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RIGIDITY OF MINIMAL LAGRANGIAN

DIFFEOMORPHISMS

BETWEEN SPHERICAL CONE SURFACES

by Christian El Emam & Andrea Seppi

Abstract. —We prove that any minimal Lagrangian diffeomorphism between two closed spher-
ical surfaces with cone singularities is an isometry, without any assumption on the multiangles
of the two surfaces. As an application, we show that every branched immersion of a closed
surface of constant positive Gaussian curvature in Euclidean three-space is a branched covering
onto a round sphere, thus generalizing the classical rigidity theorem of Liebmann to branched
immersions.

Résumé (Rigidité des difféomorphismes minimaux lagrangiens entre surfaces sphériques à sin-
gularités coniques)

Nous démontrons que toute application minimale lagrangienne entre deux surfaces fermées
sphériques à singularités coniques est une isométrie, sans aucune hypothèse sur les valeurs des
multi-angles des deux surfaces. En appliquant ce résultat, nous prouvons une généralisation
du théorème classique de rigidité de Liebmann, notamment l’énoncé que toute immersion dans
l’espace euclidien de dimension 3 d’une surface fermée avec courbure gaussienne constante
positive et avec points de ramification est un revêtement ramifié sur une sphère.
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582 C. El Emam & A. Seppi

1. Introduction

Minimal Lagrangian maps have played an important role in the study of hyperbolic
structures on surfaces. As observed independently by Labourie [Lab92] and Schoen
[Sch93], given two closed hyperbolic surfaces (Σ1, h1) and (Σ2, h2), there exists a
unique minimal Lagrangian diffeomorphism in the homotopy class of every diffeomor-
phism Σ1 → Σ2. See also [Lee94] and [TV95, Smi20] for extensions of this result.
Alternative proofs have been provided later, in the context of Anti-de Sitter three-
dimensional geometry (see [BBZ07] and [BS20, §7]), using higher codimension mean
curvature flow (see [Wan01] and [LS11]). Using Anti-de Sitter geometry, the result
of Labourie and Schoen has been generalized in various directions: in [BS10, BS18]
in the setting of universal Teichmüller space; in [Tou16] for closed hyperbolic sur-
faces with cone singularities of angles in (0, π), provided the diffeomorphism Σ1 → Σ2

maps cone points to cone points of the same angles. Toulisse then proved in [Tou19]
the existence of minimal maps between closed hyperbolic surfaces of different cone
angles, by purely analytic methods. We remark that interesting results in a similar
spirit have been obtained for minimal Lagrangian diffeomorphisms between bounded
domains in the Euclidean plane ([Del91, Wol97]) and in a complete non-positively
curved Riemannian surface ([Bre08]).

On the other hand, spherical metrics with cone singularities on a closed surfaces
have been studied in [Tro86, McO88, Tro89, Tro91, LT92]. Very recently the works
[MP16, MP19, EMP20], by geometric methods, and [MW17, MZ20, MZ19], by an-
alytic methods, developed the study of the deformations spaces of spherical cone
metric, highlighting their complexity.

1.1. Main statement. — It thus seems a natural question to ask whether one can
find a minimal Lagrangian diffeomorphism between two spherical cone surfaces. In
this paper we answer negatively to this question, without any assumption on the
cone angles. We show that two spherical cone surfaces do not admit any minimal La-
grangian diffeomorphism unless they are isometric. When they are isometric, the only
minimal Lagrangian diffeomorphisms are isometries. We summarize these statements
as follows:

Theorem 1.1. — Given two closed spherical cone surfaces (Σ1, p1, g1) and (Σ2, p2, g2),
any minimal Lagrangian diffeomorphism ϕ : (Σ1, p1, g1)→ (Σ2, p2, g2) is an isometry.

We remark that, as part of our definition (Definition 2.2), a minimal Lagrangian
diffeomorphism ϕ is a smooth diffeomorphism between Σ1 r p1 and Σ2 r p2 that
extends continuously to the cone points. A priori, we do not assume that such a
smooth map extends smoothly to the cone points. This subtlety is at the origin of an
important technical point in our proof, which is summarized in Section 1.3 below.

1.2. Surfaces of constant Gauss curvature. — We provide an application of our
main result for branched immersions of surfaces of constant Gaussian curvature in
Euclidean three-space, generalizing the classical Liebmann’s theorem which states that
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Rigidity of minimal Lagrangian diffeomorphisms 583

every closed immersed surface of positive constant Gaussian curvature in Euclidean
space is a round sphere.

In [GHM13], Gálvez, Hauswirth and Mira classified the isolated singularities of
surfaces of constant Gaussian curvature. According to their definition, isolated sin-
gularities of an immersion σ : U r {p} → R3, for U a disc, are those that extend
continuously on U . Among these, they considered extendable singularities, namely
those for which the normal vector extends smoothly at p, and showed that they are
either removable, meaning that they extend to an immersion of U , or branch points,
meaning that the Gauss map is locally expressed as the map z 7→ zk with respect
to some coordinates on U and on S2. In the following, we will use the term branched
immersion of a surface Σ to indicate an immersion of the complement of a discrete
set D of isolated singularities of Σ, that extends continuously to D and has a branch
point at every point of D, according to the above definition. Here we show a rigidity
result for branched immersions of closed surfaces:

Corollary 1.2. — Every branched immersion in Euclidean three-space of a closed
surface of constant positive Gaussian curvature is a branched covering onto a round
sphere.

As we mentioned, Corollary 1.2 can be regarded as a generalization of Liebmann’s
theorem, which we indeed recover by an independent proof when the immersion has
no branch points. Roughly speaking, we prove Corollary 1.2 by applying Theorem 1.1
to the Gauss map of a branched immersion σ : Σ → R3, which induces a minimal
Lagrangian self-diffeomorphism of Σ with respect to the first and third fundamental
form, both of which are spherical cone metrics.

Finally, we remark that the hypothesis that the surface Σ is closed is essential in
Corollary 1.2, as well as the closedness of Σ1 and Σ2 in Theorem 1.1. Indeed one can
find local deformations of spheres of constant Gaussian curvature, with branch points
(see [Bra16] for many examples) or without (for instance by surfaces of revolution);
their Gauss maps provide non-isometric minimal Lagrangian diffeomorphisms between
open spherical surfaces (with or without cone points).

1.3. Outline of the proof of Theorem 1.1. — A map ϕ : (Σ1, p1, g1)→ (Σ2, p2, g2)

is minimal Lagrangian if it is area-preserving and its graph (restricted to the nonsin-
gular locus) is minimal in the product Σ1 ×Σ2. A useful characterization is that one
can express (on the nonsingular locus) ϕ∗g2 = g1(b·, b·) for b a (1,1) tensor which is
self-adjoint with respect to g1, positive definite, and satisfies the conditions d∇g1

b = 0

and det b = 1. For the sake of completeness, we prove the equivalence of the two
definitions in Appendix A. From this characterization, one sees that minimal La-
grangian maps are those that can be locally realized as the Gauss maps of surfaces
of constant Gaussian curvature one in Euclidean three-space, as a consequence of the
Gauss-Codazzi equations.

Starting by this characterization, using the spherical metric g1 and the (1,1) ten-
sor b, we produce a pair (G,B), defined on the complement of the cone points of Σ1
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584 C. El Emam & A. Seppi

where G is a Riemannian metric on Σ1, and B a (1,1) G-self-adjoint traceless tensor,
satisfying the equations

d∇
G

B = 0 and KG = 1 + detB.

Although we will not use spherical three-dimensional geometry in this paper, we
remark that these are precisely the Gauss-Codazzi equations for a surface in S3,
which is minimal since B is traceless. Equivalently, by the Lawson correspondence,
the pair (G,1+B) satisfies the Gauss-Codazzi equations for a surface of constant mean
curvature one in R3. Such constant mean curvature surface is realized (at least locally)
as the parallel surface from the surface of constant Gaussian curvature mentioned
above, which is determined by the pair (g1, b). Assuming ϕ : (Σ1, p1, g1)→ (Σ2, p2, g2)

is a minimal Lagrangian diffeomorphism, the goal of the proof is to show that B
vanishes identically, which is equivalent to ϕ being an isometry.

For this purpose, assuming by contradiction that B does not vanish identically,
the next step consists in computing the Laplace-Beltrami operator of the function χ
defined, in the complement of the zeros ofB, as the logarithm of the positive eigenvalue
of B (up to a certain constant). It turns out that ∆Gχ equals the curvature of the
metric G, which is positive (Corollary 3.2), hence χ is subharmonic and negative and
the contradiction is then obtained by an application of the maximum principle.

However, it is essential to prove that the metric G has the conformal type of a punc-
tured disc in a neighbourhood of every cone point of Σ1. This would be automatically
satisfied assuming some additional regularity on the minimal Lagrangian map ϕ: for
instance, if ϕ is supposed quasiconformal, which is equivalent to boundedness of the
(1,1) tensor b, then g1 and G are quasiconformal, and therefore both g1 and G have
the conformal type of a punctured disc near the cone points. But, as we mentioned
above, in our Theorem 1.1 we assume a weaker regularity on ϕ at the cone points,
namely we only suppose that ϕ is continuous.

To prove that G has the conformal type of a punctured disc around the cone
points, we apply the interpretation in terms of surfaces in Euclidean space, and we
show that G can be realized in a punctured neighbourhood U∗ of any cone point as the
metric induced by the first fundamental form of an equivariant immersion of Ũ∗ in R3.
We also prove that the normal vector of the equivariant immersion admits a limit,
and the vertical projection induced a bi-Lipschitz equivalence between G and a flat
metric on U∗. A complex analytic argument, based on Schwarz Reflection Principle,
shows that this flat metric has the conformal type of D∗ at the puncture, and this
implies that G has the conformal type of D∗ as well.

Acknowledgements. — We would like to thank the anonymous referees for several
useful comments, and in particular for the comment that led to Remark 3.5.

2. Definitions and setup

Let us start by introducing the fundamental definitions and some well-known prop-
erties.
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2.1. Conical metrics. — We give the general definition of cone Riemannian metric.

Definition 2.1. — Given a smooth surface Σ and a discrete subset p ⊂ Σ, a cone
metric on Σ is a Riemannian metric g on Σrp such that can be written in a punctured
neighbourhood U r {p} of every point p ∈ p as:

(1) g = e2f |z|2α−2|dz|2

with respect to a coordinate z : U → C, for f : U r {p} → R a smooth bounded
function and α ∈ (0, 1) ∪ (1,+∞).

The subset p is called the singular locus, and its complement the regular locus.
It will be convenient to set θ := 2πα, which is called the cone angle at p.

A cone metric is called spherical when it has constant curvature +1 on the regular
locus. In this cases one has the following explicit local expression for the metric
tensor (1):

(2) g =
4α2|z|2α−2

(1 + |z|2α)2
|dz|2.

2.2. Minimal Lagrangian maps. — Let us now move on to the definition of minimal
Lagrangian maps.

Definition 2.2. — Given two spherical cone surfaces (Σ1, p1, g1) and (Σ2, p2, g2), a
minimal Lagrangian diffeomorphism is a diffeomorphism ϕ : Σ1 r p1 → Σ2 r p2, that
extends to a homeomorphism between Σ1 and Σ2, having the property that the unique
g1-self-adjoint, positive definite (1, 1) tensor b on Σ1 r p1 such that ϕ∗g2 = g1(b·, b·)
satisfies the conditions:

(3) det b = 1 and d∇
g1
b = 0.

Here and in what follows, ∇g denotes the Levi-Civita connection of a Riemann-
ian metric g. We recall that, for a connection ∇ and a (1, 1) tensor A, the exterior
derivative d∇A is defined as

d∇A(v, w) = ∇v(A(w))−∇w(A(v))−A([v, w]).

A tensor satisfying d∇g

A = 0 is called Codazzi tensor with respect to the metric g.
For the sake of completeness, in Appendix A we shall prove that Definition 2.2 is

equivalent to the fact that the graph of ϕ is minimal Lagrangian in Σ1 × Σ2, thus
justifying the terminology.

Remark 2.3. — It is natural to require that a minimal Lagrangian map maps cone
points to cone points, as in Definition 2.2. Indeed (as we explain in Remark 4.4),
if ϕ : (U1, p1, g1) → (U2, p2, g2) is minimal Lagrangian diffeomorphism between two
punctured discs endowed with metrics of the form (2), then the cone angles of g1
and g2 are necessarily equal. In particular, if the “cone angle” is 2π for g1 at p1,
meaning that the metric extends to a smooth spherical metric on the disc, then the
same holds for g2 at p2, and moreover in this case ϕ extends smoothly to a minimal
Lagrangian diffeomorphism between U1 and U2.

J.É.P. — M., 2022, tome 9



586 C. El Emam & A. Seppi

When a metric is written in the expression g(A·, A·) for A an invertible Codazzi
tensor with respect to g, its connection and curvature are easily related to those of g,
as in the following well-known lemma.

Lemma 2.4 ([KS07, Prop. 3.12]). — Let g be a Riemannian metric on a surface Σ and
let A a smooth (1, 1) tensor with d∇g

A = 0 such that detA vanishes nowhere. Define
h = g(A·, A·). Then the Levi-Civita connections of g and h are related by:

(4) ∇hvw = A−1∇gv(A(w)),

and their curvatures by:

(5) Kh =
Kg

detA
.

Remark 2.5. — This lemma has two immediate consequences. First, it turns out that
the condition det b = 1 is actually redundant in Definition 2.2. Indeed, assuming
d∇g1 b = 0, it follows from Kg1 = Kϕ∗g2 = 1 and from Equation (5) that det b = 1.
Second, the inverse of a minimal Lagrangian diffeomorphism is minimal Lagrangian,
since one can write g1 = ϕ∗g2(b−1·, b−1·) and it is easily checked that b−1 is self-
adjoint and Codazzi for ϕ∗g2, using (4). Hence ϕ∗b−1 := (dϕ) ◦ b−1 ◦ (dϕ)−1 satisfies
the conditions in the Definition 2.2 for ϕ−1 : Σ2 → Σ1.

2.3. Defining the pair (G,B). — We now introduce the fundamental construction
for our proofs.

Definition 2.6. — Given a minimal Lagrangian map ϕ : (Σ1, p1, g1) → (Σ2, p2, g2),
we define on Σ1 r p1 a Riemannian metric

G =
1

4
g1((1 + b)·, (1 + b)·),

and a (1, 1)-tensor
B = (1 + b)−1(b− 1),

for b as in Definition 2.2.

Remark 2.7. — Definition 2.6 has a symmetry with respect to g1 and g2. More pre-
cisely, the metric G′ on Σ2rp2 associated to the map ϕ−1 : (Σ2, p2, g2)→ (Σ1, p1, g1),
which is again minimal Lagrangian (Remark 2.5), is isometric to the metric G on
Σ1 r p1.

To see this, we have observed in Remark 2.5 that the (1,1) tensor associated to
the minimal Lagrangian map ϕ−1 in Definition 2.2 is ϕ∗b−1. Hence G′ is the metric
on Σ2 defined by G′ = (1/4)g2((1+ϕ∗b

−1)·, (1+ϕ∗b
−1)·), and one sees immediately

that ϕ∗G′ = G. Similarly, one finds B′ = −ϕ∗B.

It is immediate to check that B is G-self-adjoint, since b is g1-self-adjoint. The
following lemma is an immediate algebraic computation.

J.É.P. — M., 2022, tome 9
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Lemma 2.8. — The eigenspaces of B coincide with those of b, and if we denote by λ
and 1/λ the eigenvalues of b, then the eigenvalues of B are

Λ =
λ− 1

1 + λ
and Λ′ =

1− λ
1 + λ

= −Λ.

In particular, B is traceless and |Λ|, |Λ′| < 1. Finally, at any point we have B = 0 if
and only if b = 1.

We observe that the pair (G,B) satisfies the following important properties:

Proposition 2.9. — The following Codazzi equations are satisfied by the pair (G,B):

d∇
G

B = 0.

Moreover, the curvature of G is positive.

Proof. — This is a straightforward verification using Lemma 2.4. Indeed, by Equa-
tion (4),

d∇
G

B = (1 + b)−1d∇
g1

(b− 1) = 0

since both 1 and b are g1-Codazzi. For the curvature condition, using Equation (5)
we have

KG =
4Kg1

det(1 + b)
=

4

2 + tr b
> 0.

This concludes the proof. �

Remark 2.10. — A simple computation shows moreover that

1 + detB = 1 +
2− tr b

2 + tr b
=

4

2 + tr b
= KG.

In other words, together with Proposition 2.9, we see that the pair (G,B) satisfies
the Gauss-Codazzi equation when the ambient manifold is S3. However, in this paper
we will not use spherical geometry; the construction of Section 4 is motivated by
the observation that (G,1 + B) satisfy the Gauss-Codazzi equations in Euclidean
space E3.

This is the so-called Lawson correspondence introduced in [Law70]: as a conse-
quence of trB = 0, the Gauss equation KG = 1 + detB is equivalent to KG =

det(1 + B), namely the Gauss equation in E3; furthermore 1 + B is clearly Codazzi
with respect to G. In summary, when lifted to the universal cover of Σ1 r p1, (G,B)

provide the immersion data of a minimal surface in S3, while (G,1 + B) those of a
constant mean curvature one surface in E3.

3. A maximum principle

The key idea in the proof of Theorem 1.1 is an application of the maximum principle
to show that B is identically zero, that is b is the identity operator (by Lemma 2.8).
This will show that any minimal Lagrangian map ϕ : (Σ1, p1, g1)→ (Σ2, p2, g2) is an
isometry.

J.É.P. — M., 2022, tome 9



588 C. El Emam & A. Seppi

3.1. A bounded subharmonic function. — The fundamental relation involved in our
application of the maximum principle is a consequence of the following formula, pre-
sented in [KS07, Lem. 3.11]. Since this is a fundamental step, we provide a quick proof
for convenience of the reader. In Appendix B we give another short proof, entirely
based on the fact that G(B·, ·) is the real part of a holomorphic quadratic differential.

Lemma 3.1. — Let G be a Riemannian metric on a surface U and B a trace-
less G-self-adjoint, G-Codazzi (1, 1) tensor that does not vanish on U . Denote
χ = (1/4) log(−detB). Then

KG = ∆Gχ.

Here we denote by ∆G the Laplace-Beltrami operator of G, with negative spectrum.

Proof. — Let e, e′ be an oriented orthonormal frame of eigenvectors of B, so that
B(e) = Λe and B(e′) = Λ′e′ = −Λe′. Let us denote by ω the connection form
associated to the Levi-Civita connection ∇G of G, which satisfies

(6) ∇ve = ω(v)e′ and ∇ve′ = −ω(v)e,

where to simplify the notation we set ∇ = ∇G. Since B does not vanish on U by
hypothesis, we can assume moreover that Λ is the positive eigenvalue of B, so that
χ = (1/4) log(Λ2) = (1/2) log Λ.

First, let us compute the Codazzi condition applied to the frame {e, e′}:

0 = ∇eB(e′)−∇e′B(e)−B(∇ee′ −∇e′e)
= −(∂eΛ)e′ − (∂e′Λ)e− 2Λ∇ee′ − 2Λ∇e′e,

where we have used Equation (6) from the first to the second line. Hence we get ∂eΛ =

−2Λω(e′) and ∂e′Λ = 2Λω(e). In terms of χ = (1/2) log Λ, we have ∂eχ = −ω(e′) and
∂e′χ = ω(e).

Second, we compute

KG = −dω(e, e′) = −∂eω(e′) + ∂e′ω(e) + ω(∇ee′ −∇e′e)
= ∂e∂eχ+ ∂e′∂e′χ− ω((∂eχ)e′)− ω((∂e′χ)e)

= Hessχ(e, e) + Hessχ(e′, e′) = ∆Gχ,

where from the second to the third line we used

Hessχ(e, e) = ∂e∂eχ− ∂∇eeχ = ∂e∂eχ− ∂ω(e)e′χ
= ∂e∂eχ− ω((∂e′χ)e) = ∂e∂eχ− ω(ω(e)e)

= ∂e∂eχ+ ω(∇ee′),

and similarly for Hessχ(e′, e′). �

Proposition 2.9 and Lemma 3.1 show that, on the subset of Σ1 r p1 where B 6= 0,

∆Gχ > 0.

We have thus shown that χ is subharmonic. Moreover χ is negative, because |Λ| < 1

by Lemma 2.8. We summarize these facts as follows:

J.É.P. — M., 2022, tome 9
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Corollary 3.2. — The function χ = (1/2) log |Λ| is negative and satisfies ∆Gχ > 0

on the complement of the zeros of B in Σ1 r p1.

Remark 3.3. — Although not essential in the proof, we remark that given a smooth
(1, 1) tensor A, A is g-self-adjoint and traceless if and only if g(A·, ·) is the real part
of a holomorphic quadratic differential ([Hop51], see Proposition A.2). Hence either
B ≡ 0 or B vanishes on a discrete subset of Σ1 r p1.

3.2. Proof of Theorem 1.1. — The main idea of the proof is to apply a maximum
principle argument to the function χ of the previous section. To control the behaviour
of χ at the singularities, we need the following statement on the conformal type of
the metric G. Its proof is postponed to Section 4.

Proposition 3.4. — Let Ui be a disc endowed with a spherical metric gi with a cone
point at pi, for i = 1, 2, let ϕ : (U1, p1, g1) → (U2, p2, g2) be a minimal Lagrangian
diffeomorphism, and let b the (1, 1) tensor as in Definition 2.2. Then the conformal
structure induced by the metric G = (1/4)g1((1 + b)·, (1 + b)·) on a neighbourhood
of p1 is biholomorphic to D∗.

Assuming Proposition 3.4, we now conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. — Assume by contradiction that B does not vanish identically.
Recall that the function χ = (1/4) log(−detB) is negative and subharmonic by Corol-
lary 3.2. We can extend χ to a function on Σ1 r p1, with values in [−∞,+∞).

Now, pick a cone point p ∈ p1 and a neighbourhood U of p in which the metric G
is biholomorphic to D∗. We claim that

(7) sup
U
χ = max

∂U
χ.

This will conclude the proof, since it implies that χ has a maximum point in Σ1 r p1,
and this contradicts Corollary 3.2.

Let us prove (7). Let us pick a biholomorphic chart z : U → D∗, and consider χ as a
function of z. The metric G is smooth in the complement of p, and is expressed in the
z-coordinate on D∗ as e2f |dz|2. (We remark that we are not making any assumption
on the behaviour of f close to 0. We will see in Remark 4.3 that G has a cone point
in p, which gives information on the behaviour of f as in Definition 2.1. However, we
do not need to use this fact here.)

Hence the Laplace-Beltrami operator ∆G equals e−2f∆, where ∆ is the flat Lapla-
cian on the disc. By Corollary 3.2, this implies ∆χ > 0 on D∗. Now choose any ε > 0.
The function χε(z) := χ(z)+ε log |z| still satisfies ∆χε > 0 because log |z| is harmonic,
and coincides with χ on S1. Moreover χε tends to −∞ at 0, because χ is bounded
above. By the maximum principle, χε cannot have an interior maximum point, hence

χε(z) 6 max
S1

χε = max
S1

χ

J.É.P. — M., 2022, tome 9



590 C. El Emam & A. Seppi

for any z ∈ D∗. It follows that

χ(z) 6 max
S1

χ− ε log |z|.

Since ε was chosen arbitrarily, this shows (7) and concludes the proof. �

Remark 3.5. — An anonymous referee remarked that, in order to prove (7), one can
apply the result that a bounded subharmonic function χ on D∗ extends to a sub-
harmonic function on D (see [HK76, Th. 5.18]), and then conclude by the maximum
principle applied to the extension of χ. We have preferred to stick to the more ele-
mentary argument for (7) in the proof of Theorem 1.1.

4. Immersions in Euclidean space

In order to complete the proof of Theorem 1.1 it only remains to prove Propo-
sition 3.4. We then prove Corollary 1.2. The relation between minimal Lagrangian
diffeomorphisms and immersions in Euclidean space will play an essential role for
both results.

4.1. Proof of Proposition 3.4. — The guiding idea towards Proposition 3.4 is that,
given the tensor b as in Definition 2.2, the pair (g1, b) represents locally the embedding
data of an immersed surface of constant Gaussian curvature one in Euclidean space,
by the fundamental theorem of surfaces; moreover, there is a parallel constant mean
curvature surface whose first fundamental form is G up to a factor (and whose shape
operator is 1+B, compare Remark 2.10). However, since Σ1 is not simply connected,
we will need to lift (g1, b) to its universal cover, and refine this approach in order to
deal with the equivariance of the obtained immersion. Moreover, in the proof we find
convenient to switch the roles of g1 and g2, namely we apply the above guiding idea
to ϕ−1, see Remark 2.7.

We will apply the following result.

Lemma 4.1 ([Fer81], [OS83, Prop. 1.3.3]). — Given a simply connected Riemannian
manifold (M, g) of constant sectional curvature K and a self-adjoint (1, 1) tensor A
satisfying the Codazzi equation d∇g

A = 0, there exists a smooth function u : M → R
such that

A = ∇g• gradg u+Ku1.

We observe that the term ∇g• gradg u is the Hessian of u as a (1, 1) tensor, i.e.,
Hessgu(v, w) = g(∇gv gradg u,w).

Proof of Proposition 3.4. — To simplify the notation, let us denote U∗i := Ui r {pi}.
Lift g1 and b to the universal cover Ũ∗1 . Then b̃ still satisfies the Codazzi equation
with respect to g̃1. By Lemma 4.1 there exists a function u : Ũ∗1 → R such that

b̃ = ∇g̃1• gradg̃1 u+ u1.
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Pick also a developing map dev : Ũ∗1 → S2 ⊂ E3 for the spherical structure of g1
on U∗1 , namely dev is a local isometry with respect to the metric g̃1 on Ũ∗1 . We define
the maps σ, ς : Ũ∗1 → E3 by

σ(x) = dev∗(gradg̃1 u) + udev(x) ς(x) =
1

2

(
dev∗(gradg̃1 u) + (u+ 1)dev(x)

)
.

Observe that ς = (1/2)(σ + dev).

Step 1. — Let us show that the first fundamental forms of σ and ς are the lifts
to the universal cover of ϕ∗g2 and G, respectively. Being a local statement, we can
isometrically identify an open neighbourhood of any point of Ũ∗1 with a subset of S2,
so that dev is the identity. By differentiating σ with this identification, we see that

Dvσx = Dv gradS2u+ 〈gradS2u, v〉x+ uv

= ∇S2
v gradS2u+ uv = b̃(v),

where we used D to denote the ambient derivative in E3, 〈·, ·〉 the metric of E3 (which
restricts to the metric of S2), and from the first to the second line we applied the fact
that the second fundamental form of S2 equals −〈·, ·〉 with respect to the outer unit
normal. This computation has several consequences, namely:

(1) The map σ is an immersion, since its differential is nonsingular.
(2) The normal vector of σ at a point x ∈ Ũ∗1 is dev(x). Indeed, in the above

identification, x itself is orthogonal to the image of the differential of σ at x. In other
words, the Gauss map of σ is dev.

(3) The first fundamental form of σ equals 〈Dvσx, Dwσx〉 = g̃1(̃b(v), b̃(w)) =

ϕ̃∗g2(v, w).
(4) The shape operator of σ is b̃−1, since (performing again the computation local-

ly) the normal vector isN(x) = x, hence its derivative is dN(v) = v and this equals b̃−1
applied to Dvσx.
The computation for ς is completely analogous, implying (under the same identifica-
tion as above):

(1′) Its differential equals (1/2)(1 + b̃) and is nonsingular.
(2′) Its Gauss map is again dev.
(3′) Its first fundamental form is (1/4)g̃1((1 + b̃)·, (1 + b̃)·) = G̃.

Step 2. — The immersions σ and ς are equivariant with respect to a representation ρ
of π1(U∗1 ) ∼= Z into the isometry group of E3. Indeed, by construction g̃1 and b̃ are
preserved by the action of Z by deck transformations of Ũ∗1 , hence so are the first
fundamental form and the shape operator of σ, by the items (3) and (4) of the list
above. By the uniqueness part of the fundamental theorem of surfaces, there exists a
representation

ρ : Z −→ Isom(R3) ∼= SO(3) nR3

such that σ ◦ γ = ρ(γ) ◦ σ for every γ ∈ Z.
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Now, observe that the developing map dev : Ũ∗1 → S2 is also equivariant with
respect to a rotation of angle θ1 (modulo 2π), as a consequence of the definition of
spherical cone metric. That is, if we denote by γ1 the standard generator of π1(U∗1 ),
then

dev(γ1 · q̃) = Rθ1(dev(q̃))

for every q̃ ∈ Ũ∗1 . Up to composing σ and ς with an element of SO(3), we can assume
that Rθ1 is the rotation fixing (0, 0, 1). By item (2) above, the Gauss map of σ coincides
with dev, hence the linear part of ρ is the holonomy of dev. Concretely, we have for
every q̃ ∈ Ũ∗1 .

σ(γ1 · q̃) = Rθ1(σ(q̃)) + τ

for some τ ∈ E3. Since ς = (1/2)(σ+dev), it turns out that ς satisfies the equivariance:

ς(γ1 · q̃) = Rθ1(σ(q̃)) +
1

2
τ.

As a consequence of the next step, we will see that, up to composing σ with a trans-
lation, we can assume τ = 0.

Step 3. — In this step we will show that, roughly speaking, the immersions σ and ς
admit a limit in correspondence of the puncture of U∗1 . Let us denote by D a fun-
damental domain for the action of π1(U∗1 ) on Ũ∗1 . We now claim that there exists a
point ξ ∈ E3 having the property that σ(q̃n)→ ξ for every sequence q̃n ∈ D such that
Π(q̃n) → p1, where Π : Ũ∗1 → U∗1 is the covering projection. To see this, recall that
the first fundamental form of σ is the lift to the universal cover of the spherical cone
metric ϕ∗g2. Let us first fix one sequence q̃n as above. Since the metric completion of
(U∗1 , ϕ

∗g2) is obtained by adding the cone point p1, q̃n is a Cauchy sequence for the
first fundamental form of σ, which is ϕ̃∗g2. Hence σ(q̃n) is a Cauchy sequence in R3,
and it converges. Let us call its limit point ξ.

Now pick any other sequence q̃′n contained in D such that Π(q̃′n) converges to p1.
The distance between q̃n and q̃′n for the first fundamental form of σ tends to zero.
Hence also the Euclidean distance ‖σ(q̃n) − σ(q̃′n)‖ tends to zero, and therefore the
limit of σ(q̃′n) is ξ again. One can in fact repeat the same argument only assuming
that q̃′n is contained in the union ⋃

i∈I
γi ·D

for I a finite subset of π1(U∗1 ) ∼= Z. This observation also shows that the represen-
tation ρ introduced in the previous step fixes ξ, by applying the above argument to
q̃′n = ρ(γ)q̃n. Up to composing with a translation, we will assume ξ = 0, which shows
that ρ is a linear representation, or in other words, τ = 0 in the previous step.

We also obtain an analogous property for ς, namely that for any sequence q̃n ∈ D

such that Π(q̃n) → p1, ς(q̃n) converges to a point in the axis fixed by Rθ1 . But in
this case the proof does not follow from the same argument. Indeed we do not know
that the metric G on U∗1 has a cone singularity at p1, hence we cannot repeat the
above argument verbatim. (This is indeed the reason why so far we dealt with σ

and ς simultaneously, although we are only interested in the final statement for ς.)
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Nevertheless, since ς = (1/2)(σ+dev) and dev converges to (0, 0, 1) on any sequence q̃n
as above, the conclusion for ς follows immediately, and the limit of ς is in fact (0, 0, 1)

under our assumptions.

Step 4. — Let us now consider the vertical projection π : R3 → R2, namely
π(x, y, z) = (x, y). A fundamental consequence of item (2′) is that the Gauss map
of ς (which coincides with dev) tends to (0, 0, 1) along any sequence q̃n such that
Π(q̃n)→ p1. It follows that, up to restricting U1, we can assume that

(8) 〈dev(q), (0, 0, 1)〉 > ε > 0.

In other words, the normal vector of ς is never horizontal. This implies that π ◦ ς :

Ũ∗1 → R2 is an immersion. Since ς is equivariant with respect to the representation ρ
sending a generator to the rotation Rθ1 around the vertical axis, also π◦ς is equivariant
with a representation, which with a little abuse of notation we still denote by ρ,
sending the same generator to the rotation in R2 of angle θ1 (modulo 2π). By this
equivariance, the first fundamental forms of the immersions ς and π ◦ ς induce two
Riemannian metrics on U∗1 : the metric induced by ς is G as a consequence of item (3′)
in Step 1; the metric induced by π ◦ ς, which we call H, is flat. The two metrics G
and H are bi-Lipschitz, i.e., there exists a constant C such that

(9) 1

C
H(v, w) 6 G(v, w) 6 CH(v, w),

for all v, w tangent to U∗1 . Indeed, it follows from (8) that that is there exists a
constant C > 1 such that (1/C)G(v, v) 6 ‖dπ ◦ dς(v)‖2 6 G(v, v) for any vector v
tangent to Ũ∗1 .

Step 5. — We now claim that the conformal structure on U∗1 induced by the metric H
is biholomorphic to D∗ around the point p1. Recall that any conformal structure
on U∗1 is biholomorphic to D∗, C∗ or Ar0 = {z ∈ C | 1 < |z| < r0} for some r0 > 1.
Let us show that (U∗1 , H) cannot be biholomorphic to any Ar0 . Up to restricting the
neighbourhood U∗1 , we then rule out the case C∗ and conclude the claim.

Suppose by contradiction that there exists a biholomorphism ψ : Ar0 → (U∗1 , H).
Clearly ψ extends to one of the two boundary components, having limit p1 therein;
it is harmless to assume that such boundary component is {|z| = 1}. Considering the
(holomorphic) universal covering map z 7→ exp(−iz) of Ar0 , defined on

(10) Ãr0 := {z ∈ C | 0 < Im(z) < log(r0)},

we can lift ψ to a biholomorphism ψ̃ : Ãr0 → (Ũ∗1 , H̃), where by construction H̃ is the
pull-back metric of the immersion π◦ς : Ũ∗1 → R2. Hence f := π◦ς◦ψ̃ : Ãr0 → R2 ∼= C
is a holomorphic map. In Steps 2 and 3 we showed that ς(q̃n) tends to the origin for
any sequence q̃n ∈ Ũ∗1 such that Π(q̃n)→ p1. Together with our assumption on ψ, it
follows that f extends continuously to the real line {Im(z) = 0}, which is mapped to
0 ∈ C.

Now pick any point z0 on the real line, and pick any 0 < ε0 < log(r0). By Schwarz
Reflection Principle, we can extend f on Ãr0 ∩ B(z0, ε0) to a holomorphic map
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F : B(z0, ε0)→ C, which is defined on {Im(z) < 0} ∩ B(z0, ε0) by F (z) = f(z).
Since f maps the real line to 0 ∈ C, the holomorphic extension F is constant. But
this contradicts the fact that π ◦ ς is an immersion.

Step 6. — Finally, we can conclude that G has also the conformal type of D∗. Indeed,
the identity id : (U∗1 , G)→ (U∗1 , H) is bi-Lipschitz by (9), hence it is quasiconformal.
Since H is biholomorphic to D∗ by the previous step, this implies that (U∗1 , G) cannot
have the conformal type of Ar0 or C∗ and is therefore conformal to D∗, see for instance
[Hub06, §4.3] �

4.2. Proof of Corollary 1.2. — Having proved Proposition 3.4, our proof of Theo-
rem 1.1 is complete. We now provide the proof of Corollary 1.2.

Proof of Corollary 1.2. — Suppose ι : Σ1 → E3 is a branched immersion, where p1 is
the (discrete) branching set, and let ν : Σ1 r p1 → S2 be its Gauss map. It follows
from the definition of branched immersion and the compactness of Σ1 that ν extends
to a branched covering Σ1 → S2. Up to postcomposition with a homothety of E3, we
can assume without loss of generality that the value of the constant curvature of ι is
equal to one; we will show that ι is a branched covering onto a round sphere of radius
one centered at some point of R3.

Let g1 be the first fundamental form of ι and b its shape operator. Since b = −dν,
we see immediately that ν∗gS2 = g1(b·, b·), where of course gS2 denotes the spherical
metric. The (1, 1) tensor b is g1-self-adjoint and positive definite (up to changing
the sign of ν). Moreover, by the Gauss-Codazzi equations, b satisfies det b = 1 and
d∇

g1
b = 0. This shows that id : (Σ1, p1, g1)→ (Σ1, p1, ν

∗gS2) is a minimal Lagrangian
diffeomorphism.

We claim that both g1 and ν∗gS2 , which are clearly spherical metrics on Σ1 r p1,
have cone singularities at the points of p1. For ν∗gS2 , this is clear since ν is a local
isometry for ν∗gS2 and behaves, in a neighbourhood of any p ∈ p1, like a degree d
covering onto a punctured disc in S2. Hence ν∗gS2 has a cone point of cone angle 2dπ.

For g1, pick any point p ∈ p1. We know from the definition that both ι and ν

admit a limit point at p. We can assume that the limit of ι is the origin of R3,
and the limit of ν is (0, 0, 1). We can now repeat Steps 4, 5 and 6 of the proof of
Proposition 3.4 to show that g1 has the conformal type of a punctured disc around p.
Let us briefly summarize these steps for easiness of the reader. As in Step 4, for q in a
small neighbourhood U of p, we have 〈ν(q), (0, 0, 1)〉 > ε > 0. Hence π ◦ ι is a locally
bi-Lipschitz immersion with respect to the first fundamental form g1 of ι and the flat
metric of R2. More precisely id : (U, g1) → (U, h1), where h1 is the pull-back metric
of π ◦ ι, is bi-Lipschitz. Repeating Step 5, we show that (U, h1) is biholomorphic
to D∗ around p (up to restricting U to rule out the case C∗): indeed, by lifting a
biholomorphism ψ : Ar0 → (U, h1) to the universal cover (10) and applying Schwarz
Reflection Principle to π ◦ ι ◦ ψ̃, one would obtain a contradiction. As in Step 6, one
then shows that g1 has the conformal type of D∗ as well.
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Moreover g1 has finite area around p. Indeed h1 has finite area: to see this, let
ψ : D∗ → (U∗, h1) be a biholomorphism, and consider the holomorphic map π ◦ ι ◦ψ :

D∗ → R2, that extends to a holomorphic map on D, hence has finite degree if restricted
to a compact neighbourhood of 0. Hence the area of h1 is finite around p, and since g1
is bi-Lipschitz to h1, it has finite area as well. Then we can apply [Bry87, Prop. 4]
and deduce that g1 has a cone point at p, because it is a spherical metric, it is
biholomorphic to D∗ in a neighbourhood of p and has finite area.

Having showed that g1 and ν∗gS2 are spherical cone metrics, it follows from Theo-
rem 1.1 that id : (Σ1, p1, g1)→ (Σ1, p1, ν

∗gS2) is an isometry, i.e., g1 = ν∗gS2 . Hence b
is the identity operator. This means that, considering ν as an immersion in R3, its first
fundamental form is g1. Moreover its shape operator is the identity, since its image is
a subset of S2. Hence ι and ν are immersions of Σ1 r p1 having the same first funda-
mental form (namely g1) and the same shape operator (namely the identity). By the
uniqueness part of the fundamental theorem of surfaces, there exists an isometry A
of R3 such that ι = A ◦ ν. Since ν is a branched covering of S2, this implies that ι is
a branched covering of some round sphere. �

We observe that in the proof of Corollary 1.2 we are making use of Theorem 1.1
in full strength, namely under the sole assumption that the minimal Lagrangian dif-
feomorphism ϕ extends continuously at the cone points. Indeed, by the definition
of branch point for spherical surfaces, the Gauss map ν of the immersion ι is sup-
posed to extend continuously at the branch points, without any additional regularity
assumption.

4.3. Final remarks. — In conclusion, we would like to add some related remarks.

Remark 4.2. — Let (G,B) be the pair constructed in Definition 2.6. Recalling that the
(1,1) tensor B is bounded (Lemma 2.8), and G(B·, ·) is the real part of a holomorphic
quadratic differential q for the conformal structure induced byG (see Proposition A.2),
a simple computation shows that if α ∈ (0, 1/2] (i.e., cone angle in (0, π]), then q has
at most simple poles at p. If the cone angle is in (π, 2π] then q does not have a pole,
and if the cone angle is in (kπ, (k+ 1)π]) for k > 2 then q has a zero of order at least
k − 1.

Remark 4.3. — With some more technicalities, similar to those pursued in [BS16, §4]
in a similar Lorentzian setting, one can strengthen the arguments in the proof of
Proposition 3.4 and show that the metric G has a cone point of angle θ1 at p. Moreover
the immersion ς induces an embedding of a punctured disc in a singular Euclidean
space, namely the singular Riemannian manifold

|z|2α1−2|dz|2 + dt2,

which is the product of the standard flat metric on R2 with cone angle θ1 = 2πα1

and R. This induced embedding is orthogonal to the singular locus {z = 0} and its first
fundamental form of is precisely G. We stress that this follows from a local analysis,
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that is under the sole assumption that ϕ : (U1, p1, g1) → (U2, p2, g2) is a minimal
Lagrangian diffeomorphism between discs endowed with spherical cone metrics.

Remark 4.4. — A consequence of Remark 4.3 is that, if ϕ : (U1, p1, g1)→ (U2, p2, g2)

is a minimal Lagrangian diffeomorphism between discs endowed with spherical cone
metrics, then the cone angles of g1 and g2 at p1 and p2 are necessarily equal. Indeed,
Remark 4.3 shows that the metric G has a cone point of angle equal θ1 at a point p1;
applying the same remark to ϕ−1 (Remark 2.7), one shows that this cone angle equals
also θ2.

This statement holds as well when the “cone angle” equals 2π, in the following
sense. Suppose ϕ is a minimal Lagrangian diffeomorphism between (U1 r {p1}, g1)

and (U2 r {p2}, g2) where at least one between g1 and g2 extends to a nonsingular
spherical metric on the whole Ui. Then both g1 and g2 are nonsingular spherical
metrics on U1 and U2.

In this setting, the arguments of the proof of Proposition 3.4 (up to switching ϕ
and ϕ−1, which does not affect the conclusion) can be adapted to show that ϕ can be
realized as the Gauss map of an embedded surface of constant Gaussian curvature one
in R3, and moreover the embedding extends continuously to p1. Classical regularity
for Monge-Ampère equations then implies (again only by a local analysis) that the
embedding extend smoothly at p1. Therefore the minimal Lagrangian map ϕ extends
smoothly to a minimal Lagrangian diffeomorphism between U1 and U2.

Remark 4.5. — As mentioned in the end of the introduction, our Theorem 1.1 and
Corollary 1.2 (unlike Remarks 4.3 and 4.4) cannot be improved to purely local state-
ments, and necessarily require some topological assumption, for instance closedness of
the surface. Indeed, examples of non-isometric minimal Lagrangian diffeomorphisms
between domains of S2 can be found as the Gauss maps of surfaces of constant Gauss-
ian curvature in R3, for instance as surfaces of revolution. There are also many ex-
amples of branched immersions of (necessarily non-closed) surfaces with constant
Gaussian curvature one, whose image is not contained in a round sphere (see for in-
stance [Bra16]). Following the proof of Corollary 1.2, their Gauss maps induce minimal
Lagrangian diffeomorphisms between open spherical surfaces with cone angles 2nπ.

Appendix A. Equivalent definitions

In this appendix we show that Definition 2.2 is equivalent to the condition that
the graph of ϕ is a minimal Lagrangian submanifold in the product Σ1×Σ2, endowed
with the Riemannian metric g1 ⊕ g2 and with the symplectic form π∗1dAg1 − π∗2dAg2 .
This is in fact a local computation.

Proposition A.1. — Let (U1, g1) and (U2, g2) be spherical surfaces, ϕ : U1 → U2

a diffeomorphism, and b the unique positive definite, g1-self-adjoint (1, 1) tensor on U1

such that ϕ∗g2 = g1(b·, b·). Then the graph of ϕ is minimal Lagrangian if and only if
d∇

g1
b = 0 and det b = 1.
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The proof uses the following well-known characterization of Codazzi tensors, which
is also applied in Appendix B:

Proposition A.2 ([Hop51]). — Given a Riemannian metric G on a surface Σ and
a smooth (1, 1) tensor B, B is G-self-adjoint and traceless if and only if G(B·, ·) is
the real part of a quadratic differential q. Moreover B is G-Codazzi if and only if q is
holomorphic.

Proof of Proposition A.1. — First, let us observe that the area forms dAg1 and ϕ∗dAg2
differ by the factor det b, hence the graph of ϕ is Lagrangian (i.e., ϕ is area-preserving)
if and only if det b = 1. In the rest of the proof, we will always assume that both these
conditions hold.

It is known ([ES64, §4]) that an immersion F : U ↪→ U1 × U2 is minimal if and
only if it is conformal and harmonic, that is, if and only if it is harmonic with respect
to the conformal class of F ∗(g1⊕ g2) on U . Applying this to the graphical immersion
x 7→ (x, ϕ(x)), minimality of the graph of ϕ is equivalent to harmonicity of id :

(U1, g1 ⊕ ϕ∗g2)→ (U1, g1) and of ϕ : (U1, g1 ⊕ ϕ∗g2)→ (U2, g2).
So let us fix ϕ, take b as in the statement, and assume moreover det b = 1. As

in Definition 2.6, we introduce the metric G = (1/4)g1((1 + b)·, (1 + b)·) and the
(1, 1) tensor B = (1+ b)−1(b−1). One sees immediately that B is G-self-adjoint and
traceless.

It turns out that the metric G is conformal to g1 ⊕ ϕ∗g2. Indeed b2 − tr(b)b +

(det b)1 = 0 by the Cayley-Hamilton theorem, hence 1 + b2 = tr(b)b, which implies
g1 + ϕ∗g2 = tr(b)g1(b·, ·) and

G =
1

4

(
1 +

2

tr(b)

)
(g1 + ϕ∗g2).

Since harmonicity only depends on the conformal class on the source, we will conclude
the proof by showing that d∇g1

b = 0 if and only if id : (U1, G) → (U1, g1) and
ϕ : (U1, G)→ (U2, g2) are harmonic.

As a last preliminary step, a direct computation shows

(11) g1 = G((1−B)·, (1−B)·)

for B = (1 + b)−1(b− 1) as in Definition 2.6. Using again Cayley-Hamilton, since B
is traceless, B2 = −(detB)1, and it follows that

g1 = (1− detB)G− 2G(B·, ·).

Since B is G-self-adjoint and traceless, by Proposition A.2 G(B·, ·) is the real part of
a quadratic differential q. Then by definition the Hopf differential of id : (U1, G) →
(U1, g1) is −q. Similarly, one writes

ϕ∗g2 = G((1 +B)·, (1 +B)·) = (1− detB)G+ 2G(B·, ·),

hence the Hopf differential of ϕ : (U1, G)→ (U2, g2) equals q.
Now, Proposition 2.9 shows that if d∇g1

b = 0, then d∇G

B = 0, which by Proposi-
tion A.2 is equivalent to q being holomorphic, and therefore that id : (U1, G)→(U1, g1)
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and ϕ : (U1, G) → (U2, g2) are harmonic (since id and ϕ are diffeomorphisms, see
[Sam78, §9]).

Conversely, suppose that id : (U1, G) → (U1, g1) is harmonic, hence q is holo-
morphic and thus by Proposition A.2 B satisfies the Codazzi condition d∇

G

B = 0.
Using (11) and observing that b = (1 − B)−1(1 + B), one repeats exactly the same
proof as in Proposition 2.9 to show that d∇g1

b = 0. This concludes the desired equiv-
alence. �

Appendix B. Alternative proof of Lemma 3.1

In this appendix we provide a new proof of Lemma 3.1. Denote χ = 1
4 log(−detB),

which is defined in the complement of zeros of B. We will show that

(12) KG = ∆Gχ.

New proof of Lemma 3.1. — Let q be as in Proposition A.2, and assume that q does
not vanish identically. Since (12) is a local statement, we will work on a local isother-
mal coordinate z = x+ iy. Let us first prove the formula for a flat metric G0 = |dz|2
and a G0-Codazzi tensor B0. In this case we have:

B0 = G−10 Re(q) =

(
Re(φ) −Im(φ)

−Im(φ) −Re(φ)

)
.

where q = φ(z)dz2 is the holomorphic quadratic differential as in Proposition A.2.
Hence

χ0 =
1

4
log(−detB0) =

1

4
log(|φ|2).

To show (12) in this case, it suffices to observe that χ0 is harmonic with respect to G0.
Indeed,

∂zχ0 =
1

4
∂z log(φφ) =

1

4φφ
φ∂zφ =

∂zφ

4φ
.

Hence ∂z∂zχ0 = 0 and χ0 is harmonic.
For the general case, given a Riemannian metric G = e2f |dz|2 and a G-Codazzi

tensor B, as a consequence of Proposition A.2 we have that B0 := e2fB is Codazzi
with respect to the flat metric G0 = e−2fG = |dz|2. Observe that detB0 = e4f detB,
hence χ0 = (1/4) log(−detB0) = χ + f , and by the flat case discussed in the first
part of the proof,

∆G0χ0 = ∆G0χ+ ∆G0f = 0.

Using the formula for the curvature and Laplacian of a conformal metric, we have

∆Gχ = e−2f∆G0χ = −e−2f∆G0f = KG,

as claimed. �
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