3 + · · ·

)
,

where d1 is the same kind of derivation as above, where d2 is the sum of the derivations
coming from d′2, d′′2 and the quadratic part of the differentials of sBV∞, and where
d3, d4, . . . are the higher components of the differential of the operad sBV∞. Notice
that the operad tBV∞ is actually the coproduct of the operad sBV∞ with the algebra(
T
(
s−1T

c
(δ)⊕ T c(δ)

)
, d1 + d′2 + d′′2

)
over the algebra ΩH•(S1)¡.

Algebra structures over the operad tBV∞ are encoded by the Maurer–Cartan ele-
ments of the convolution L∞-algebra

ltBV :=
(

HomS(H•+1(M0,n+1)⊕ T c(δ)⊕ s T c(δ),EndA), (∂A)∗ + (d1)∗, `2, `3, . . .
)
.

The underlying vector space of this L∞-algebra is the direct sum

ltBV
∼= gHyperCom ⊕ g∆ ⊕ s−1g∆
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of its Lie sub-algebras, where the Lie algebra structure on s−1g∆ is abelian; as at
the end of Section 2.3, the L∞-algebra structure is an extension in the category of
L∞-algebras.

So its Maurer–Cartan elements are sums of three terms α + φ + ρ, corresponding
respectively to the (homotopy) hypercommutative part, the (homotopy) circle action
and its (homotopy) trivialisation. Let us consider the infinitesimal gauge symmetry
`α+φ+ρ
1 (λ) associated to a degree 0 element λ of ltBV.

Lemma 4. — For any degree 0 element λ of g∆ ⊂ ltBV, the associated infinitesimal
gauge symmetry integrates to time t = 1, i.e., the differential equation

γ′(t) = `
γ(t)
1 (λ), γ(0) = α+ φ+ ρ

admits a solution which converges at time t = 1.

Proof. — An element λ ∈ ltBV lies in g∆ if and only if it vanishes on

H•+1(M0,n+1)⊕ s T c(δ).

Let us decompose γ(t) into α(t) + φ(t) + ρ(t). The differential equation

γ′(t) = α′(t) + φ′(t) + ρ′(t) = `
γ(t)
1 (λ) =

∑
n>1

1

(n− 1)!
`n
(
γ(t), . . . , γ(t), λ

)
=
∑
n>1

1

(n− 1)!
`n
(
α(t) + φ(t) + ρ(t), . . . , α(t) + φ(t) + ρ(t), λ

)
,

decomposes as follows. Since T c(δ) is a sub-cooperad of the homotopy cooperad on
the generators of the quasi-free operad tBV∞, we conclude that φ(t) satisfies the
classical differential equation [GM88]

φ′(t) = `1(λ) + `2(φ(t), λ) = ∂Aλ+ [φ(t), λ], φ(0) = φ

in g∆. Therefore φ(t) is equal to

φ(t) = e−tadλ(φ)− e−tadλ − id

tadλ
(∂Aλ).

Recall that the dg Lie algebra g∆ is weight graded and that the elements φ and λ are
concentrated in positive weight, so, applied to an element δk of T c(δ), the element φ(t)

becomes a finite sum. Let us denote by φk(t) := φ(t)(δk), the component of φ(t) on δk.
One can see that φk(t) is a polynomial in t of degree at most k. This shows that φ(t)

is well-defined in g∆ for any t, in particular at t = 1.
The map χ provides s−1g∆ with a left module structure, denoted ?, of the convo-

lution unital associative algebra a∆. With respect to this structure, the differential
equation satisfied by ρ(t) is

ρ′(t) = λ ? ρ(t) + s−1λ, ρ(0) = ρ.

Therefore, ρ(t) is equal to

ρ(t) = s−1
(
etλ ? (1 + s ρ)− 1

)
,
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where the exponential etλ = 1 + tλ + 1
2 t

2λ ? λ + · · · lives in the algebra a∆. By the
same weight grading argument as above, ρ(t) is well-defined for any t, in particular
at t = 1.

The map α(t) is the component of γ(t) on H•+1(M0,n+1) = ImHdψ. Let us con-
sider the grading on ImHdψ defined by the number of vertices labelled by β. We
denote it by ImHdψ

〈k〉 and we denote by αk(t) the restriction of α(t) on it. Finally,
we consider the weight grading defined on

H = H•+1(M0,n+1)⊕ T c(δ)

by this grading on the left-hand side and by the δ-grading on the right-hand side. The
formula for the homotopy transfer theorem of homotopy cooperads [DCV13, Th. 3.3]
shows that the homotopy cooperad structure on H preserves this weight grading.

We are now ready to prove, by induction on k, that αk(t) is a polynomial in t of
degree at most k. First notice that α(t) satisfies the differential equation

α′(t) =
1

2
`3
(
α(t)+φ(t), α(t)+φ(t), λ

)
+

1

6
`4
(
α(t)+φ(t), α(t)+φ(t), α(t)+φ(t), λ

)
+· · · ,

by the shape of the homotopy cooperad structure on H . For instance, the term `2
of the differential equation comes from the cooperad structure on H•+1(M0,n+1);
but this cooperad structure produces no δ term, so `2(α(t) + φ(t), λ) = 0 because
the map λ vanishes on H•+1(M0,n+1). So, for k = 0, we have α′0(t) = 0, which
shows that α0(t) = α0 is constant. Using the above weight grading of the homotopy
cooperad H , one can see that the image of ImHdψ

〈k〉 under the homotopy cooperad
structure map ∆m lives in trees with m vertices labelled respectively by

ImHdψ
〈k1〉, . . . , ImHdψ

〈ki〉, K δl1 , . . . , K δlj ,

with i + j = m and k1 + · · · + ki + l1 + · · · + lj = k. Therefore, α′k(t) is equal to a
linear combination of terms of the form

`m
(
αk1(t), . . . , αki(t), φl1(t), . . . , φlj−1(t), λlj

)
,

which are polynomial in t of degree at most k1 + · · ·+ ki + l1 + · · ·+ lj−1 < k, by the
induction hypothesis. This proves that αk(t) is polynomial in t of degree at most k.
So, α(t) exists for any t, in particular t = 1, which concludes the proof. �

4.2. Givental morphism. — Given a Maurer–Cartan element α + φ + ρ in ltBV, we
consider the degree 0 element

λ := − ln(1 + s ρ)

defined in a∆, where s ρ is the composite

T
c
(δ)

s−−→ s T
c
(δ)

ρ−−→ End(A).

The element λ actually lives inside g∆, and we extend it trivially to an element in ltBV.
By Lemma 4, one can deform α+ φ+ ρ in the direction of λ up to time t = 1; let us
denote the Maurer–Cartan element obtained at time t = 1 by eλ · (α+ φ+ ρ).
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Proposition 5. — The Maurer–Cartan element eλ · (α + φ + ρ) vanishes on
T
c
(δ)⊕ s T c(δ). Its component on H•+1(M0,n+1) provides us with a homotopy

hypercommutative algebra.

Proof. — Using the notations of the previous proof, we just need to prove that
ρ(1) = 0 and that φ(1) = 0. The solution ρ(1) = s−1

(
eλ ? (1 + s ρ)− 1

)
gives, with

λ = − ln(1 + s ρ), the following result

ρ(1) = s−1
(
(1 + s ρ)−1 ? (1 + s ρ)− 1

)
= 0.

Let us denote by ∂ the element in a∆ which sends 1 to ∂A and the rest to 0. Then, in
the convolution associative algebra a∆, one has

φ(1) + ∂ = e−λ ? (φ+ ∂) ? eλ = (1 + s ρ) ? (φ+ ∂) ? (1 + s ρ)−1,

see [DSV15b, §2] for more details. Since r is a homotopy trivialisation of φ, the right-
hand side is equal to ∂, see [DSV15b, §6], which proves the first statement.

The second claim follows from the explicit shape of the differential of the operad
tBV∞. �

Let us now interpret this result in a functorial operadic way. All the previous
arguments and computations hold true, in the same way, in the convolution L∞-
algebra(

HomS(H•+1(M0,n+1)⊕ T c(δ)⊕ s T c(δ), tBV∞), d∗ + (d1)∗, `2, `3, . . .
)
.

The identity endomorphism of the operad tBV∞ corresponds to a Maurer–Cartan
element that we denote by α + φ + ρ, as above. With λ = − ln(1 + s ρ), the new
Maurer–Cartan eλ · (α+φ+ρ) obtained under the gauge action corresponds to a new
endomorphism of the dg operad tBV∞. Proposition 5 shows that it vanishes on the
components T c(δ)⊕ s T c(δ). So it actually defines a morphism of dg operads

G : HyperCom∞ −→ tBV∞,

which we call the Givental morphism.

Proposition 6. — The Givental morphism is a quasi-isomorphism of dg operads.

Proof. — Integrating the formula

α′(t) =
1

2
`3
(
α(t) + φ(t), α(t) + φ(t), λ

)
+

1

6
`4
(
α(t) + φ(t), α(t) + φ(t), α(t) + φ(t), λ

)
+ · · · ,

from the proof of Lemma 4 shows that the restriction of the Givental morphism on
the space of generators has the following shape

H•(M0,n+1)
id +ζ−−−−−→ H•(M0,n+1)⊕T

(
H•(M0,n+1)⊕ s−1T

c
(δ)⊕ T c(δ)︸ ︷︷ ︸

>1

)
,
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where the image of the map ζ lives in the linear span of trees with at least one
vertex labelled by a δk. Therefore the composite of the Givental morphism G with
the projection onto HyperCom∞ is equal to the identity:

id : HyperCom∞
G−−−→ tBV∞ −→−→ HyperCom∞ .

Let us now prove that the homology of the dg operad tBV∞ is isomorphic to the
operad HyperCom. We consider the following filtration of the dg operad tBV∞:

Fn := T
(
H•(M0,n+1)⊕ s−1T

c
(δ)⊕ T c(δ)

)(>−n)

made up of linear combination of trees with at least −n vertices. Since the differential
d1 + d′2 + d2 + d3 + · · · amounts to splitting the generators, it preserves this filtra-
tion. This filtration is exhaustive and bounded below at fixed arity n > 1: at fixed
homological degree k > 0, there exists an N for which FN (tBV∞(n)k) = 0. So the
associated spectral sequence converges to the homology of the dg operad tBV∞. The
differential of the first page of the spectral sequence is equal to d1. The associated
homology is isomorphic to T

(
H•(M0,n+1)

)
. So the second page of the spectral se-

quence is isomorphic to Ω HyperCom¡,which is the Koszul resolution of HyperCom.
Finally, the spectral sequence collapses at the third page, which is isomorphic to
E2
−1,•
∼= HyperCom.

On the homology level, the Givental morphism sits inside the following retract

id : HyperCom
H•(G)
−−−−−−→ HyperCom −→−→ HyperCom .

So the morphism H•(G) is a monomorphism. At fixed arity n > 1 and homologi-
cal degree k > 0, the component HyperCom(n)k of the operad HyperCom is finite
dimensional, which concludes that the morphism H•(G) is an isomorphism. �

This proposition lifts the main result of [KMS13] on the cofibrant resolution level.

4.3. Functorial Givental action. — The shape of the differential of the minimal
model sBV∞ of the operad BV shows that the projection of its space of generators
onto its first summand provides us with another morphism of dg operads:

sBV∞ −→ HyperCom∞,

which induces a morphism of dg operads

tBV∞ −→ HyperCom∞ ∨T (T
c
(δ)).

Algebras over the coproduct operad HyperCom∞ ∨T (T
c
(δ)) are made up of a homo-

topy hypercommutative algebra α and a trivialisation ρ of the trivial circle action.
The above morphism of dg operads amounts just to considering such a datum as a
homotopy BV-algebra with a trivial higher circle action and a homotopy trivialisation
of it.

We consider the composite of these two dg operad maps

G̃ : HyperCom∞ −→ tBV∞ −→ HyperCom∞ ∨T (T
c
(δ)),
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and we define the endomorphism G of the dg operad HyperCom∞ ∨T (T
c
(δ)) by the

following coproduct diagram

HyperCom∞
G̃ //

��

HyperCom∞ ∨T (T
c
(δ))

HyperCom∞ ∨T (T
c
(δ))

G
44

T (T
c
(δ)).

OO

oo

Proposition 7. — The endomorphism G is a non-trivial automorphism of dg operad:

G ∈ Aut
(

HyperCom∞ ∨T (T
c
(δ))

)
.

Proof. — The arguments of the previous proof show that the Givental morphism is a
monomorphism, so is the morphism G̃ and then the morphism G . At fixed arity n > 1

and homological degree k > 0, the component of the operad HyperCom∞ ∨T (T
c
(δ))

is finite dimensional, which concludes the proof. �

Recall that the data of a homotopy trivialisation ρ of the trivial circle action is
equivalent to a series R(z) ∈ 1 + z End(A)[[z]] commuting with the differential dA.
Such elements are precisely exponentials of elements r(z) that can be used to define
the infinitesimal Givental action on homotopy hypercommutative algebras, see Def-
inition 8. Pulling back such a data (α, ρ) by the above operad map produces a new
homotopy hypercommutative algebra. When starting from a strict hypercommuta-
tive algebra, the result is nothing but the hypercommutative algebra obtained via the
Givental group action.

Theorem 6. — Let α be a hypercommutative algebra and let R(z) be a trivialisation
of the trivial circle action. The pullback hypercommutative algebra G̃∗(α,R(z) − 1)

is equal to the hypercommutative algebra, or CohFT, obtained by the Givental group
action of the element R(z).

Proof. — In Theorem 5, we proved the equality between the infinitesimal Givental
action of r(z) on the CohFT α and the infinitesimal gauge symmetry `α1 (r(z)). The
integration at time t = 1 of the second one is equal to G̃∗(α, ρ) and the integration
at time t = 1 of the first one is equal to the Givental group action of R(z) on the
CohFT α. �

In the same way as at the end of Section 3, a direct consequence of this theorem
is that the Givental group action on hypercommutative algebras extends naturally to
homotopy hypercommutative algebras as follows. The subgroup of the Givental group
1 + z End(A)[[z]] (formal Taylor loops of GL(A)) made up of series commuting with
the differential dA is the group of ∞-isotopies of the trivial circle action.

Definition 9. — Let α be a homotopy hypercommutative algebra structure on a
chain complex A and let R(z) ∈ 1 + z End(A)[[z]] be a degree 0 element commuting
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with dA. The higher Givental action of R(z) on α is defined by:

R(z) · α := G̃∗(α,R(z)− 1).

Notice that, even if ∞-isotopies of the trivial circle action form a group, this
action is not a group action but rather an ∞-groupoid action since it is defined
by integrating an L∞-algebra and not a Lie algebra, cf. [Get09]. We also remark
that Definition 9 can be equivalently given using the automorphism G , since
G ∗(α,R(z)− 1) = (R(z) · α,R(z)− 1).

Theorem 6 actually proves an extended version of the claim made by M. Kontsevich
in 2003 that the Givental group action on CohFT’s is equal to a change of trivialisation
of the circle action. The results of this section show that the (higher) Givental action
on (homotopy) hypercommutative algebras is an (∞-groupoid) action of trivialisations
of the trivial circle action.

On the level of hypercommutative algebras, a proof of Kontsevich’s claim is given
in [KMS13]. It is based on lifts of various structures to a bigger underlying space
where the circle action is trivialised. The final result does not depend on the choices
of lifts, but the proof is not functorial. The present work provides us with a functorial
proof of Kontsevich’s claim.

The present functorial operadic approach shows that all results can be extended
mutatis mutandis to morphisms of operads HyperCom → P, for any operad P,
where the Givental Lie algebra is then replaced by zP(1)[[z]]. To conclude, at the
higher homotopy level, the Givental action admits an interpretation which is simpler
(as the underlying circle action is trivial, not just trivialised) and fully functorial.
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