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OBSERVABILITY AND CONTROLLABILITY FOR

THE SCHRÖDINGER EQUATION ON QUOTIENTS OF

GROUPS OF HEISENBERG TYPE

by Clotilde Fermanian Kammerer & Cyril Letrouit

Abstract. —We give necessary and sufficient conditions for the controllability of a Schrödinger
equation involving the sub-Laplacian of a nilmanifold obtained by taking the quotient of a group
of Heisenberg type by one of its discrete sub-groups. This class of nilpotent Lie groups is a ma-
jor example of stratified Lie groups of step 2. The sub-Laplacian involved in these Schrödinger
equations is subelliptic, and, contrary to what happens for the usual elliptic Schrödinger equa-
tion for example on flat tori or on negatively curved manifolds, there exists a minimal time of
controllability. The main tools used in the proofs are (operator-valued) semi-classical measures
constructed by use of representation theory and a notion of semi-classical wave packets that we
introduce here in the context of groups of Heisenberg type.

Résumé (Observabilité et contrôlabilité de l’équation de Schrödinger sur des quotients de groupes
de type Heisenberg)

Dans cet article, nous donnons des conditions nécessaires et des conditions suffisantes pour
la contrôlabilité d’une équation de Schrödinger impliquant un opérateur sous-elliptique sur
une variété compacte. Cet opérateur est le sous-laplacien d’une variété obtenue en quotientant
un groupe de type Heisenberg par l’un de ses sous-groupes discrets. Cette classe de groupes
nilpotents est un exemple important de groupes de Lie de pas 2. Le sous-laplacien est alors
un opérateur sous-elliptique et nous montrons qu’à la différence de ce qui se passe pour le cas
elliptique sur le tore ou sur des surfaces à courbures négatives, il existe un temps minimal de
contrôlabilité pour l’équation de Schrödinger associée à ce sous-laplacien. Les principaux outils
que nous utilisons sont des mesures semi-classiques à valeurs opérateurs construites via la théorie
des représentations et une notion de paquets d’ondes semi-classiques que nous introduisons ici
dans le contexte des groupes de type Heisenberg.
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1460 C. Fermanian Kammerer & C. Letrouit

1. Introduction

In this paper, we consider a nilmanifold M , that is a manifold M = Γ̃\G which
is the left quotient of a nilpotent Lie group G by a discrete cocompact subgroup Γ̃

of G. We assume here that the Lie group G, as a differential manifold, is an H-type
group (also called “group of Heisenberg type”). On the manifold M , we consider the
sub-Laplacian −∆M and we are interested in the Schrödinger operators − 1

2∆M − V
for analytic potentials V. We study the controllability and the observability of the
associated Schrödinger equation on M thanks to the Harmonic analysis properties of
the group G. We give in the next section precise definitions about these notions and
develop concrete examples in Section 1.2.

1.1. The nilmanifold M and the Schrödinger equation. — An H-type group G is
a connected and simply connected nilpotent Lie group whose Lie algebra is an H-type
algebra, denoted by g. This means that:

– g is a step 2 stratified Lie algebra: it is equipped with a vector space decompo-
sition

g = v⊕ z,

such that [v, v] = z 6= {0} and z is the center of g.
– g is endowed with a scalar product 〈· , ·〉 such that, for all λ ∈ z∗, the skew-

symmetric map
Jλ : v −→ v

defined by

(1.1) 〈Jλ(U), V 〉 = λ([U, V ]) ∀U, V ∈ v

satisfies J2
λ = −|λ|2 Id. In other words, Jλ is an orthogonal map as soon as |λ| = 1.

Here, to define |λ|, we first identify z∗ to z thanks to 〈· , ·〉, then we define |λ| as the
norm (deriving from 〈· , ·〉) of the image of λ through this identification.
The Lie group G, as a differential manifold, is diffeomorphic to R2d+p, where p is the
dimension of the center of the group. H-type groups were introduced in [33], the main
motivation being that the sub-Laplacians in these groups admit explicit fundamental
solutions of an elementary form. The Heisenberg groups Hd ∼ R2d+1 are examples of
H-type groups (with p = 1), as will be recalled below.

We consider Γ̃, a discrete cocompact subgroup of G. A concrete example is given
in Example 1.1. Then, we set M = Γ̃\G.

Via the exponential map
Exp : g −→ G

which is a diffeomorphism from g to G, one identifies G and g as sets and manifolds.
We may identify g with the space of left-invariant vector fields via

(1.2) Xf(x) =
d

dt
f(xExp(tX))

∣∣∣∣
t=0

,
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Observability and controllability for the Schrödinger equation 1461

which acts on functions of x ∈ G and on functions of x ∈ M since it passes to the
quotient. Choosing an orthonormal basis (Vj)16j62d of v and identifying g with the
Lie algebra of left-invariant vector fields on G, one defines the sub-Laplacian

∆M =

2d∑
j=1

V 2
j

on M , where dim v = 2d. Note that this makes sense since the Vj are left-invariant,
and thus pass to the quotient.

We consider the hypoelliptic second order equation (see [31])

(1.3) i∂tψ + 1
2 ∆Mψ + Vψ = 0

on M , where V is an analytic function defined on M (the latter assumption could be
relaxed as soon as a unique continuation principle holds for 1

2∆M +V, see Remark 3.4
below).

1.2. Examples of nilmanifolds. — Let us describe now an example of a quotient
manifoldM to which our result will apply. It is known (see [8, Th. 18.2.1], and also [4])
that any H-type group is isomorphic to one of the “prototype H-type groups”, which
are defined as follows: let P (1), . . . , P (p) be p linearly independent 2d× 2d orthogonal
skew-symmetric matrices satisfying the property

P (r)P (s) + P (s)P (r) = 0, ∀ r, s ∈ {1, . . . , p}, r 6= s.

Let us denote by (w, s) = (w1, . . . , w2d, s1, . . . , sp) the points of R2d+p, that is endowed
with the group law

(w, s) · (w′, s′) :=

(
w + w′

sj + s′j + 1
2 〈w,P

(j)w′〉, j = 1, . . . , p

)
.

This defines a Lie group with a Lie algebra of left invariant vector fields spanned by
the following vector fields: for j running from 1 to 2d and k from 1 to p,

Xj :=∂wj +
1

2

p∑
k=1

2d∑
l=1

wl P
(k)
l,j ∂sk , and ∂sk .

For more explicit examples of H-type groups, see [8, §18.1] (e.g. Ex. 18.1.3). It includes
the Heisenberg group Hd (of dimension 2d + 1), but also groups with a center of
dimension p > 1.

In this representation, the Heisenberg group Hd corresponds to p = 1 and the
choice of

P (1) =

(
0 1Rd

−1Rd 0

)
.

The group law then is

(x, y, s) · (x′, y′, s′) :=

 x+ x′

y + y′

s+ s′ + 1
2

∑d
j=1(xjy

′
j − x′jyj)

 ,

J.É.P. — M., 2021, tome 8



1462 C. Fermanian Kammerer & C. Letrouit

where x, y, x′, y′ ∈ Rd and s, s′ ∈ R. We define the scalar product on v by saying that
the 2d vector fields

(1.4) Xj = ∂xj −
yj
2
∂s, Yj = ∂yj +

xj
2
∂s, j = 1, . . . , d

form an orthonormal basis, and we define the scalar product on z by saying that ∂s
has norm 1 (and v and z are orthogonal for the scalar product on g). Then we obtain

Jλ

( d∑
j=1

(ajXj + bjYj)

)
= λ

d∑
j=1

(−bjXj + ajYj),

where Jλ has been introduced in (1.1).

Example 1.1. — An example of discrete cocompact subgroup of the Heisenberg
group Hd is

Γ̃0 = (
√

2π Z)2d × πZ,

and the associated quotient manifold is the left quotient M0 = Γ̃0\Hd. The mani-
fold M0 is a circle bundle over the 2d-torus T2d, its fundamental group is Γ̃0 which is
non-commutative, implying thatM0 is not homeomorphic to a torus. For more general
examples of discrete cocompact subgroups in H-type groups, see [15, Chap. 5].

1.3. Controllability and observability, geometric conditions. — One says that
the Schrödinger equation (1.3) is controllable in time T on the measurable set U ⊂M
if for any u0, u1 ∈ L2(M), there exists a function f ∈ L2((0, T ) ×M) such that the
solution ψ ∈ L2((0, T )×M) of

i∂tψ + 1
2 ∆Mψ + Vψ = f1U

(where 1U denotes the characteristic function of U) with initial condition ψ(0, x) =

u0(x) satisfies at time T the relation ψ(T, x) = u1(x). By the Hilbert Uniqueness
Method (see [42]), it is well-known that controllability is equivalent to an observability
inequality.

The Schrödinger equation (1.3) is said to be observable in time T on the measurable
set U if there exists a constant CT,U > 0 such that

(1.5) ∀u0 ∈ L2(M), ‖u0‖2L2(M) 6 CT,U

∫ T

0

∥∥eit(
1
2 ∆M+V)u0

∥∥2

L2(U)
dt.

For the usual (Riemannian) Schrödinger equation, it is known that if the so-called
Geometric Control Condition is satisfied in some time T ′ (which means that any ray of
geometric optics enters U within time T ′), then observability, and thus controllability,
hold in any time T > 0 (see [38]). Much less is known about the converse implication,
due to curvature effects.

Our main result gives a similar condition, replacing the rays of geometric optics by
the curves of the flow map on M × z∗:

Φs0 : (x, λ) 7−→ (Exp(sdZ (λ)/2)x, λ),

J.É.P. — M., 2021, tome 8
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where, for
λ =

∑
16j6d

λjZ
∗
j ∈ z∗

(where (Z∗j )16j6p is the dual basis of an orthonormal basis (Z1, . . . , Zp) of z), Z (λ)

is the element of z defined by Z (λ) =
∑

16j6p(λj/|λ|)Zj . Equivalently, Z (λ) = λ/|λ|
after identification of z and z∗. Note that the integral curves of this flow are transverse
to the space spanned by the Vj ’s. We introduce the following H-type geometric control
condition.
(H-GCC) The measurable set U satisfies H-type GCC in time T if

∀ (x, λ) ∈M × (z∗ r {0}), ∃ s ∈ (0, T ), Φs0((x, λ)) ∈ U × z∗.

Definition 1.2. — We denote by TGCC(U) the infimum of all T > 0 such that H-type
GCC holds in time T (and we set TGCC(U) = +∞ if H-type GCC does not hold in
any time).

In the sequel, we will also consider an additional assumption (A). To give a rigorous
statement, we write the coordinates v = (v1, . . . , v2d) of a vector in the orthonormal
basis V = (V1, . . . , V2d) of v:

V = v1V1 + · · ·+ v2dV2d ∈ v.

Given ω ∈ v∗, we write ωj for the coordinates of ω in the dual basis of V , and we
write |ω| = 1 when ω satisfies

∑2d
j=1 ω

2
j = 1.

(A) For any (x, ω) ∈M × v∗ such that |ω| = 1, there exists s ∈ R such that

Exp
(
s
∑2d
j=1 ωjVj

)
x ∈ U.

Note that this condition is independent of the choice of the basis V .

Example 1.3. — Let us compute the flows involved in the above conditions in the
context of Example 1.1. Denoting by (x, y, t) the elements of M0,

Φs0(x, y, t, λ) =
(
x, y, t+ s

d

2
sgn(λ), λ

)
, s ∈ R

and choosing the basis V = (X1, . . . , Xd, Y1, . . . , Yd) of v (see (1.4)),

Exp
(
s
∑d
j=1(ajXj + bjYj)

)
(x, y, t) =

(
x+ sa, y + sb, t+

s

2
(x · b− y · a)

)
, s ∈ R.

These trajectories are the lifts in Hd of the geodesics of T2d. A typical open set
U ⊂ Γ̃0\Hd of control which one may consider is the periodization of the complemen-
tary of a closed ball in a fundamental domain:

A = M r (Γ̃0 ·B),

where B ⊂ [0,
√

2π)2d × [0, π) is a closed ball (for the Euclidean norm for example)
whose radius is strictly less than π. Note that in the definition of A, the symbol r
stands for the difference of two sets, and not for the quotient. One can also verify that
both Assumption (A) and (H-GCC) (in sufficiently large time, which depends on I)
are satisfied.

J.É.P. — M., 2021, tome 8



1464 C. Fermanian Kammerer & C. Letrouit

1.4. Main result. — With these geometric definitions, we are able to state conditions
for observability and thus controllability of the subelliptic Schrödinger equation with
analytic potential on H-type nilmanifolds.

Theorem 1.4. — Assume that the potential V in (1.3) is analytic. Let U ⊂M be open
and denote by U its closure.

(1) Assume that U satisfies (A) and that T > TGCC(U), then the observability
inequality (1.5) holds, i.e., the Schrödinger equation (1.3) is observable in time T
on U and thus (1.3) is controllable in time T on U .

(2) Assume T 6 TGCC(U), then the observability inequality (1.5) fails, and thus
the controllability in time T also fails on U .

Although this will be commented more thoroughly in Remark 3.2, let us already
say that the authors conjecture that the observability inequality (1.5) holds in U

at time T under the only condition that T > TGCC(U) (and thus one could avoid
using Assumption (A)). We also point out Remark 3.4 about the assumption that the
potential is analytic. Finally, we notice that in general TGCC(U) 6= TGCC(U). This is
due to the possible existence of “grazing rays”, see Remark 4.7 for more comments
on this issue.

The existence of a minimal time of control in Theorem 1.4 contrasts strongly with
the observability in arbitrary small time, under Geometric Control Condition, of the
usual elliptic Schrödinger equation (see [38]), which is related to its “infinite speed of
propagation”. In the subelliptic setting which we consider here (meaning that ∆M is
subelliptic but not elliptic), in the directions defined by z, the Schrödinger operator
has a very different behaviour, possessing for example a family of traveling waves
moving at speeds proportional to n ∈ N, as was first noticed in [5, §1] (see also [19,
Th. 2.10]). The existence of a minimal time of observability for hypoelliptic PDEs
was first shown in the context of the heat equation: for instance the case of the heat
equation with Heisenberg sub-Laplacian has been investigated in [6] and the case of
the heat equation with “Grushin” sub-Laplacian has been studied in [34], [16] and [7].

More recently, in [10], it was shown that the Grushin Schrödinger equation

i∂tu− ∂2
xu− x2∂2

yu = 0 in the set (−1, 1)x × Ty
is observable on a set of horizontal strips if and only the time T of observation is
sufficiently large. With related ideas, it is shown in [41] that the observability of the
Grushin-type Schrödinger equation

i∂tu+ (−∂2
x − |x|2γ∂2

y)su = 0 in (−1, 1)x × Ty
(with observation on the same horizontal strips as in [10]) depends on the value of the
ratio (γ+1)/s: observability may hold in arbitrarily small time, or only for sufficiently
large times, or even never hold if (γ + 1)/s is large enough. These results share
many similarities with ours, although their proofs use totally different techniques.
Finally, in contrast with the usual “finite time of observability” of elliptic waves (under
GCC), it was shown in [40] that subelliptic wave equations are never observable.

J.É.P. — M., 2021, tome 8



Observability and controllability for the Schrödinger equation 1465

We can roughly summarize all these results by saying that the subellipticity of the
sub-Laplacian slows down the propagation of evolution equations in the directions
needing brackets to be generated.

The proof of Theorem 1.4 is based on adapting standard semi-classical approach
to prove observability for a class of Schrödinger equations with subelliptic Lapla-
cian, through the use of the operator-valued semi-classical measures of [19] which
are adapted to this stratified setting. The proof also uses the introduction of wave
packets playing in this non-commutative setting a role similar to the ones introduced
in [14] and [29] in the Euclidean case. To say it differently, we follow the usual scheme
for proving or disproving observability inequalities, but with all the analytic tools
(i.e., pseudodifferential operators, semiclassical measures and wave packets) adapted
to our subelliptic setting: we do not use, for instance, classical pseudodifferential op-
erators.

1.5. Strategy of the proof. — The theorem consists in two parts: firstly that the
condition (A) guarantees that the observability holds when T > TGCC(U) and, sec-
ondly, that it fails when T 6 TGCC(U). Beginning with the first part, it is standard
(see [38]) to start with a localized observability result as stated in the next lemma.

Lemma 1.5 (Localized observability). — Assume the set U satisfies assumption (A)
and that (H-GCC) holds in time T for U . Let h > 0 and χ ∈ C∞c ((1/2, 2), [0, 1]).
Using functional calculus, we set

(1.6) Phf = χ
(
−h2

(
1
2 ∆M + V

))
f, f ∈ L2(M).

Then, there exists a constant C0 > 0 such that for any sufficiently small h > 0 and
any u0 ∈ L2(M),

(1.7) ‖Phu0‖2L2(M) 6 C0

∫ T

0

∥∥eit(
1
2 ∆M+V)Phu0

∥∥2

L2(U)
dt.

Remark 1.6. — By conservation of mass in the LHS (and invariance of H-type GCC
by translation in time), this inequality also holds when the integral in the RHS is
taken over an arbitrary time interval (T1, T2) such that T2 − T1 > T .

The proof of the localized observability is done in Section 3.1 below. The argument
is by contradiction (as in [11] or [2, §7]) and it uses the semi-classical setting based
on representation theory and developed in [20, 19] that we extend to the setting of
quotient manifolds in Section 2. In particular, this argument relies in a strong way on
the operator-valued semi-classical measures constructed in Sections 2.3 and 2.4.

The role of semiclassical measures in the context of observability estimates was
first noticed by Gilles Lebeau [39] and has been widely used since then [44, 2, 1, 47],
with all the developments of semi-classical measures, especially two-scale (also called
two-microlocal) semi-classical measures that allow to analyze more precisely the con-
centration of families on submanifolds. These two-scale measures introduced in the end
of the 90-s (see [17, 18, 22, 50, 49]) have known since then a noticeable development
in control theory (see the survey [46]) and in a large range of problems from conical

J.É.P. — M., 2021, tome 8



1466 C. Fermanian Kammerer & C. Letrouit

intersections in quantum chemistry [35, 23] to effective mass equations [12, 13]. The
semi-classical measures that we consider here have common features with the two-
scales ones in the sense that they are operator-valued. This operator-valued feature
arises from the inhomogeneity of the nilmanifolds, in parallel with the homogeneity
introduced by a second scale of concentration as in the references above. However, the
operator-valued feature is more fundamental here since it is due to non-commutativity
of nilmanifolds and is a direct consequence of the original features of Fourier analysis
on nilpotent groups: it is thus intrinsic to the structure of the problem.

The second step of the proof of the first part of Theorem 1.4 consists in passing
from the localized observability to observability itself. Standard arguments (see [11])
that we describe in Section 3.2 allow to derive from Lemma 1.5, a weak observability
inequality in time T on the domain U : there exists C1 > 0 such that

(1.8) ∀u0 ∈ L2(M),

‖u0‖2L2(M) 6 C1

∫ T

0

∥∥eit(
1
2 ∆M+V)u0

∥∥2

L2(U)
dt+ C1‖(Id−∆M )−1u0‖2L2(M).

Note that compared to (1.5), the latter inequality has an added term in its RHS which
controls the low frequencies. This weak observability inequality (1.8) implies (1.5) via
a Unique continuation principle for the operator 1

2∆M + V (see [9] and [36]), as we
describe in Section 3.3. It is then not surprising that the result of Theorem 1.4 holds
as soon as a Unique continuation principle is known for 1

2∆M + V, without further
assumption of analyticity on V (see Remark 3.4).

For proving the second part of Theorem 1.4 – the necessity of the condi-
tion (H-GCC) – we construct a family of initial data (uε0) for which the solu-
tion (ψε(t)) of the Schrödinger equation (1.3) concentrates on the curve Φt0(x0, λ0),
for any choice of (x0, λ0) ∈ M × z r {0}. As mentioned above, this set of initial
data is the non-commutative counterpart to the wave packets (also called coherent
states) in the Euclidean setting [14, 29]. These aspects are the subject of Section 4.
Our proof relies on a statement of propagation of semiclassical measures which was
proved in [19] when V = 0 and that we adapt to our setting. A second proof consists
in using the results of Appendix C, which are of independent interest: we prove that,
if the initial datum is a wave packet, the solution of (1.3) is also (approximated by)
a wave packet.

Our approach could be developed in general graded Lie groups through the gen-
eralization of the tools we use: for semi-classical measures in graded groups, see [20,
Rem. 3.3 & 4.4], and for an extension of non-commutative wave packets to a more
general setting, see [21, §§6.3 & 6.4] (based on [51]).

Acknowledgements. — We thank Véronique Fischer, Matthieu Léautaud, Fabricio
Macià and Chenmin Sun for interesting discussions. The authors are also grateful
to the referees for their remarks and suggestions.
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Observability and controllability for the Schrödinger equation 1467

2. Semi-classical analysis on quotient manifolds

Semi-classical analysis is based on the analysis of the scales of oscillations of func-
tions. It uses a microlocal approach, meaning that one understands functions in the
phase space, i.e., the space of position/impulsion of quantum mechanics. As the im-
pulsion variable is the dual variable of the position variable via the Fourier transform,
microlocal analysis crucially relies on the Fourier representation of functions, and on
the underlying harmonic analysis.

Recall that, in the usual Euclidean setting, the algebra of pseudodifferential oper-
ators contains those of multiplications by functions together with Fourier multipliers.
These operators are defined by their symbols via the Fourier inversion formula and
are used for analyzing families of functions in the phase space. Indeed, their bound-
edness in L2 for adequate classes of symbols allows to build a linear map on the
set of symbols, the weak limits of which are characterized by non-negative Radon
measures. These measures give phase space information on the obstruction to strong
convergence of bounded families in L2(Rd). In a context where no specific scale is
specified, they are called microlocal defect measures, or H-measures and were first in-
troduced independently in [26, 52]. When a specific scale of oscillations is prescribed,
this scale is called the semi-classical parameter and they are called semi-classical (or
Wigner) measures (see [30, 25, 27, 43, 28]). If these functions are moreover solutions
of some equation, the semi-classical measures may have additional properties such as
invariance by a flow.

In the next sections, we follow the same steps, adapted to the context of quotients of
H-type groups, which are non-commutative: following the theory of non-commutative
harmonic analysis (see [15, 53] and some elements given in Appendix A), we de-
fine the (operator-valued) Fourier transform (2.7), based on the unitary irreducible
representations of the group, recalled in (2.6), which form an analog to the usual
frequency space. Then, adapting the ideas of [20] to the context of nilmanifolds, we
use the Fourier inversion formula (2.8) to define in (2.11) a class of symbols and the
associated semi-classical pseudodifferential operators in (2.13). From this, Proposition
2.10 guarantees the existence of semi-classical measures, whose additional invariance
properties for solutions of the Schrödinger equation are listed in Proposition 2.12.

2.1. Harmonic analysis on quotient manifolds. — Let G be a stratified nilpotent
Lie group of H-type and Γ̃ be a discrete cocompact subgroup of G. We consider the
left quotient M = Γ̃\G and we denote by π the canonical projection

π : G −→M

which associates to x ∈ G its class modulo Γ̃.
For each λ ∈ z∗ r {0}, one associates with λ the canonical skew-symmetric form

B(λ) defined on v by

B(λ)(U, V ) = λ([U, V ]).
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The map Jλ : v→ v of Section 1 is the natural endomorphism associated with B(λ)

and the scalar product 〈· , ·〉. In H-type groups, the symmetric form −J2
λ is the scalar

map |λ|2 Id (note that −J2
λ is always a non-negative symmetric form). Therefore, one

can find a λ-dependent orthonormal basis(
P

(λ)
1 , . . . , P

(λ)
d , Q

(λ)
1 , . . . , Q

(λ)
d

)
of v, where Jλ is represented by

〈Jλ(U), V 〉 = B(λ)(U, V ) = |λ|U tJV with J =

(
0 Id

− Id 0

)
,

the vectors U, V ∈ v being written in the
(
P

(λ)
1 , . . . , P

(λ)
d , Q

(λ)
1 , . . . , Q

(λ)
d

)
-basis.

We then decompose v in a λ-depending way as v = pλ + qλ with

p := pλ := Span
(
P

(λ)
1 , . . . , P

(λ)
d

)
, q := qλ := Span

(
Q

(λ)
1 , . . . , Q

(λ)
d

)
.

Denoting by z = (z1, . . . , zp) the coordinates of Z in a fixed orthonormal basis
(Z1, . . . , Zp) of z, and once given λ ∈ z∗ r {0}, we will often use the writing of
an element x ∈ G or X ∈ g as

x = Exp(X),

X = p1P
(λ)
1 + · · ·+ pdP

(λ)
d + q1Q

(λ)
1 + · · ·+ qdQ

(λ)
d + z1Z1 + · · ·+ zpZp,

(2.1)

where X = P + Q + Z, p = (p1, . . . , pd) are the λ-dependent coordinates of P on
the vector basis (P

(λ)
1 , . . . , P

(λ)
d ), q = (q1, . . . , qd) those of Q on (Q

(λ)
1 , . . . , Q

(λ)
d ). Note

that the coordinates z = (z1, . . . , zp) of Z are independent of λ.

Example 2.1. — In the Heisenberg group Hd, there is a natural choice of coordinates,
those we used in Section 1.2 (see [53, Chap. 1]). However, it does not coincide with
the (p, q, z) coordinates that we could define as above by associating with λ = αdz,
α ∈ R, the vectors P (λ)

j = Xj , Q(λ)
j = Yj for α > 0, and the vectors P (λ)

j = Xj ,
Q

(λ)
j = −Yj for α < 0. One then finds coordinates (p, q, z) that are not the usual

coordinates (x, y, s) of the Heisenberg groups:

(2.2) (x, y, s) = (p, q, z) if λ > 0 and (x, y, s) = (p,−q, z) if λ < 0.

In general H-type groups, there is no canonical choice of coordinates, unlike for Heisen-
berg groups.

As already mentioned in Section 1.4, we also fix an orthonormal basis (V1, . . . , V2d)

of v to write the coordinates v = (v1, . . . , v2d) of a vector

V = v1V1 + · · ·+ v2dV2d ∈ v;

both this orthonormal basis and the coordinates are independent of λ. With these
coordinates, we define a quasi-norm by setting

(2.3) |x| =
(
|v1|4 + · · ·+ |v2d|4 + |z1|2 + · · ·+ |zp|2

)1/4
, x = Exp(V + Z) ∈ G.

We recall that it satisfies a triangle inequality up to a constant.
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2.1.1. Functional spaces. — We shall say that a function f on G is Γ̃-leftperiodic if
we have

∀x ∈ G, ∀ γ ∈ Γ̃, f(γx) = f(x).

With a function f defined onM , we associate the Γ̃-leftperiodic function f ◦π defined
on G. Conversely, a Γ̃-leftperiodic function f naturally defines a function on M . Thus
the set of functions on M is in one-to-one relation with the set of Γ̃-leftperiodic
functions on G.

The inner products on v and z allow us to consider the Lebesgue measure dv dz
on g = v⊕ z. Via the identification of G with g by the exponential map, this induces
a Haar measure dx on G and on M . This measure is invariant under left and right
translations:

∀ f ∈ L1(M), ∀x ∈M,

∫
M

f(y)dy =

∫
M

f(xy)dy =

∫
M

f(yx)dy.

The convolution of two functions f and g on M is given by

f ∗ g(x) =

∫
M

f(xy−1)g(y)dy =

∫
M

f(y)g(y−1x)dy.

Using the bijection of the set of functions onM with the set of Γ̃-leftperiodic functions
on G, we deduce that f ∗ g is well-defined as a function on M . Finally, we define
Lebesgue spaces by

‖f‖Lq(M) :=

(∫
M

|f(y)|q dy
)1/q

for q ∈ [1,∞), with the standard modification when q =∞.

2.1.2. Homogeneous dimension. — Since G is stratified, there is a natural family of
dilations on g defined as follows: for t > 0, if X belongs to g, we decompose X
as X = V + Z with V ∈ v and Z ∈ z and we set

δtX := tV + t2Z.

The dilation is defined on G via the identification by the exponential map as the map
Exp ◦δt ◦Exp−1 that we still denote by δt. The dilations δt, t > 0, on g and G form a
one-parameter group of automorphisms of the Lie algebra g and of the group G. The
Jacobian of the dilation δt is tQ, where

Q := dim v + 2 dim z = 2d+ 2p

is called the homogeneous dimension of G. A differential operator T on G (and
more generally any operator T defined on C∞c (G) and valued in the distributions
of G ∼ R2d+p) is said to be homogeneous of degree ν (or ν-homogeneous) when
T (f ◦ δt) = tν(Tf) ◦ δt. We recall that the quasi-norm introduced in (2.3) satisfies the
relation |δrx| = r|x| for all r > 0 and x ∈ G. It is a homogeneous quasi-norm and we
recall that any homogeneous quasi-norm is equivalent to it.
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2.1.3. Irreducible representations and Fourier transform. — For the sake of complete-
ness, many details about the results of this section, which are standard in non-
commutative harmonic analysis, are given in Appendix A.

The infinite dimensional irreducible representations of G are parametrized by
z∗r{0}: for λ ∈ z∗ r {0}, one defines πλ· : G→ L2(pλ) ∼ L2(Rd) by

(2.4) πλxΦ(ξ) = eiλ(z)+(i/2)|λ| p·q+i
√
|λ| ξ·q Φ(ξ +

√
|λ| p),

where x has been written as in (2.1). The representations πλ, λ ∈ z∗ r {0}, are
infinite dimensional. The other unitary irreducible representations of G are given by
the characters of the first stratum in the following way: for every ω ∈ v∗, we set

(2.5) π(0,ω)
x = eiω(V ), x = Exp(V + Z) ∈ G, with V ∈ v and Z ∈ z.

The set Ĝ of all unitary irreducible representations modulo unitary equivalence is
then parametrized by the set (z∗ r {0}) t v∗:

(2.6) Ĝ = {class of πλ | λ ∈ z∗ r {0}} t {class of π(0,ω) | ω ∈ v∗}.

The subset v∗ of Ĝ is often thought as a bundle over λ = 0 (see the discussions
about the Heisenberg fan in [20, Lem. 2.2]). This explains the 0 in the notation (0, ω)

that we use here to differentiate π(0,ω) from πλ. It is natural since we think of v∗ as
“horizontal” and z∗ as “vertical”.

We will identify each representation πλ with its equivalence class. Note that the
trivial representation 1Ĝ corresponds to the class of π(0,ω) with ω = 0, i.e., 1Ĝ :=

π(0,0). The dilation δε extends on Ĝ by ε · πλ = πε
2λ for λ ∈ z∗ r {0} and ε · π(0,ω) =

π(0,εω) for ω ∈ v∗.
The set G × Ĝ will be interpreted in our analysis as the phase space of G, and

M × Ĝ as the phase space of M , in analogy with the fact that Rd ×Rd and Td ×Rd

are respectively the phase space of the Euclidean space Rd and of the torus Td.

Example 2.2. — In the case of the Heisenberg group, the formula (2.4) differs from the
usual one for the Heisenberg groups [53, Eq. (2.23) in Chap. 1] because the coordinates
(p, q, z) are different from the canonical ones (x, y, s) (see Example 2.1). They are
related by the relation (2.2).

The Fourier transform is defined on Ĝ and is valued in the space of bounded
operators on L2(pλ): for any λ ∈ z∗, λ 6= 0,

(2.7) Ff(λ) :=

∫
G

f(x)
(
πλx
)∗
dx,

Besides, above finite dimensional representations, the Fourier transform is defined for
ω ∈ v∗ by

f̂(0, ω) = Ff(0, ω) :=

∫
G

f(x)(π(0,ω)
x )∗dx =

∫
v×z

f(Exp(V + Z))e−iω(V )dV dZ.
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Functions f of L1(G) have a Fourier transform (F (f)(λ))λ∈z∗ which is a bounded
family of bounded operators on L2(pλ) with uniform bound:

‖Ff(λ)‖L (L2(pλ)) 6
∫
G

|f(x)|‖(πλx)∗‖L (L2(pλ))dx = ‖f‖L1(G),

since the unitarity of πλ implies ‖(πλx)∗‖L (L2(pλ)) = 1.

Example 2.3. — In the Heisenberg group Hd, using the link exhibited in Example 2.1
between the coordinates in the basis (P

(λ)
j , Q

(λ)
j )16j6d and the variables (x, y, s) of

Section 1.2, we obtain that the Fourier transform of f ∈ S (Hd) writes

∀Φ ∈ S (Rd),

Ff(λ)Φ(ξ) =


∫
R2d+1

eiλs+
i
2λx·y+i

√
λ ξ·yΦ(ξ +

√
λx)dx dy ds if λ > 0,∫

R2d+1

eiλs+
i
2λx·y−i

√
|λ| ξ·yΦ(ξ +

√
|λ|x)dx dy ds if λ < 0.

The Fourier transform can be extended to an isometry from L2(G) onto the Hilbert
space of measurable families A = {A(λ)}λ∈z∗r{0} of operators on L2(pλ) which are
Hilbert-Schmidt for almost every λ ∈ z∗ r {0}, with norm

‖A‖ :=

(∫
z∗r{0}

‖A(λ)‖2HS(L2(pλ))|λ|
d dλ

)1/2

<∞.

We have the Fourier-Plancherel formula:∫
G

|f(x)|2 dx = c0

∫
z∗r{0}

‖Ff(λ)‖2HS(L2(pλ))|λ|
d dλ,

where c0 > 0 is a computable constant.

Remark 2.4. — This relation shows that Plancherel measure of Ĝ is dµ := c0|λ|ddλ
and is supported in the subset {class of πλ | λ ∈ z∗r{0}} of Ĝ, in particular the subset
{class of π(0,ω) | ω ∈ v∗} of Ĝ is of mass 0 for the Plancherel measure. Therefore, the
integral on z∗ r {0} of the Fourier-Plancherel formula can be thought as an integral
on Ĝ, thinking v∗ above {λ = 0}, as suggested by the notation.

Finally, an inversion formula for f ∈ S (G) and x ∈ G writes:

(2.8) f(x) = c0

∫
z∗r{0}

Tr
(
πλxFf(λ)

)
|λ|d dλ,

where Tr denotes the trace of operators of L (L2(pλ)) (see [53, Th. 2.7]). This formula
makes sense since for Schwartz functions f ∈ S (G), the operators Ff(λ), λ∈z∗r{0},
are trace-class, with enough regularity in λ so that

∫
z∗r{0} Tr

∣∣∣Ff(λ)
∣∣∣ |λ|d dλ is finite.

To conclude this section, it is important to notice that the differential operators
have a Fourier resolution that allows to think them as Fourier multipliers. In partic-
ular, the resolution of the sub-Laplacian −∆G is well-understood

∀ f ∈ S (G), F (−∆Gf)(λ) = H(λ)F (f)(λ).
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At π(0,ω), ω ∈ v∗, it is the number F (−∆G)(0, ω) = |ω|2, and at πλ, λ ∈ z∗ r {0},
it is the unbounded operator

(2.9) H(λ) = |λ|
d∑
j=1

(
−∂2

ξj + ξ2
j

)
,

where we have used the identification pλ∼Rd and the observation that for λ∈z∗r{0},
f ∈ L2(pλ) and for 1 6 j 6 d,

F (P
(λ)
j f) = i∂ξjF (f) and F (Q

(λ)
j f) = ξjF (f).

One writes

(2.10) πλ(P
(λ)
j ) = i∂ξj and πλ(Q

(λ)
j ) = ξj , λ ∈ z∗ r {0}, 1 6 j 6 d.

2.2. Semi-classical pseudodifferential operators on quotient manifolds

As observables of quantum mechanics are functions on the phase space, the symbols
of pseudodifferential operators on M are functions defined on M × Ĝ. In this non-
commutative framework, they have the same properties as the Fourier transform and
they are operator-valued symbols.

Following [19, 20], we consider the class of symbols A0 of fields of operators defined
on M × Ĝ by

σ(x, λ) ∈ L (L2(pλ)), (x, λ) ∈M × Ĝ,

that are smooth in the variable x and Fourier transforms of functions of the set S (G)

of Schwartz functions on G in the variable λ: for all (x, λ) ∈M × Ĝ,

(2.11) σ(x, λ) = Fκx(λ), κ ∈ C∞(M,S (G)).

A similar class of symbols in the Euclidean context was introduced in [43, §3]. Note
that in (2.11), we have kept the notation λ also for the parameters (0, ω), ω ∈ v∗

and that in that case, the operator Fκx((0, ω)) = σ(x, (0, ω)) reduces to a complex
number since the associated Hilbert space is C.

If ε > 0, we associate with κx (and thus with σ(x, λ)) the function κεx defined
on G by

(2.12) κεx(z) = ε−Qκx(δε−1(z)).

We then define the semi-classical pseudodifferential operator Opε(σ) via the identifi-
cation of functions f on M with Γ̃-leftperiodic functions on G:

(2.13) Opε(σ)f(x) =

∫
G

κεx(y−1x)f(y)dy.

When ε = 1, we omit the index ε and just write Op instead of Opε.

Remark 2.5. — The formulas (2.13), (2.12) and (2.11) may be compared to the formu-
las of the semiclassical (standard) quantization on the torus Tn = (R/2πZ)n, namely,
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for σ(x, ξ), x ∈ Tn, ξ ∈ Rn and f a (2πZ)n-periodic function,

OpTn
ε (σ)f(x) =

∫
Rn
Kε (x, x− y) f(y)dy where Kε(x, z) = ε−nK(x, ε−1z),

K(x,w) =
1

(2π)n

∫
Rn
eiw·ξσ(x, ξ)dξ ∈ C∞(Tn,S (Rn)),

i.e., σ(x, ξ) = (FRn
w K)(x, ξ).

We observe the following facts (the proofs of points (3) to (7) are discussed more
in details in Appendix B).

(1) The operator Opε(σ) is well-defined as an operator on M . Indeed,

Opε(σ)f(γx) =

∫
G

κεγx(y−1γx)f(y)dy =

∫
G

κεx(y−1x)f(γy)dy = Opε(σ)f(x).

Here we have used a change of variable and the relations κγx(·) = κx(·) and f(γy) =

f(y).
(2) Using (2.8) and (2.11), we have the useful identities

Opε(σ)f(x) = ε−Q
∫
G

κx(δε−1(y−1x))f(y)dy

=

∫
G×(z∗r{0})

Tr(πλy−1xσ(x, ε · λ))f(y)|λ|ddλdy.

In view of Remark 2.4, using the notations of the dilations on Ĝ, we have the general
formula (as in [20, Rem. 3.3])

Opε(σ)f(x) =

∫
G×Ĝ

Tr(πy−1xσ(x, ε · π))f(y)dµ(π)dy.

(3) The kernel of Opε(σ) is given by

kε(x, y) =
∑
γ∈Γ̃

κεx(γy−1x).

(4) The family of operators (Opε(σ))ε>0 is uniformly bounded in L (L2(M)):

(2.14) ‖Opε(σ)‖L (L2(M)) 6
∫
G

sup
x∈M
|κx(y)|dy.

(5) Semi-classical pseudodifferential operators act locally: let σ ∈ A0 be compactly
supported in an open set Ω such that Ω is strictly included in a fundamental domain B

of Γ̃ and χ ∈ C∞c (B) such that χσ = σ. Then, by definition

Opε(σ) = Opε(χσ) = χOpε(σ)

and for all N ∈ N, there exists a constant cN such that, for any ε > 0,

(2.15) ‖Opε(σ)− χOpε(σ)χ‖L (L2(M)) = ‖Opε(σ)−Opε(σ)χ‖L (L2(M)) 6 cN ε
N .

Remark 2.6. — The last property is crucial for our analysis since it allows to transfer
results obtained in the nilpotent group G for functions in L2

loc(G) to the case of
square-integrable functions of the homogeneous manifold M . Indeed, if f ∈ L2(M),
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then f can be identified to a Γ̃-leftperiodic function on L2
loc(G). In particular, we

have χf ∈ L2(G) and Opε(σ)χf = χOpε(σ)χf coincides with the standard definition
of [20, 19]. Then, for f, g ∈ L2(M) and σ, χ as before, we have for all N ∈ N

(Opε(σ)f, g)L2(M) = (Opε(σ)χf, χg)L2(G) +O(εN‖f‖L2(M)‖g‖L2(M)).

This correspondence between computations inM and inG will be further developed
at the beginning of Section 4.1, notably through the periodization operator P. It is also
at the root of the next two properties. For stating them, we introduce the difference
operators, acting on L (L2(pλ)):

∆λ
pj = |λ|−1/2[ξj , ·], ∆λ

qj = |λ|−1/2[i∂ξj , ·], 1 6 j 6 d.

We also use the operators πλ(P
(λ)
j ) and πλ(Q

(λ)
j ) calculated in (2.10).

(6) The following symbolic calculus result holds:

Proposition 2.7. — Let σ ∈ A0. Then, in L (L2(M)),

(2.16) Opε(σ)∗ = Opε(σ
∗)− ε Opε(P

(λ) ·∆λ
pσ
∗ +Q(λ) ·∆λ

qσ
∗) +O(ε2).

Let σ1, σ2 ∈ A0. Then in L (L2(M)),

(2.17) Opε(σ1) ◦Opε(σ2)

= Opε(σ1 σ2)− ε Opε

(
∆λ
pσ1 · P (λ) σ2 + ∆λ

qσ1 ·Q(λ) σ2

)
+O(ε2).

(7) The main contribution of the function (x, z) 7→ κx(z) to the operator Opε(σ),
σ(x, λ) = F (κx)(λ) is due to its values close to z = 1G.

Proposition 2.8. — Let χ0 ∈ C∞(G) be compactly supported close to 1G and χε =

χ0 ◦ δε. With σ = F (κx)(λ) we associate σε = F (κxχε). Then, in L2(M), for all
N ∈ N,

Opε(σ) = Opε(σε) +O(εN ).

2.3. Semi-classical measures. — When given a bounded sequence (fε)ε>0 in L2(M),
one defines the quantities `ε(σ) in analogy with quantum mechanics as the action of
observables on this family, i.e., the families

`ε(σ) = (Opε(σ)fε, fε) , σ ∈ A0.

Since these quantities are bounded sequences of real numbers, it is then natural to
study the asymptotic ε → 0. The families (`ε(σ))ε>0 have weak limits that depend
linearly on σ and enjoy additional properties. We call semi-classical measure of (fε)ε>0

any of these linear forms.
For describing the properties of semi-classical measures, we need to introduce a few

notations. If Z is a locally compact Hausdorff set, we denote by M (Z) the set of finite
Radon measures on Z and by M +(Z) the subset of its positive elements. Considering
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the metric space M × Ĝ endowed with the field of complex Hilbert spaces L2(pλ) de-
fined above elements (x, λ) ∈M×Ĝ, we denote by M̃ov(M×Ĝ) the set of pairs (γ,Γ),
where γ is a positive Radon measure on M × Ĝ and

Γ = {Γ(x, λ) ∈ L (L2(pλ)) | λ ∈ Ĝ}

is a measurable field of trace-class operators such that

‖Γdγ‖M :=

∫
M×Ĝ

Tr(|Γ(x, λ)|)dγ(x, λ) <∞.

Here, as usual, |Γ| :=
√

ΓΓ∗. Note that Γ(x, λ) is defined as a linear operator on
the space L2(pλ) which does not depend on x but which depends on λ. Considering
that two pairs (γ,Γ) and (γ′,Γ′) in M̃ov(M × Ĝ) are equivalent when there exists a
measurable function f : M × Ĝ→ Cr {0} such that

dγ′(x, λ) = f(x, λ)dγ(x, λ) and Γ′(x, λ) =
1

f(x, λ)
Γ(x, λ)

for γ-almost every (x, λ) ∈ M × Ĝ, we define the equivalence class of (γ,Γ) by Γdγ,
and the resulting quotient by Mov(M × Ĝ). One checks readily that Mov(M × Ĝ)

equipped with the norm ‖ · ‖M is a Banach space.
Finally, we say that a pair (γ,Γ) in M̃ov(M × Ĝ) is positive when Γ(x, λ) > 0 for

γ-almost all points (x, λ) ∈M × Ĝ. In this case, we write (γ,Γ) ∈ M̃ +
ov(M × Ĝ), and

Γdγ > 0 for Γdγ ∈M +
ov(M × Ĝ).

With these notations in mind, one can mimic the proofs of [19], considering the C∗-
algebra A obtained as the closure of A0 for the norm sup(x,λ)∈M×Ĝ ‖σ(x, λ)‖L (L2(pλ)).
Indeed, the properties of this algebra depend on those of Ĝ and the analysis of the
set and of [20, 19] also applies in this context. Then, arguing as in [20, 19], one can
define semi-classical measures as follows.

Theorem 2.9. — Let (fε)ε>0 be a bounded family in L2(M). There exist a sequence
(εk) ∈ (R∗+)N, εk −→

k→+∞
0, and Γdγ ∈M +

ov(M × Ĝ) such that for all σ ∈ A ,

(Opεk(σ)fεk , fεk)L2(M) −→
k→+∞

∫
M×Ĝ

Tr(σ(x, λ)Γ(x, λ))dγ(x, λ).

Given the sequence (εk)k∈N, the measure Γdγ is unique up to equivalence. Besides,∫
M×Ĝ

Tr(Γ(x, λ))dγ(x, λ) 6 lim sup
ε→0

‖fε‖2L2(M).

We emphasize on the operator-valued nature of Γ(x, λ)1λ∈z∗(λ) in opposition to
the fact that we have Γ(x, λ)1λ∈v∗(λ) ∈ R+ (since finite dimensional representations
are scalar operators).

The link of semi-classical measures with the limit of energy densities |fε(x)|2dx
will be discussed below, it is solved thanks to the notion of ε-oscillating families (see
Section 2.4.1).
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2.4. Time-averaged semi-classical measures. — The local observability inequality
takes into account time-averaged quadratic quantities of the solution of Schrödinger
equation. Physically, it corresponds to an observation, i.e., the measurement of an
observable during a certain time. For example, when V = 0, the right-hand side of
inequality (1.7) can be expressed with the set of observables introduced in the previous
section using the symbol σ(x, λ) = 1x∈Mχ(H(λ)) (see (2.9) for a definition of H(λ)).
Therefore, when considering time-dependent families, as solutions to the Schrödinger
equation (1.3), we are interested in the limits of time-averaged quantities: let (uε)ε>0

be a bounded family in L∞(R, L2(M)), θ ∈ L1(R) and σ ∈ A0, we define

`ε(θ, σ) =

∫
R
θ(t) (Opε(σ)uε(t), uε(t))L2(M) dt

and we are interested in the limit as ε goes to 0 of these quantities.
When introduced, semi-classical measures were first used for systems with a semi-

classical time scaling, i.e., involving ε∂t derivatives, which is not the case here when
multiplying the equation (1.3) by ε2. It is then difficult to derive results for the
semi-classical measures at each time t. However, one can deduce results for the time-
averaged semi-classical measures that hold almost everywhere in time. Indeed, these
measures satisfy important geometric properties that can lead to their identification
(for example in Zoll manifolds). This was first remarked by [44] and led to important
results in control [2, 1, 48], but also for example in the analysis of dispersion effects
of operators arising in solid state physics [12, 13]. This approach has been extended
to H-type groups in [19] and, arguing in the same manner as for the proof of Th. 2.8
therein, we obtain the next result on the nilmanifold M .

Proposition 2.10. — Let (uε)ε>0 be a bounded family in L∞(R, L2(M)). There exist a
sequence (εk) ∈ (R∗+)N with εk −→

k→+∞
0 and a map t 7→ Γtdγt in L∞(R,M +

ov(M × Ĝ))

such that we have for all θ ∈ L1(R) and σ ∈ A ,∫
R
θ(t)(Opεk(σ)uεk(t), uεk(t))L2(M)dt

−→
k→+∞

∫
R×M×Ĝ

θ(t) Tr(σ(x, λ)Γt(x, λ))dγt(x, λ)dt.

Given the sequence (εk)k∈N, the map t 7→ Γtdγt is unique up to equivalence. Besides,∫
R

∫
M×Ĝ

Tr(Γt(x, λ))dγt(x, λ)dt 6 lim sup
ε→0

‖uε‖2L∞(R,L2(M)).

2.4.1. ε-oscillating families. — The link between semi-classical measures and the weak
limits of time-averaged energy densities is solved thanks to the notion of ε-oscillation.
Let (uε)ε>0 be a bounded family in L∞(R, L2(M)). We say that the family (uε)ε>0

is uniformly ε-oscillating when we have for all T > 0,

lim sup
ε→0

sup
t∈[−T,T ]

‖1−ε2∆M>Ru
ε(t)‖L2(M) −→R→+∞

0.
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Proposition 2.11 ([19, Prop. 5.3]). — Let (uε)∈L∞(R, L2(M)) be a uniformly ε-oscil-
lating family admitting a time-averaged semi-classical measure t 7→ Γtdγt for the
sequence (εk)k∈N. Then for all φ ∈ C∞(M) and θ ∈ L1(R),

lim
k→+∞

∫
R×M

θ(t)φ(x)|uεk(t, x)|2dxdt =

∫
R
θ(t)

∫
M×Ĝ

φ(x) Tr (Γt(x, λ)) dγt(x, λ) dt,

2.4.2. Semi-classical measures for families of Schrödinger equations. — Families of
solutions to the Schrödinger equation (1.3) have special features. We recall that in
the (non compact) group G, the operator

H(λ) = |λ|
d∑
j=1

(
−∂2

ξj + ξ2
j

)
introduced in (2.9) is the Fourier resolution of the sub-Laplacian −∆G above λ ∈
z∗ r {0}. Up to a constant, this is a quantum harmonic oscillator with discrete spec-
trum {|λ|(2n + d) | n ∈ N} and finite dimensional eigenspaces. For each eigenvalue
|λ|(2n+ d), we denote by Π

(λ)
n and V

(λ)
n the corresponding spectral orthogonal pro-

jection and eigenspace. Even though the spectral resolution of −∆G and −∆M are
quite different, we shall use the operator H(λ) as one uses the function ξ 7→ |ξ|2 on
the phase space of the torus Td, when studying the operator −∆Td .

Proposition 2.12. — Assume Γtdγt is associated with a family of solutions to (1.3).
(1) For (x, λ) ∈M × z∗

(2.18) Γt(x, λ) =
∑
n∈N

Γn,t(x, λ) with Γn,t(x, λ) := Π(λ)
n Γt(x, λ)Π(λ)

n .

Moreover, the map (t, x, λ) 7→ Γn,t(x, λ)dγt(x, λ) defines a continuous function from R
into the set of distributions on M × (z∗ r {0}) valued in the finite dimensional space
L (V

(λ)
n ) which satisfies

(2.19)
(
∂t − (n+ d/2)Z (λ)

)(
Γn,t(x, λ)dγt(x, λ)

)
= 0.

(2) For (x, (0, ω)) ∈M × v∗, the scalar measure Γtdγt is invariant under the flow

Ξs : (x, ω) 7−→
(
xExp(sω · V ), ω

)
.

Here, ω ·V =
∑2d
j=1 ωjVj, where ωj denote the coordinates of ω in the dual basis of V .

The proof of this proposition follows ideas from [19] that we adapt to our situation.
We give some elements on the proof of this Proposition in Appendix B.2, in particular
we explain the continuity of the map t 7→ Γtdγt.

We have now all the tools that we shall use for proving Theorem 1.4 in the next
two sections.

3. Proof of the sufficiency of the geometric conditions

We prove here the first part of Theorem 1.4, that if U satisfies condition (A) with
TGCC(U) < +∞ and if moreover T > TGCC(U), then the Schrödinger equation (1.3)
is observable on U in time T .
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3.1. Proof of localized observability. — We argue by contradiction. If (1.7) is
false, then there exist (uk0)k∈N and (hk)k∈N such that uk0 = Phku

k
0 ,

(3.1) ‖uk0‖L2(M) = 1 and
∫ T

0

∥∥eit(
1
2 ∆M+V)Phku

k
0

∥∥2

L2(U)
dt −→

k→+∞
0.

Because uk0 = Phku
k
0 with χ compactly supported in an annulus (see (1.6)) and V is

bounded, the family uk0 is hk-oscillating in the sense of Section 2.4.1 and so it is for

ψk(t) = eit(
1
2 ∆M+V)Phku

k
0 .

We consider (after extraction of a subsequence if necessary), the semi-classical mea-
sure Γtdγt of ψk(t) given by Proposition 2.10 and satisfying the properties listed in
Proposition 2.12.

Proposition 3.1. — We have the following facts:
(1) There holds

(3.2)
∫ T

0

∫
U×Ĝ

Tr(Γt(x, λ))dγt(x, λ)dt = 0.

(2) The measure γt is supported above z∗ r {0} for almost every t ∈ R.

Proof of Proposition 3.1. — To prove (1), let us recall that for θ ∈ L1(R) and σ ∈ A0,∫
R
θ(t)(Ophk(σ)ψk(t), ψk(t))L2(M)dt

−→
k→+∞

∫
R×M×Ĝ

θ(t) Tr(σ(x, λ)Γt(x, λ))dγt(x, λ)dt.

We take ϕj(x) a sequence of smooth non-negative functions converging to 1U (x),
bounded above by 1 and such that supp(ϕj) ⊂ U , and α ∈ C∞c ((−1, 1)) non-negative
with α = 1 in a neighborhood of 0. Since ψk(t) is uniformly ε-oscillating for ε = hk,
we have∫ T

0

∫
R×M×Ĝ

Tr(ϕj(x)Γt(x, λ))dγt(x, λ)dt

= lim
R→+∞

lim
k→+∞

∫ T

0

(
Ophk(ϕj(x)α(R−1H(λ)))ψk(t), ψk(t)

)
L2(M)

dt.

Besides, Ophk(ϕj(x)α(R−1H(λ))) = ϕj(x)α(−h2
kR
−1∆M ), thus

‖Ophk(ϕj(x)α(R−1H(λ)))‖L (L2(M)) 6 1

and ∣∣∣∣∫ T

0

(
Ophk(ϕj(x)α(R−1H(λ)))ψk(t), ψk(t)

)
L2(M)

∣∣∣∣ 6 ∫ T

0

‖ψk(t)‖2L2(U)dt.

We deduce from (3.1) that∫ T

0

∫
R×M×Ĝ

Tr(ϕj(x)Γt(x, λ))dγt(x, λ)dt = 0.
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Taking the limit j → +∞ and using Lebesgue’s dominated convergence theorem
(since Γtdγt > 0), we get (3.2).

Point (2) follows from Point (1), the positivity of Γtdγt, Assumption (A) and
Point (2) of Proposition 2.12. �

Set
γn,t(x, λ) = Tr (Γn,t(x, λ)) γt(x, λ).

We have obtained

0 =
∑
n∈N

∫ T

0

∫
U×Ĝ

Tr(Γn,t(x, λ))dγt(x, λ)dt =
∑
n∈N

∫ T

0

∫
U×Ĝ

dγn,t(x, λ)dt,

whence the positivity of Γt (and thus of γn,t) yields∫
U×z∗

dγn,t(x, λ) = 0, for almost every t ∈ [0, T ], ∀n ∈ N,

where we have also used that the support of dγn,t is above z∗ r {0}.
We now use transport equation (2.19). For n ∈ N and λ ∈ z∗ r {0}, we set

Zn(λ) = (n+ d/2)Z (λ)

and we have
|Zn(λ)| = n+ d/2.

We introduce the map Φsn defined for s ∈ R and n ∈ N as an application from
M × (z∗ r {0}) to itself by

Φsn : (x, λ) 7−→
(
Exp[sZn(λ)]x, λ

)
.

The flows Φsn and Φs0 are related by

Φsn(x, λ) = Φs
′

0 (x, λ), s′ =
(2n

d
+ 1
)
s.

The transport equation (2.19) implies that for any interval I and any Λ⊂M×(z∗r{0}),
d

ds

(∫
(I+s)×Φsn(Λ)

dγn,tdt

)
= 0,

which means

(3.3)
∫

(I+s)×Φsn(Λ)

dγn,tdt =

∫
I×Λ

dγn,tdt.

Since T > TGCC(U), we may choose T ′ such that TGCC(U) < T ′ < T and (H-GCC)
holds in time T ′. Assume that there exists τ with 0 < τ < T − T ′ such that∫ τ

0

∫
M×z∗

dγtdt > 0.

We seek for a contradiction.
Writing γt =

∑∞
n=0 γn,t, with all γn,t being non-negative Radon measures on

M × (z∗ r {0}) (since Point (2) of Proposition 3.1 ensures that it has no mass on
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1480 C. Fermanian Kammerer & C. Letrouit

the trivial representation), we see that there exists n0 ∈ N and a bounded open
subset Λ ⊂M × (z∗ r {0}) such that∫ τ

0

∫
Λ

dγn0,tdt > 0.

Fix (x, λ) ∈ Λ and s ∈ (0, T ′) such that Φs0((x, λ)) ∈ U × z∗. Note that, making Λ

smaller if necessary, by continuity of the flow and using that U is open, Φs0((x′, λ′)) ∈
U × z∗ for any (x′, λ′) ∈ Λ. Therefore Φ

s(n0)
n0 ((x′, λ′)) ∈ U × z∗ for any (x′, λ′) ∈ Λ,

where s(n0) = sd/(2n0 + d) (with a slight abuse of notation).
From (3.2), we get

γn0,t(Φ
s(n0)
n0

(Λ)) = 0, a.e. t ∈ (0, T ),

and in particular ∫ T

s(n0)

∫
Φ
s(n0)
n0

(Λ)

dγn0,tdt = 0.

Therefore, by (3.3), ∫ T−s(n0)

0

∫
Λ

dγn0,tdt = 0.

Since τ < T − T ′ < T − s(n0), we get∫ τ

0

∫
Λ

dγn0,tdt = 0,

which is a contradiction. Therefore∫ τ

0

∫
M×z∗

dγtdt = 0.

This implies γt = 0 for almost every t ∈ (0, τ). In turn, this contradicts the fact that
‖ψk(t)‖L2 = 1. Therefore (1.7) holds.

Remark 3.2. — Assumption (A) corresponds to the usual Geometric Control Con-
dition which is known to be a sufficient condition for the control/observation of the
Riemannian Schrödinger equation (see [38]). It is well known that, in the Riemann-
ian setting, this condition is not always necessary : it is not for the Euclidean torus
(see [32, 2, 11]) while it is for Zoll manifolds [45] (these manifolds have geodesics
that are all periodic); so, it depends on the manifold. As already mentioned in the
introduction, the authors tend to think that in the particular case considered in this
paper (quotients of H-type groups), Theorem 1.4 still holds without this assumption.
Assumption (A) has been used in the proof of Point (2) of Proposition 3.1, and it is
the only place of the paper where we use it. By analogy with the results of [2, 1, 10], it
is likely that as in [10, §7], a key argument should be a reduction to a problem on the
Euclidean torus, as those studied in [1] for example. Then, the semiclassical analysis
of this reduced problem would show that the part of the measure γt located above
M × v∗ vanishes. That would prove that H-type GCC alone is enough and would
avoid the use of Assumption (A).
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3.2. Proof of weak observability. — We prove here (1.7) ⇒ (1.8). Consider a par-
tition of unity over the positive real half-line R+:

(3.4) ∀x ∈ R+, 1 = χ0(x)2 +

∞∑
j=1

χj(x)2,

where, for j > 1, χj(x) = χ(2−jx) with χ ∈ C∞c ((1/2, 2), [0, 1]). To construct such a
partition of unity, consider ψ ∈ C∞c ((−2, 2), [0, 1]) such that ψ ≡ 1 on a neighborhood
of [−1, 1], and set χ(x) =

√
ψ(x)− ψ(2x) for x > 0, which is smooth for well-chosen ψ.

Finally, define χ0(x) for x > 0 by χ0(x)2 = 1 −
∑∞
j=1 χj(x)2, so that χ0(x) = 0 for

x > 2. Then (3.4) holds.
We follow the proof of [11, Prop. 4.1]. Set hj = 2−j/2 for j > 1, and note that

Phj = χj(−( 1
2∆M+V)). We chooseK so that hK 6 h0, where h0 is taken so that (1.7)

holds for 0 < h 6 h0. We take ε > 0 such that T ′ + 2ε < T and ψ ∈ C∞c ((0, T ), [0, 1])

with ψ = 1 on a neighborhood of [ε, T ′ + 2ε]. Then

‖u0‖2L2(M) =

∞∑
j=0

∥∥χj (− 1
2∆M + V

)
u0

∥∥2

L2(M)

=

K∑
j=0

‖Phju0‖2L2(M) +

∞∑
j=K+1

‖Phju0‖2L2(M)

6 C
∥∥(Id−( 1

2∆M + V)
)−1

u0

∥∥2

L2(M)
+

∞∑
j=K+1

‖Phju0‖2L2(M)

6 C‖(Id−∆M )−1u0‖2L2(M) + C

∞∑
j=K+1

∥∥ψ(t)eit(
1
2 ∆M+V)Phju0

∥∥2

L2((0,T )×U)
,

where in the third line we bounded above the low frequencies with a constant C =

CK , and in the last line we used (1.7) (with the term on U being integrated for
t ∈ (ε, T ′ + 2ε), which is of length > T ′, see Remark 1.6). Note that we also used the
fact that V is analytic and thus bounded, and therefore the resolvents of the operators
1
2∆M +V and ∆M are comparable in L2 norm. Using equation (1.3), we may change
Phj = χj(−( 1

2∆M + V)) into χj(−Dt), where Dt = ∂t/i. We get

‖u0‖2L2(M) 6 C‖(Id−∆M )−1u0‖2L2(M)

+ C

∞∑
j=K+1

∥∥ψ(t)χj(−Dt)e
it( 1

2 ∆M+V)u0

∥∥2

L2((0,T )×U)
.

If ψ̃ ∈ C∞c ((0, T ), [0, 1]) satisfies ψ̃ = 1 on supp(ψ), we note that

ψ(t)χj(−Dt) = ψ(t)χj(−D(t))ψ̃(t) + ψ(t)[ψ̃(t), χj(−Dt)]

= ψ(t)χj(−D(t))ψ̃(t) + Ej(t,Dt),

where Ej is smoothing, i.e.,

∂αEj = O(〈t〉−N 〈τ〉−N2−Nj)
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for any α ∈ N, any N ∈ N and uniformly in j. This fact follows from symbolic calculus
and the remark that, on the support of ψ, ψ̃ is constant and all the derivatives of ψ̃
are zero on the support of ψ.

Therefore, integrating by parts in the time variable in the second term of the right-
hand side and absorbing the error terms Ej(t,Dt) in ‖(Id−∆M )−1u0‖2L2 , we get

‖u0‖2L2(M) 6 C‖(Id−∆M )−1u0‖2L2(M)

+ C

∞∑
j=K+1

‖ψ(t)χj(−Dt)ψ̃(t)eit(
1
2 ∆M+V)u0‖2L2((0,T )×U)

6 C‖(Id−∆M )−1u0‖2L2(M)

+ C

∞∑
j=K+1

‖χj(−Dt)ψ̃(t)eit(
1
2 ∆M+V)u0‖2L2((0,T )×U)

= C‖(Id−∆M )−1u0‖2L2(M)

+ C

∞∑
j=K+1

(
χj(−Dt)

2ψ̃(t)eit(
1
2 ∆M+V)u0, ψ̃(t)eit(

1
2 ∆M+V)u0

)
L2((0,T )×U)

6 C‖(Id−∆M )−1u0‖2L2(M)

+ C

( ∞∑
j=0

χj(−Dt)
2ψ̃(t)eit(

1
2 ∆M+V)u0, ψ̃(t)eit(

1
2 ∆M+V)u0

)
L2((0,T )×U)

6 C‖(Id−∆M )−1u0‖2L2(M) + C‖eit( 1
2 ∆M+V)u0‖2L2((0,T )×U),

where we used (3.4) in the last line. This concludes the proof of (1.8).

3.3. Proof of observability. — We prove here (1.8) ⇒ (1.5), which concludes the
proof of the sufficiency of the geometric condition (H-GCC). We follow the classical
Bardos-Lebeau-Rauch argument, see for example [11].

For δ > 0, we set

Nδ =
{
u0 ∈ L2(M) | eit( 1

2 ∆M+V)u0 ≡ 0 on (0, T − δ)× U
}
.

Lemma 3.3. — There holds N0 = {0}.

Proof. — Let u0 ∈ N0. We define

(3.5) vε,0 =
1

ε

(
eiε(

1
2 ∆M+V) − Id

)
u0.

If ε 6 δ, then eit( 1
2 ∆M+V)vε,0 = 0 on (0, T−δ)×U . We write u0 in terms of orthonormal

eigenvectors fλ of the operator 1
2∆M + V (associated with λ ∈ Sp, the spectrum of

1
2∆M + V):

u0 =
∑
λ∈Sp

u0,λfλ.
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For small enough α, β, applying (1.8) with a slightly smaller T , we have

‖vα,0 − vβ,0‖2L2 6 C
∥∥(Id−∆M )−1(vα,0 − vβ,0)

∥∥2

L2

6 C
∥∥(Id−( 1

2∆M + V))−1(vα,0 − vβ,0)
∥∥2

L2

6 C
∑
λ∈Sp

∣∣∣eiαλ − 1

α
− eiβλ − 1

β

∣∣∣2(1 + λ)−2|u0,λ|2

6 C
∑
λ∈Sp

λ2|α− β|2(1 + λ)−2|u0,λ|2

6 C|α− β|2.

Hence there exists v0 ∈ L2(M) such that v0 = limα→0 vα,0, where the limit is taken
in L2(M). This limit is necessarily in Nδ for all δ > 0, hence in N0. Moreover, thanks
to (3.5), there holds in the sense of distributions

eit(
1
2 ∆M+V)v0 = ∂te

it( 1
2 ∆M+V)u0

and therefore
v0 = i( 1

2∆M + V)u0.

Therefore 1
2∆M + V : N0 → N0 is a well-defined operator. Moreover, according to

(1.8), on N0, we have

‖(Id−∆M ) · ‖L2(M) 6 C‖ · ‖L2(M)

and, by compact embedding (see Lemma 3.5 below), the unit ball of N0 ⊂ L2(M) is
compact. Hence N0 is finite dimensional and there exists an eigenfunction w ∈ N0 of
1
2∆M + V : N0 → N0, i.e.,

( 1
2∆M + V)w = µw, w|U = 0.

By a standard unique continuation principle (see [9] and [36, Th. 1.12]), since V
and ∆M are analytic (see [8, §5.10] for example), we conclude that w = 0, hence
N0 = {0}. �

Remark 3.4. — To our knowledge, the unique continuation principle used in the
above proof is only known when V is analytic. In C∞ regularity, counterexamples to
the unique continuation principle exist, see [3]. However, the result of Theorem 1.4
holds as soon as a unique continuation principle holds for 1

2∆M + V.

Lemma 3.5. — Set

H (M) = {u ∈ L2(M) | (Id−∆M )u ∈ L2(M)}.

Then H (M) ↪→ L2(M) with compact embedding.

Proof. — By [36, Cor. B.1], we have ‖u‖H1(M) 6 ‖(Id−∆M )u‖L2(M) since G is step 2.
Therefore, H (M) ↪→ H1(M) continuously. The result then follows by the Rellich-
Kondrachov (compact embedding) theorem. �
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Assume that (1.5) does not hold. Then there exists a sequence (uk0)k∈N such that

(3.6) ‖uk0‖L2(M) = 1 and
∫ T

0

∥∥eit(
1
2 ∆M+V)uk0

∥∥2

L2(U)
dt −→

k→+∞
0.

Since (uk0)k∈N is bounded in L2(M), we can extract from (uk0)k∈N a subsequence
which converges weakly to some u∞ in L2(M). By Lemma 3.5, we then have
(Id−∆M )−1uk0 → (Id−∆M )−1u∞ strongly in L2(M). Moreover, the second conver-
gence in (3.6) gives u∞ ∈ N0. Thanks to (1.8), we know that

‖uk0‖2L2(M) 6 C1

∫ T

0

∥∥eit(
1
2 ∆M+V)uk0

∥∥2

L2(U)
dt+ C1

∥∥(Id−∆M )−1uk0
∥∥2

L2(M)
.

Therefore, taking the limit k → +∞, we get

1 6 C1‖(Id−∆M )−1u∞‖2L2(M).

Therefore u∞ 6= 0, which contradicts Lemma 3.3 since u∞ ∈ N0. Hence, (1.5) holds.

4. Non-commutative wave packets and the necessity of
the geometric control

In this section, we conclude the proof of Theorem 1.4 and prove the necessity of
the condition (H-GCC) (for U). We use special data that we call non-commutative
wave packets that we first introduce, together with their properties, on which we also
elaborate in Appendix C. Then, we conclude to the necessity of the H-type GCC.

4.1. Non-commutative wave packets. — Let us first briefly recall basic facts about
classical (Euclidean) wave packets. Given (x0, ξ0) ∈ Rd × Rd and a ∈ S (Rd), we
consider the family (indexed by ε) of functions

uεeucl(x) = ε−d/4a
(
(x− x0)/

√
ε
)

e(i/ε)ξ0·(x−x0), x ∈ Rd.

Such a family is called a (Euclidean) wave packet.
The oscillation along ξ0 is forced by the term e(i/ε)ξ0·(x−x0) and the concentration

on x0 is performed at the scale
√
ε for symmetry reasons : the ε-Fourier transform of

uεeucl, ε−d/2ûεeucl(ξ/ε) presents a concentration on ξ0 at the scale
√
ε. The regularity of

the wave packets makes them a flexible tool. Besides, taking a compactly supported in
the interior of a fundamental domain for the torus, one can generalize their definition
to the case of the torus by extending them by periodicity. For example, let us consider
the torus Td = Rd/(2πZ)d, we choose a ∈ C∞c ((−π, π)d) and we define aε(x) as

aε(x) = a
(
(x− x0)/

√
ε
)
.

We consider the periodization operator P which associates with a function ϕ com-
pactly supported inside a set of the form x0 + (−π, π)d the periodic function defined
on the sets k+x0 +(−π, π)d for k ∈ (2πZ)d by Pϕ(x) = ϕ(x−k). Then, the definition
of a wave packet extends to functions on the torus by setting

uεtorus(x) = εd/4Paε(x)e(i/ε)ξ0·(x−x0).
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We introduce here a generalization of these wave packets to the non-commutative
setting of Lie groups and nilmanifolds, in the context of H-type groups, which is
strongly inspired by [20]. For x ∈ G, we write

x = Exp(V + Z) = xzxv = xvxz with V ∈ v, Z ∈ z,

where
xz = eZ ∈ Gz := Exp(z) and xv = eV ∈ Gv := G/Gz.

The concentration is performed by use of dilations: with a ∈ C∞c (G), we associate

aε(x) = a (δε−1/2(x)) .

The oscillations are forced by using coefficients of the representations, in the spirit
of [51]: with λ0 ∈ z∗ and with Φ1, Φ2, two smooth vectors in the space of representa-
tions (i.e., in S (Rd)), we associate the oscillating term

eε(x) =
(
πλεx Φ1,Φ2

)
, λε =

λ0

ε2
.

We restrict to ε ∈ (0, 1) and define the periodization operator P in analogy with
the case of the torus described above, using the multiplication on the left by ele-
ments of Γ̃. We consider a subset B of G which is a neighborhood of 1G and such
that

⋃
γ∈Γ̃(γB) = G and we choose functions a that are in C∞c (B) (in other words,

their support is a subset of the interior of B).

Proposition 4.1. — Let Φ1,Φ2 ∈ S (Rd), a ∈ C∞c (B), x0 ∈M , λ0 ∈ z∗r{0}. Then,
there exists ε0 > 0 such that the family (vε)ε∈(0,ε0) defined by

vε(x) = |λε|d/2 ε−p/2 P(eεaε)(x
−1
0 x)

is a bounded ε-oscillating family in L2(M) with bounded ε-derivatives and momenta:

(4.1) ∀ k ∈ N, ∃Ck > 0, ∀ ε ∈ (0, ε0), ‖(−ε2∆M )k/2vε‖L2(M) 6 Ck.

Moreover, (vε)ε∈(0,ε0) has only one semi-classical measure Γdγ, where

(4.2) γ = ca δ(x− x0)⊗ δ(λ− λ0), ca = ‖Φ2‖2
∫
Gz

|a(xz)|2dxz,

and Γ is the operator defined by

ΓΦ =
(Φ,Φ1)

‖Φ1‖2
Φ1, ∀Φ ∈ L2(Rd).

In the following, we shall say that the family vε is a wave packet on M with cores
(x0, λ0), profile a and harmonics (Φ1,Φ2), and write

vε = WP εx0,λ0
(a,Φ1,Φ2) = |λε|d/2 ε−p/2 P(eεaε)(x

−1
0 x).

Remark 4.2
(1) Note that ε0 is chosen small enough so that for ε ∈ (0, ε0), the function

G 3 x 7→ aε(x) has support included in a fundamental domain of G for Γ̃ and thus
x 7→ (eεaε)(x

−1
0 x) can be extended by periodicity on G, which defines a function

of M .
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(2) Omitting the periodization operator P, we construct wave packets on G that
also satisfy estimates in momenta

∀ k ∈ N, ∃Ck > 0, ∀ ε > 0,
∑

16p+q6k

‖|x|p(−ε2∆G)q/2vε‖L2(G) 6 Ck.

(3) The coefficient |λε|d/2ε−p/2 guarantees the boundedness in L2(M) of the fam-
ily (vε)ε>0.

(4) Characterization of wave packets. Let x ∈M be identified to a point of G and
let us fix the set of parameters Φ1, Φ2, x0 and λ0. Then, vε is a wave packet on M if
there exist x0 ∈M , λ0 ∈ z∗ r {0}, a ∈ C∞c (B) and Φ1,Φ2 ∈ S (Rd), such that

(4.3)
εQ/4vε(x0δ√ε(x)) = |λε|d/2εQ/4−p/2a(x)(Φ1, (π

λ0

δ
ε−1/2 (x))

∗Φ2)

= |λ0|d/2ε−d/2a(x)(Φ1, (π
λ0

δ
ε−1/2 (x))

∗Φ2).

(5) Generalization. The construction we make here extends to more general Lie
groups following ideas from [20, §6.4] and [51].

4.2. Proof of Proposition 4.1. — The proof of Proposition 4.1 is relatively long,
and we decompose it into several steps.

4.2.1. The norm of wave packets. — By the definition of the periodization operator P,∫
M

|vε(x)|2dx = |λε|dε−p
∫
G

|aε(x−1
0 x)|2|eε(x−1

0 x)|2dx.

We then use (4.3) and we write

‖vε‖2L2(G) = |λ0|dε−d
∫
G

|a(x)|2 |(πλ0

δ
ε−1/2x

Φ1,Φ2)|2dx

= |λ0|d
∫
G

|a(δ√ε(xv)xz)|2 |(πλ0
xv

Φ1,Φ2)|2dxvdxz

6

(∫
Gz

sup
yv∈Gv

|a(yvxz)|2dxz
)(
|λ0|d

∫
Gv

|(πλ0
xv

Φ1,Φ2)|2dxv
)
.

Let us note that the following relation holds for any Φ, Φ̃,Ψ, Ψ̃ ∈ S (Rd):

(4.4) |λ0|d
∫
Gv

(πλ0
xv

Φ,Ψ)(πλ0
xvΦ̃, Ψ̃)dxv = (Φ, Φ̃)(Ψ, Ψ̃).

Therefore,

|λ0|d
∫
Gv

|(πλ0
xv

Φ1,Φ2)|2dxv = ‖Φ1‖2‖Φ2‖2.

We deduce that vε is uniformly bounded in L2(G).
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4.2.2. The ε-oscillation and the regularity of wave packets. — Straightforward compu-
tations give that if we have λ ∈ z∗r{0}, Φ1,Φ2 ∈ S (Rd), xv = Exp[P +Q], x = xvxz
with

P =

d∑
j=1

pjP
(λ)
j and Q =

d∑
j=1

qjQ
(λ)
j ,

then, for 1 6 j 6 d,

(4.5)

√
|λ| qj

(
πλxΦ1,Φ2

)
=
(
[πλx , i∂ξj ]Φ1,Φ2

)
,√

|λ| pj
(
πλxΦ1,Φ2

)
=
(
[πλx , ξj ]Φ1,Φ2

)
.

Besides,

(4.6)
P

(λ)
j

(
πλxΦ1,Φ2

)
=
√
|λ|
(
∂ξjπ

λ
xΦ1,Φ2

)
,

Q
(λ)
j

(
πλxΦ1,Φ2

)
= i
√
|λ|
(
ξjπ

λ
xΦ1,Φ2

)
.

For proving this formula for P (λ)
j , we use (1.2) and we observe

Exp(tP
(λ)
j ) Exp(P +Q+ Z) = Exp(tP

(λ)
j + P +Q+ Z +

t

2
[P

(λ)
j , P +Q]).

Since [P
(λ)
j , Q

(λ)
j ] = Z (λ) and for k 6= j, [P

(λ)
j , P

(λ)
k ] = [P

(λ)
j , Q

(λ)
k ] = 0, we deduce

Exp(tP
(λ)
j ) Exp(P +Q+ Z) = Exp

(
tP

(λ)
j + P +Q+ Z +

t

2
qjZ

(λ)
)
.

Therefore, using λ(Z (λ)) = |λ|, we obtain for Φ ∈ S (Rd) and ξ ∈ Rd,

d

dt

(
πλ

Exp(tP
(λ)
j )x

Φ(ξ)
)∣∣∣∣
t=0

=
√
|λ|πλx∂ξjΦ(ξ) + i|λ|qjπλxΦ(ξ) =

√
|λ|∂ξjπλxΦ(ξ).

The proof for Q(λ)
j is similar. We deduce (4.1) and that the family (vε) is uniformly

ε-oscillating by the Sobolev criteria of [20, Prop. 4.6].

4.2.3. Action of pseudodifferential operators on wave packets. — For studying their
semi-classical measure, it is convenient to analyze first the action of pseudodiffer-
ential operators on wave packets.

Lemma 4.3. — Let Φ1, Φ2 ∈ S (Rd), (x0, λ0) ∈ G × z∗, a ∈ C∞c (B). Let σ ∈ A0

compactly supported in an open set Ω such that Ω is strictly included in a fundamental
domain B of Γ̃. Then there exist ε1, c1 > 0 such that for all ε ∈ (0, ε1),∥∥Opε(σ)WP εx0,λ0

(a,Φ1,Φ2)−WP εx0,λ0
(a, σ(x0, λ0)Φ1,Φ2)

∥∥
L2(M)

6 c1
√
ε.

Remark 4.4. — The proof we perform below shows that there exist a sequence of
profiles (aj)j∈N and a sequence of harmonics (Φ

(j)
1 ,Φ

(j)
2 )j∈N such that for all N ∈ N,∥∥Opε(σ)WP εx0,λ0

(a,Φ1,Φ2)−
∑N
j=0 ε

j/2WP εx0,λ0
(aj ,Φ

(j)
1 ,Φ

(j)
2 )
∥∥
L2(M)

6 c1 (
√
ε)N+1.
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Moreover, by commuting the operator (−ε2∆G)s/2 with the pseudodifferential oper-
ators, one can extend this result in Sobolev spaces. Note also that the same type of
expansion holds in G, in refined functional spaces where momenta are controlled:∥∥Opε(σ)WP εx0,λ0

(a,Φ1,Φ2)−
∑N
j=0 ε

j/2WP εx0,λ0
(aj ,Φ

(j)
1 ,Φ

(j)
2 )
∥∥

Σkε (G)
6 c1 ε(N+1)/2,

where Σkε is the vector space of functions f ∈ L2(G) for which the semi-norms

(4.7) ‖f‖Σkε :=

k∑
`=0

(
‖|x|`f‖L2(G) + ‖(−ε2∆G)`/2f‖L2(G)

)
are finite.

Proof. — We first observe that, in view of Remark 2.6, it is enough to prove the
result for wave packets in G. Indeed, consider χ ∈ C∞c (B) with χσ = σ. Then for
any function f ∈ C∞c (B) and x ∈M identified to the point x of G ∩B, we have for
all N ∈ N, thanks to (2.15),

Opε(σ)P(f)(x) = Opε(σ)χP(f)(x) +O(εN )

= Opε(σ)χf(x) +O(εN ) = Opε(σ)f(x) +O(εN ).

Therefore, we are going to prove the result of Lemma 4.3 for wave packets and pseu-
dodifferential operators in G. Besides, for simplicity, we assume that σ(x, ·) is the
Fourier transform of a compactly supported function. This technical assumption sim-
plifies the proof which extends naturally to symbols that are Fourier transforms of
Schwartz class functions.

We write

Opε(σ)vε(x) = c0|λε|d/2ε−p/2
∫
G×Ĝ

Tr(πλy−1xσ(x, ε2λ))aε(x
−1
0 y)(πλε

x−1
0 y

Φ1,Φ2)|λ|ddλdy

= c0|λε|d/2ε−p/2
∫
G×Ĝ

Tr(πλ
y−1x−1

0 x
σ(x, ε2λ))aε(y)(πλεy Φ1,Φ2)|λ|ddλdy.

where we have performed the change of variable y 7→ x0y. We now focus on
ε−Q/4 Opε(σ)vε(x0δ√εx) in order to simplify the computations. Note that this
quantity is uniformly bounded in L2(G).

Opε(σ)vε(x0δ√εx)

= c0|λε|d/2ε−p/2
∫
G×Ĝ

Tr(πλy−1δ√εx
σ(x0δ√εx, ε

2λ)aε(y)(πλεy Φ1,Φ2)|λ|ddλdy.

We perform the change of variable ỹ = δε−1/2y and λ̃ = ε2λ. We have

πλy−1δ√εx
= π

λ̃/ε2

δ√ε(y
−1x) = πλ̃δ

ε−1/2 (ỹ−1x), πλεy = π
λ0/ε

2

δ√εỹ
= πλ0

δ
ε−1/2 (y)

and
|λ̃|ddλ̃dỹ = ε2dε2pε−Q/2|λ|ddλdy = εQ/2|λ|ddλdy.
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We obtain

Opε(σ)vε(x0δ√εx) = c0|λε|d/2ε−p/2ε−Q/2

×
∫
G×Ĝ

Tr(πλδ
ε−1/2 (y−1x)σ(x0δ√εx, λ))a(y)(πλ0

δ
ε−1/2 (y)Φ1,Φ2)|λ|ddλdy.

The change of variables w=δε−1/2(y−1x) (for which dy=εQ/2dw and y=x(δ√εw)−1))
gives

Opε(σ)vε(x0δ√εx) = c0|λε|d/2ε−p/2

×
∫
G×Ĝ

Tr(πλwσ(x0δ√εx, λ))a(x(δ√εw)−1)(πλ0

(δ
ε−1/2 (x))w−1Φ1,Φ2)|λ|ddλdw

= c0|λε|d/2ε−p/2

×
∫
G×Ĝ

Tr(πλwσ(x0δ√εx, λ))a(x(δ√εw)−1)(πλ0

w−1Φ1, (π
λ0

δ
ε−1/2 (x))

∗Φ2)|λ|ddλdw.

Computing the integral in λ thanks to the inverse Fourier transform formula (2.8)
and denoting by κx the Schwartz function such that σ(x, ·) = F (κx) we have

εQ/4 Opε(σ)vε(x0δ√εx)

= |λ0|d/2ε−d/2
∫
G

κx0δ√εx(w)a(x(δ√εw)−1)(πλ0

w−1Φ1, (π
λ0

δ
ε−1/2 (x))

∗Φ2)dw

that we can rewrite

εQ/4 Opε(σ)vε(x0δ√εx) = |λ0|d/2ε−d/2
(
Qε(x)Φ1, (π

λ0

δ
ε−1/2 (x))

∗Φ2

)
with

Qε(x) =

∫
G

κx0δ√εx(w)a(x(δ√εw)−1)πλ0

w−1dw.

By performing a Taylor formula on the functions

x 7−→ κx0δ√εx(w) and w 7−→ a(x(δ√εw)−1),

we see that the operator Qε(x) admits a formal asymptotic expansion of the form

(4.8) Qε(x) = Q0(x) +
√
εQ1(x) + · · ·+ εj/2Qj(x) + · · ·

with
Q0(x) = a(x)

∫
G

κx0(w)πλ0

w−1dw = a(x)σ(x0, λ0).

It remains to prove the convergence of this asymptotic expansion by examining the
remainder term.

We examine the one-term expansion. We write

(4.9) a(x(δ√εw)−1) = a(x) +A(x, δ√εw)

with

(4.10) |A(x,w)| 6
2d∑
j=1

sup
|z|6|w|

|zj | |Vja(xz)| 6 Ca|w|,
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where for z ∈ G, |z| denotes the homogeneous norm defined in (2.3). We obtain

(4.11) εQ/4 Opε(σ)vε(x0δ√εx)

= |λ0|d/2ε−d/2
(
Q0Φ1, (π

λ0

δ
ε−1/2 (x))

∗Φ2

)
a(x) +

√
εrε1(x) +

√
εrε2(x)

with

rε1(x) = |λ0|d/2ε−d/2
(
Rε1(x)Φ1, (π

λ0

δ
ε−1/2 (x))

∗Φ2

)
,

Rε1(x) = ε−1/2

∫
G

(κx0δ√εx(w)− κx0
(w))a(x)πλ0

w−1dw

and

rε2(x) = |λ0|d/2ε−d/2
(
Rε2(x)Φ1, (π

λ0

δ
ε−1/2 (x))

∗Φ2

)
,

Rε2(x) = ε−1/2

∫
G

κx0δ√εx(w)A(x, δ√εw)πλ0

w−1dw.

Lemma 4.5. — The families (rε1)ε>0 and (rε2)ε>0 are uniformly bounded in L2(G).

Applying (4.3) to the first term in the right hand side of (4.11), we see that
Lemma 4.5 implies Lemma 4.3. �

Proof of Lemma 4.5. — The idea is that, for j = 1, 2, there holds

rεj (x) = ε−d/2r̃εj (δε−1/2(xv), xz, x) with y 7−→ r̃εj (yv, yz, x),

that is, in L2(G), uniformly with respect to ε, with continuity of the map x 7→
r̃εj (·, ·, x).

With this idea in mind, we write, for j = 1, 2,

‖rεj‖2L2(G) = |λ0|dε−d
∫
G

∣∣(Rεj(x)Φ1, (π
λ0

δ
ε−1/2 (x))

∗Φ2

)∣∣2dx
= |λ0|d

∫
G

∣∣(Rεj(δε1/2(xv)xz)Φ1, (π
λ0
xv

)∗Φ2

)∣∣2 dxvdxz.
Let us first deal with rε1. Writing a Taylor formula, we notice that

Rε1(δε1/2(xv)xz) = ε−1/2

∫
G

(κx0δε(xv)δ√ε(xz)(w)− κx0
(w))a(x)πλ0

w−1dw

=
√
ε

∫
G

B(x,w)a(x)πλ0

w−1dw,

where (x,w) 7→ B(x,w) is continuous and compactly supported in w. Therefore
Rε1(δε1/2(xv)xz) is a bounded operator for any x ∈ G. Since a is compactly supported,
it implies that (rε1)ε>0 is uniformly bounded in L2(G).

Let us now deal with rε2. We are going to use that for all multi-indexes α ∈ N2d,
the map

(4.12) x 7−→ xαv
(
Rε2(δε1/2(xv)xz)Φ1, (π

λ0
xv

)∗Φ2

)
is uniformly bounded and has compact support in xz. Let us first prove these prop-
erties.
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By assumption on the support of κx, we know that the w’s contributing to the
integral defining Rε2(x) are contained in a compact set (independent of x). Then,
using (4.9) and the fact that a has compact support, we obtain that Rε2 has compact
support. It follows that the map (4.12) has compact support in xz, i.e., there exists
R0 > 0 such that |xz| 6 R0 for all x that are in the support of Rε2(δε1/2(xv)xz).
Because of (4.10) and because the integral is compactly supported in w, Rε2(x) is a
bounded operator for all x ∈ G. Besides, the bound is uniform since x belongs to a
compact set. Therefore, there exists a constant C0 > 0 such that∣∣(Rε2(δε1/2(xv)xz)Φ1, (π

λ0
xv

)∗Φ2

)∣∣ 6 C01xz6R0
(x).

One now wants to prove also decay at infinity in xv. For this, we use the rela-
tions (4.5) and the fact that Φ1 and Φ2 are in the Schwartz class to absorb the
factor |xv| in the right part of the scalar product. Therefore, for all α ∈ N, there
exists Cα such that

|xv|α
∣∣(Rε2(δε1/2(xv)xz)Φ1, (π

λ0
xv

)∗Φ2

)∣∣ 6 Cα1xz6R0
(x).

As a conclusion, there exists C > 0 such that∫
G

∣∣(Rε2(δε1/2(xv)xz)Φ1, (π
λ0
xv

)∗Φ2

)∣∣2 dxvdxz
6 C

∫
1|xz|6R0

(1 + |xv|2)−Ndxvdxz < +∞

by choosing N large enough. This implies the uniform boundedness of the family (rε2)

in L2(G), which concludes the proof of Lemma 4.5. �

Let us now shortly discuss the generalization of this proof in order to obtain an
asymptotic expansion at any order, as stated in Remark 4.4. The idea is to use a
Taylor expansion at higher order (see [24, §3.1.8]). The terms of the expansion (4.8)
are of the form

Qj(x) = xαa(x)

∫
G

wβκx0
(w)πλ0

w−1dw,

where α and β are multi-indexes such that the sum of their homogeneous lengths is
exactly j. Denoting by ∆wβσ(x, λ0) the Fourier transform of w 7→ wβκx0

(w), we ob-
tain

Qj(x) = xαa(x)∆wβσ(x, λ0).

Observe that the operator ∆wβ is a difference operator as defined in [24]. It order
to justify Remark 4.4, one then needs to remark that the rest term produced by the
Taylor expansion at order N is of the form

rεN (x) = |λ0|d/2ε−d/2
(
RεN (x)Φ1, (π

λ0

δ
ε−1/2 (x))

∗Φ2

)
RεN (x) = ε−(N+1)/2

∫
G

κx0δ√εx(w)AN+1(x, δ√εw)πλ0

w−1dw,and

where AN+1 satisfies convenient bounds so that an argument similar to the preceding
one can be worked out. We do not develop the argument further because we do not
need such a precise estimate for our purpose.
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4.2.4. Semi-classical measure. — We can now deduce (4.2) from Lemma 4.3 and the
following lemma.

Lemma 4.6. — Let (x0, λ0) ∈ G×(z∗r{0}) a, b ∈ C∞c (B), where B is a fundamental
domain of M , and consider Φ1,Φ2,Ψ1,Ψ2 ∈ S (Rp). Then(
WP εx0,λ0

(a,Φ1,Φ2),WP εx0,λ0
(b,Ψ1,Ψ2)

)
L2(M)

= (Φ1,Ψ1)(Φ2,Ψ2)

∫
Gz

a(xz)b(xz)dxz +O(
√
ε).

Proof. — Define uε = WP εx0,λ0
(a,Φ1,Φ2) and vε = WP εx0,λ0

(b,Ψ1,Ψ2) the wave
packets in G. We first use that(

WP εx0,λ0
(a,Φ1,Φ2),WP εx0,λ0

(b,Ψ1,Ψ2)
)
L2(M)

= (uε, vε)L2(G).

Besides,

(uε, vε)L2(G) = |λε|dε−p
∫
G

aε(x
−1
0 x)b(x−1

0 x)(πλε
x−1
0 x

Φ1,Φ2)(πλε
x−1
0 x

Ψ1,Ψ2)dx

= |λ0|d
∫
G

a
(
δ√ε(xv)xz

)
b
(
δ√ε(xv)xz

)
(πλ0
xv

Φ1,Φ2)(πλ0
xvΨ1,Ψ2)dxvdxz.

A Taylor expansion of the map x 7→ a(δ√ε(xv)xz)b(δ√ε(xv)xz) gives

a(δ√ε(xv)xz)b(δ√ε(xv)xz) = a(xz)b(xz) +
√
ε
∑

16j62d

vjrj(xz, δ√ε(xv)),

where xv = Exp(
∑

16j62d vjVj) and with |rj(x,w)| 6 Cj for some constants Cj ,
1 6 j 6 2d. We deduce (using (4.5))

(uε, vε)L2(G) = |λ0|d
∫
Gz

a(xz)b(xz)dxz

∫
Gv

(πλ0
xv

Φ1,Φ2)(πλ0
xvΨ1,Ψ2)dxv +O(

√
ε)

= (Φ1,Ψ1)(Φ2,Ψ2)

∫
Gz

a(xz)b(xz)dxz +O(
√
ε),

where the second line follows from (4.4). �

Here again, the reader will observe that the expansion can be pushed at any order.
It follows from Lemma 4.3 and Lemma 4.6 that

(Opε(σ)WP εx0,λ0
(a,Φ1,Φ2),WP εx0,λ0

(a,Φ1,Φ2))

= (WP εx0,λ0
(a, σ(x0, λ0)Φ1,Φ2),WP εx0,λ0

(a,Φ1,Φ2)) +O(
√
ε)

= (σ(x0, λ0)Φ1,Φ1)‖Φ2‖2
∫
Gz

|a(xz)|2dxz +O(
√
ε),

which concludes the proof of Proposition 4.1.
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4.3. End of the proof of Theorem 1.4. — By the results of Section 3, we only need
to prove that if T 6 TGCC(U), the observability inequality (1.5) does not hold.

We first note that if the observability inequality (1.5) is satisfied for some T > 0,
then there exists δ > 0 such that (1.5) also holds in time T − δ. Indeed, if it were not
the case, there would exist un0 ∈ L2(M) such that ‖un0‖L2(M) = 1 and

1 = ‖un0‖2L2(M) > n
∫ T−2−n

0

∥∥eit(
1
2 ∆M+V)un0

∥∥2

L2(U)
dt

> n
∫ T

0

∥∥eit(
1
2 ∆M+V)un0

∥∥2

L2(U)
dt− n

2n
,

due to conservation of energy, and (1.5) would not hold in time T . Therefore, we shall
assume in the sequel that T < TGCC(U).

Let T < TGCC(U) and (x0, λ0) ∈ G× (z∗ r {0}) such that

(4.13) for all s ∈ [0, T ], Φs0(x0, λ0) /∈ U × z∗.

Let us chose initial data uε0 in (1.3) which is a wave packet inM with harmonics given
by the first Hermite function h0:

uε0 = WP εx0,λ0
(a, h0, h0).

As a consequence, the semi-classical measure of (uε0) is Γ0(x, λ)dγ0 with Γ0 the or-
thogonal projector on h0 (this is where we use the fact that h0 is the first Hermite
function) and

γ0(x, λ) = c δ(x− x0)⊗ δ(λ− λ0),

where c = lim sup ‖uε0‖L2(M) > 0. Let us denote by uε(t) the associated solution,
uε(t) = eit(

1
2 ∆M+V)uε0. By Proposition 2.12, any of its semi-classical measures Γtdγt

decomposes above G×z∗ according to the eigenspaces of H(λ) following (2.18). More-
over, by Proposition 2.12, the maps (t, x, λ) 7→ Γn,t(x, λ)dγt(x, λ) are continuous and
satisfy the transport equation (2.19). We deduce that for n 6= 0, Γn,t(x, λ) = 0,

(4.14) γt(x, λ) = c δ
(
x− Exp

(
t
d

2
Z (λ)

)
x0

)
⊗ δ(λ− λ0)

and Γ0 is the orthogonal projector on h0.
As a consequence of the conservation of the L2-norm by the Schrödinger equation,

‖uε(t)‖L2(M) = ‖uε0‖L2(M).

Besides, the ε-oscillation (see Proposition 2.11) gives that, for the subsequence defin-
ing Γtdγt,

lim
ε→0
‖uε(t)‖2L2(M) =

∫
M×Ĝ

Tr(Γt(x, λ))dγt(x, λ), ∀ t ∈ R.

We deduce that we have, for any t ∈ R,∫
M×Ĝ

Tr(Γt(x, λ))dγt(x, λ) =

∫
M×Ĝ

Tr(Γ0(x, λ))dγ0(x, λ).
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On the other hand, the positivity of the measure Tr(Γt(x, λ))dγt(x, λ) combined
with (4.14) gives∫

M×Ĝ
Tr(Γt(x, λ))dγt(x, λ) >

∫
M×z∗

Tr(Γt(x, λ))dγt(x, λ)

=

∫
M×z∗

Tr(Γ0(x, λ))dγ0(x, λ)

=

∫
M×Ĝ

Tr(Γ0(x, λ))dγ0(x, λ).

We deduce that γt1v∗ = 0. Now, using (4.13), there exists a continuous function
φ : M → [0, 1] such that we have φ(Φs0(x0, λ0)) = 0 for any s ∈ [0, T ] and φ = 1 on
U×z∗. Using Proposition 2.11 for the subsequence defining the semi-classical measure
Γtdγt, we get

0 6
∫ T

0

∫
U

|uε(t, x)|2dxdt

6
∫ T

0

∫
M

φ(x)|uε(t, x)|2dxdt−→
ε→0

∫ T

0

∫
M×z∗

φ(x)dγt(x, λ)dt = 0.

Therefore, the observability inequality (1.5) cannot hold.

Remark 4.7. — As already noticed in the introduction, it can happen that TGCC(U) <

TGCC(U), and in this case, Theorem 1.4 does not say anything about observability
for times T such that TGCC(U) < T 6 TGCC(U). This is due to the possible existence
of grazing rays, which are rays which touch the boundary ∂U without entering the
interior of U . This phenomenon already occurs in the context of the observability
of Riemannian waves, as was shown for example in [37, §VI.B]. The example given
in this paper is the observation of the wave equation in the unit sphere S2 from its
(open) northern hemisphere: although the GCC condition is violated by the geodesic
following the equator, observability holds in time T > π. Intuitively, even wave packets
following this geodesic have half of their energy located on the northern hemisphere.

Appendix A. Representations of H-type groups

In this Appendix, we provide a proof of the description (2.6) of Ĝ. This material
is standard in non-commutative Fourier analysis, see for example [15].

A.1. The orbits of g. — As any group, a nilpotent connected, simply connected Lie
group acts on itself by the inner automorphism ix : y 7→ xyx−1. With this action, one
derives the action of G on its Lie algebra g called the adjoint map

Ad : G −→ Aut(g)

x 7−→ Adx = d(ix)|1G ,
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and its action on g∗, the co-adjoint map

Ad∗ : G −→ Aut(g∗)

x 7−→ Ad∗x

defined by

∀x ∈ G, ∀ ` ∈ g∗, ∀Y ∈ g, (Ad∗x `)(Y ) = `(Ad−1
x Y ).

It turns out that the orbits of this action play an important role in the representation
theory of the group. Let us recall that the orbit of an element ` ∈ g∗ is the set O`
defined by

O` = {Ad∗x(`) | x ∈ G}.

The next proposition describes the orbits of H-type groups.

Proposition A.1. — Let G be a H-type group, then there are only two types of orbits.
(i) 0-th. dimensional orbits. If ` ∈ v∗, then O` = {`}.
(ii) 2d-th. dimensional orbits. If ` = ω + λ with ω ∈ v∗ and λ ∈ z∗ r {0}, then

O` = Oλ and
Oλ = {ω′ + λ | ω′ ∈ v∗}.

Proof. — Let x = Exp(Vx + Zx) ∈ G and y = Exp(Vy + Zy) ∈ G. Then

ix(y) = xyx−1 = Exp(Vx + Zx) Exp(Vy + Zy) Exp(−Vx − Zx)

= Exp(Vy + Zy + [Vx, Vy]).

We deduce that if Y = VY + ZY ∈ g,

Ad−1
x (Y ) = VY + ZY + [Vx, VY ].

Therefore, if ` = ω + λ with λ ∈ z∗ and ω ∈ v∗,

Ad∗x `(Y ) = 〈`,Ad−1
x (Y )〉 = 〈ω, VY 〉+ 〈λ, ZY +[Vx, VY ]〉 = 〈ω+Jλ(Vx), VY 〉+ 〈λ, ZY 〉.

As a consequence, if λ = 0, Ad∗x `(Y ) = `(Y ) for all Y ∈ g. We deduce Ad∗x ` = ` for
all x ∈ G, which gives the first type of orbits.
If now λ 6= 0 and if ω′ ∈ v∗, one can find Vx ∈ v such that

〈ω′, V 〉 = 〈ω + Jλ(Vx), V 〉, ∀V ∈ v.

One deduces that for all Y ∈ g, Ad∗x `(Y ) = `′(Y ) with `′ = ω′ + λ. We deduce that
any of these `′ is in the orbit of `, which concludes the proof. �

Let λ ∈ z∗ r {0}, the sets pλ ⊕ z and qλ ⊕ z are maximal isotropic sub-algebras
of g for the bilinear map B(λ) (with associated endomorphism Jλ). Such an algebra
is said to be a polarizing algebra of g. We shall use these algebras in the next section.
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A.2. Unitary irreducible representations of G. — The unitary representations of
a locally compact group are homomorphisms π ofG into the group of unitary operators
on a Hilbert space that are continuous for the strong topology. The representations
for which there is no proper closed π(G)-invariant subspaces in Hπ are called irre-
ducible. Arbitrary representations can be uniquely decomposed as sums of irreducible
representations.

Kirillov theory establishes a one to one relation between the orbits (O`)`∈g∗ and
the irreducible unitary representations of G for any nilpotent Lie group which is
connected and locally connected. We shall first explain how one associates to an
orbit O` a representation π` (which only depends on the class of the orbit O`). Then,
in the next subsection, we shall explain how the Stone-Von Neumann Theorem implies
that any representation can be associated with an orbit.

– Let ω ∈ v∗. The map χω defined below is a 1-dimensional representation of G.

χω : G −→ S1

Exp(X) 7−→ eiω(X).

Note that χω = π(0,ω) as defined in (2.5).
– Let λ ∈ z∗ r {0}. We consider the polarizing sub-algebra associated with λ

mλ = qλ ⊕ z

and the subgroup of G defined by M := Exp(mλ). Then, if ` ∈ Oλ, `([mλ,mλ]) = 0,
and the map

χλ,M : M −→ S1

Exp(Y ) 7−→ eiλ(Y ).

is a one-dimensional representation of M . This allows to construct an induced
representation πλ on G with Hilbert space pλ ∼ L2(Rp) via the identification of
Exp(

∑d
j=1 ξjP

(λ)
j ) ∈ Exp(pλ) with ξ = (ξ1, . . . , ξd) ∈ Rd. Indeed, let us take ξ ∈ pλ

and x = Exp(X), with X = P +Q+ Z and P ∈ pλ, Q ∈ qλ and Z ∈ z. We have, by
the Baker-Campbell-Hausdorff formula,

Exp(ξ) Exp(X) = Exp(Q+ Z + [ξ,Q] +
1

2
[P,Q]) Exp(ξ + P ),

with
Q+ Z + [ξ,Q] +

1

2
[P,Q] ∈ mλ and ξ + P ∈ pλ.

Let us denote by p, q ∈ Rd the coordinates of P and Q in the bases (P
(λ)
j )16j6d and

(Q
(λ)
j )16j6d respectively. Following [15], we define the induced representation by

πλ(x)f(ξ) = χλ

(
Exp(Q+ Z + [ξ,Q] +

1

2
[P,Q])

)
f(ξ + p).

Using λ([P
(λ)
j , Q

(λ)
j ]) = B(λ)(P

(λ)
j , Q

(λ)
j ) = |λ|, we obtain

πλ(x)f(ξ) = eiλ(Z)+ i
2 |λ|p·q+i|λ|ξ·qf(ξ + p).
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We can then use the scaling operator Tλ defined by

Tλf(ξ) = |λ|d/4f(|λ|1/2ξ)

to get the equivalent representation πλx := T ∗λπλ(x)Tλ written in (2.4).
This inductive process can be generalized to the case of groups presenting more than

two strata. For our purpose, it remains to prove that any irreducible representation
is equivalent to one of those, which is a consequence of the Stone-Von Neumann
Theorem.

A.2.1. Stone-Von Neumann Theorem. — Let us recall the celebrated Stone-Von Neu-
mann theorem (see [15, §2.2.9] for a proof).

Theorem A.2. — Let ρ1, ρ2 be two unitary representations of G = Rd in the same
Hilbert space H satisfying, for some α 6= 0, the covariance relation

ρ1(x)ρ2(y)ρ1(x)−1 = eiαx·yρ2(y), for all x, y ∈ Rd.

Then H is a direct sum H = H1 ⊕H2 ⊕ . . . of subspaces that are invariant and
irreducible under the joint action of ρ1 and ρ2. For any k, there is an isometry Jk :

Hk → L2(Rd) which transforms ρ1 and ρ2 to the canonical actions on L2(Rd):

[ρ̃1(x)f ](ξ) = f(ξ + x), [ρ̃2(y)f ](ξ) = eiαy·ξf(ξ).

For each α 6= 0, the canonical pair ρ̃1, ρ̃2 acts irreducibly on L2(Rd), so ρ1, ρ2 act
irreducibly on each Hk.

Let π be an irreducible representation of G on Hπ. Our goal is to prove that it is
equivalent either to a χω or to a πλ of the preceding section. For Z ∈ z, the operators
π(Exp(Z)) commute will all elements of the set {πg | g ∈ G}. By Schur’s Lemma
(see [15, Lem. 2.1.1]), they are thus scalar: πExp(Z) = χ(Exp(Z)) IdHπ , where χ is a
one-dimensional representation of the center Z(G) = Exp(z) of G. Then, two cases
appear:

– If χ ≡ 1, then π is indeed a representation of the Abelian quotient group
G/Z(G) = Exp(v), thus it is one-dimensional and of the form χω for some ω ∈ v∗.

– If χ 6≡ 1, there is λ ∈ z∗ r {0} such that χ(Exp(Z)) = eiλ(Z). We keep the
notations of (2.1), the notations P = p1P

(λ)
1 + · · ·+pdP

(λ)
d , Q = q1Q

(λ)
1 + · · ·+ qdQ

(λ)
d

and Z = z1Z1 + · · · + zpZp of the previous section, and we set p = (p1, . . . , pd),
q = (q1, . . . , qd) and z = (z1, . . . , zp). The actions of the d-parameter subgroups
ρ1(p) = πExp(P ) and ρ2(q) = πExp(Q) satisfy the covariance relation

ρ1(p)ρ2(q)ρ−1
1 (p)ρ−1

2 (q) = π
Exp((1/2)(p1q1[P

(λ)
1 ,Q

(λ)
1 ]+···+pdqd[P

(λ)
d ,Q

(λ)
d ]))

= e(i/2)|λ|p·q IdHπ
,

where we have used [P
(λ)
j , Q

(λ)
j ] = Z (λ) with λ(Z (λ)) = |λ|. The joint action of ρ1

and ρ2 is irreducible since the d-parameter subgroups generate G and π is irreducible.
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Thus, we may apply the Stone-Von Neumann theorem, which gives that there exists
an isometry identifying Hπ with L2(Rd) such that the actions take the form

[ρ1(p)f ](t) = [πExp(P )f ](ξ) = f(ξ + p),

[ρ2(q)f ](t) = [πExp(Q)f ](ξ) = ei|λ|q·ξf(ξ)

for all f ∈ L2(Rd) and p, q ∈ Rd. Hence, in this model, the action of an arbitrary
element of G is

[πExp(P+Q+Z)f ](ξ) = eiλ(z)+(i/2)|λ|p·q+i|λ|q·ξf(ξ + p)

since Exp(P +Q+Z) = Exp(Z + 1
2 [P,Q]) ·Exp(Q) ·Exp(P ) by the Baker-Campbell-

Hausdorff formula. This is just the action of πλ modeled in L2(Rd). Thus, an infinite-
dimensional irreducible representation π is isomorphic to πλ for some λ.

Appendix B. Pseudodifferential operators and semi-classical measures

In this Appendix we focus on different aspects of the pseudodifferential calculus on
quotient manifolds.

B.1. Properties of pseudodifferential operators on quotient manifolds

We prove here properties (3) to (7) of Section 2.

Proof of Property (3). — We write G = ∪γ∈Γ̃Mγ−1 and, using the periodicity of f ,
we obtain∫

G

κεx(y−1x)f(y)dy =
∑
γ∈Γ̃

∫
y∈Mγ−1

κεx(y−1x)f(y)dy =
∑
γ∈Γ̃

∫
y∈M

κεx(γy−1x)f(y)dy.

As a consequence, the action of the operator Opε(σ) writes as a sum of convolution

Opε(σ)f(x) =
∑
γ∈Γ̃

f ∗ κεx(γ·)(x).

Proof of Property (4). — By Young’s convolution inequality

‖f ∗ κεx(γ·)‖L2(M) 6 ‖ sup
x∈M
|κεx(γ·)|‖L1(M)‖f‖L2(M).

We have

‖ sup
x∈M
|κεx(γ·)|‖L1(M) = ε−Q

∫
M

sup
x∈M
|κx(ε · γy)|dy =

∫
γ−1M

sup
x∈M
|κx(y)|dy.

Therefore

‖Opε(σ)f‖L2(M) 6 ‖f‖L2(M)

∑
γ∈Γ̃

∫
γ−1M

sup
x∈M
|κx(y)|dy = ‖f‖L2(M)

∫
G

sup
x∈M
|κx(y)|dy,

which gives (2.14).
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Proof of Property (5). — We argue as for the L2 boundedness and observe that the
kernel of Opε(σ)−Opε(σ)χ is the function

(x, y) 7−→ κεx(y−1x)(1− χ)(y).

Writing
κεx(y−1x)(1− χ(y)) = κεx(y−1x)(1− χ)(x(y−1x)−1)

we deduce that we can write the operator Opε(σ)−Opε(σ)χ as the convolution with
an x-dependent function:

(Opε(σ)−Opε(σ)χ)f(x) =
∑
γ∈Γ̃

f ∗ θε(x, γ·)

with θε(x, z) = ε−Qκx(ε · z)(1 − χ)(xz−1). Therefore, if K = suppσ (where χ ≡ 1),
we have

‖ sup
x∈K

θε(x, γ·)‖L1(M) 6
∫
M

sup
x∈K
|κx(γz)||(1− χ)(x(ε · (γz))−1)|dz.

A Taylor formula gives that there exists a constant c > 0 such that for all x ∈ K,

|(1− χ)(x(ε · (γz))−1)| 6 cεN |γz|N .

Therefore,

‖ sup
x∈K

θε(x, γ·)‖L1(M) 6 cε
N

∫
M

sup
x∈K
|κx(γz)||γz|Ndz.

We deduce thanks to Young’s convolution inequality

‖(Opε(σ)(1− χ)f‖L2(M) 6 ε
Nc‖f‖L2(M)

∑
γ∈Γ̃

∫
M

sup
x∈K
|κx(γz)||γz|Ndz

= εNc‖f‖L2(M)

∫
G

sup
x∈K
|κx(z)||z|Ndz.

Proof of Property (6)
Proof of Proposition 2.7. — We take f, g ∈ L2(M). We use a partition of unity∑

16j6J χj = 1B, where the functions χj ∈ C∞0 (G) are compactly supported in a
fundamental domain of M (which depends on j). We decompose σ as

σ(x, λ) =
∑

16j6J

σj(x, λ), σj(x, λ) = χj(x)σ(x, λ), (x, λ) ∈ G× G̃,

and we consider χ̃j ∈ C∞0 (G), real-valued, compactly supported in the same funda-
mental domain of M as χj with χ̃j = 1 on the support of χj . For proving (2.16),
it is enough to prove it for each of the σj . Besides, the symbol σj and the smooth
function χ̃j satisfy Point (5) and we have

Opε(σj) = χ̃j Opε(σj)χ̃j +O(εN )
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for N ∈ N in L (L2(M)). We will use this property to transform the relations in
L2(M) into relations in L2(G):

(Opε(σj)
∗f, g)L2(M) = (f,Opε(σj)g)L2(M)

= (χ̃jf,Opε(σj)χ̃jg)L2(G) +O(εN‖χ̃jf‖L2(G)‖χ̃jg‖L2(G))

= (Opε(σj)
∗χ̃jf, χ̃jg)L2(G) +O(εN‖χ̃jf‖L2(G)‖χ̃jg‖L2(G)).

We can now use symbolic calculus in L2(G) and we obtain by [20, Prop. 3.6],(
Opε(σj)

∗f, g
)
L2(M)

=
(
Opε(σ

∗
j )χ̃jf, χ̃jg

)
L2(G)

− ε(Opε(P
(λ) ·∆λ

pσ
∗
j +Q(λ) ·∆λ

qσ
∗
j )χ̃jf, χ̃jg)L2(G)

+O(ε2‖χ̃jf‖L2(G)‖χ̃jg‖L2(G))

=
(
Opε(σ

∗
j )f, g

)
L2(M)

− ε(Opε(χ̃j(P
(λ) ·∆λ

pσ
∗
j +Q(λ)) ·∆λ

qσ
∗
j ))f, g)L2(M)

+O(ε2‖f‖L2(M)‖g‖L2(M))

by (2.15). We now use that χ̃jσj = σj , whence χ̃jσ∗j = σ∗j and also χ̃j∆λ
pσj = ∆λ

pσj ,
χ̃j∆

λ
qσj = ∆λ

qσj . Besides since χ̃j = 1 on the support of σj , we deduce

χ̃j(P
(λ) ·∆λ

pσ
∗
j +Q(λ) ·∆λ

qσ
∗
j ) = P (λ) ·∆λ

pσ
∗
j +Q(λ) ·∆λ

qσ
∗
j ,

whence (2.16).
Let us now prove (2.17). We argue similarly and write in L (L2(M))

Opε(σ1) =
∑

16j6J

Opε(χjσ1) =
∑

16j6J

χ̃j Opε(χjσ1)χ̃j +O(εN )

forN ∈ N. Considering χ
j
smooth, real-valued, compactly supported in a fundamental

domain and equal to 1 on the support of χ̃j , we have

χ̃j Opε(σ2) = Opε(χ̃jσ2) = Opε(χ̃jσ2)χ
j

+O(εN )

in L (L2(G)) and we deduce that for 1 6 j 6 J

(Opε(χjσ1) ◦Opε(σ2)f, g)L2(M)

=
(

Opε(χjσ1) ◦Opε(χ̃jσ2)χ
j
f, χ̃jg

)
L2(G)

+O(εN‖f‖L2(M)‖g‖L2(M)).

By symbolic calculus in G

(Opε(χjσ1) ◦Opε(σ2)f, g)L2(M)

=
(

Opε(χjσ1σ2 − εr)χjf, χ̃jg
)
L2(G)

+O(ε2‖f‖L2(M)‖g‖L2(M))

with

r(x, λ) = ∆λ
p(χjσ1) · P (λ) (χ̃jσ2) + ∆λ

q (χjσ1) ·Q(λ) (χ̃jσ2)

= χj(∆
λ
pσ1 · P (λ) σ2 + ∆λ

qσ1 ·Q(λ) σ2),
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where we have used that χ̃j = 1 on the support of χj . Summing the contributions
in j, we obtain(

Opε(σ1) ◦Opε(σ2)f, g
)
L2(M)

=
∑

16j6J

(
Opε(χj(σ1σ2 − ε(∆λ

pσ1 · P (λ) σ2 + ∆λ
qσ1 ·Q(λ) σ2)))χ

j
f, χ̃jg

)
L2(G)

+O(ε2‖f‖L2(M)‖g‖L2(M))

=
∑

16j6J

(
Opε(χj(σ1σ2 − ε(∆λ

pσ1 · P (λ) σ2 + ∆λ
qσ1 ·Q(λ) σ2)))f, g

)
L2(M)

+O(ε2‖f‖L2(M)‖g‖L2(M))

because both χ
j

and χ̃j are equal to 1 on the support of χj . Finally, using∑
16j6J χj = 1, we obtain

(Opε(σ1) ◦Opε(σ2)f, g)L2(M)

=
(

Opε(σ1σ2 − ε(∆λ
pσ1 · P (λ) σ2 + ∆λ

qσ1 ·Q(λ) σ2))f, g
)
L2(M)

+O(ε2‖f‖L2(M)‖g‖L2(M)),

whence the result. �

Proof of Property (7)
Proof of Proposition 2.8. — Here again, we reduce by using a partition of unity to the
case of σ as in (5) above, with a fundamental domain B containing 1G. We introduce
the associated function χ ∈ C∞c (B) such that χσ = σ. We observe that χσε = σε
and we use [20, Prop. 3.4] to write for f, g ∈ L2(M),

(Opε(σ)f, g)L2(M) = (Opε(σ)χf, χg)L2(G)

= (Opε(σε)χf, χg)L2(G) +O(εN‖χf‖L2(G)‖χg‖L2(G))

= (Opε(σε)f, g)L2(M) +O(εN‖f‖L2(M)‖g‖L2(G)),

which concludes the proof. �

B.2. Time-averaged semi-classical measures. — We give here comments about the
proof of Proposition 2.12. Note that when V = 0, [19, Th. 2.10(ii)(2)] implies the
statement, except for the continuity of the map t 7→ Γtdγt. The key observation is
that for any symbol σ ∈ A0,

(B.1) 1

iε

[
−ε

2

2
∆M − ε2V,Opε(σ)

]
=

1

iε

[
−ε

2

2
∆M ,Opε(σ)

]
+O(ε)

in L (L2(G)) by the boundedness of V. As a consequence, the results of [19,
Th. 2.10(ii)(2)] without potential passes to the case with a bounded potential. Note
in particular that we do not need any analyticity on the potential. The two points of
Proposition 2.12 derive from relation (B.1).
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For (1), using Proposition 2.7 and multiplying (B.1) by ε, one gets that for any
symbol σ ∈ A0 and any function θ ∈ L1(G),∫

R×G×Ĝ
θ(t) Tr([σ(x, λ), H(λ)]Γt(x, λ))dγt(x, λ)dt = 0,

which implies the commutation of Γt(x, λ) with H(λ) and thus the relation 2.18.
Let us now prove the transport equation and the continuity property; Let Π

(λ)
n be

the projector on the n-th eigenspace of H(λ). We prove here the continuity of the
map t 7→ (Π

(λ)
n Γt1z∗Π

(λ)
n , γt1z∗). Since Π

(λ)
n /∈ A0, it is necessary to regularize the

operator Π
(λ)
n σ(x, λ)Π

(λ)
n for σ ∈ A0. In that purpose, we fix χ ∈ C∞(R) such that

0 6 χ 6 1, χ(u) = 1 for on |u| > 1 and χ(u) = 0 for |u| 6 1/2. We consider σ ∈ A0

a symbol strictly supported inside a fundamental domain of M and associate with it
the symbol

σ(u,n)(x, λ) = χ(uH(λ))Π(λ)
n σ(x, λ)Π(λ)

n , n ∈ N, u ∈ (0, 1].

In view of [19, Cor. 3.9], this symbol belongs to the class S−∞ of regularizing symbols.
Besides, it is also supported inside a fundamental domain of M . Fix n ∈ N and
consider the map

t 7−→
(

Opε(σ
(u,n))ψε(t), ψε(t)

)
:= `u,ε(t),

where ψε(t) is a family of solutions to (1.3) for some family of initial data (ψε0)ε>0.

Lemma B.1. — The family of functions t 7→
(
Opε(σ

(u,n))ψε(t), ψε(t)
)
is equicontinu-

ous with respect to the parameter ε ∈ (0, 1).

We recall that from [19, Th. 2.5(i)] we have for all σ ∈ A0, χ and u as above,
θ ∈ L1(R), and p, p′ ∈ N with p 6= p′,∫

R
θ(t) (Opε(Πpχ(uH(λ))σΠp′)ψ

ε(t), ψε(t)) dt = O(ε).

Proof. — For any symbol σ ∈ A0, we have

(B.2) d

dt
(Opε(σ)ψε(t), ψε(t)) =

1

iε2

([
Opε(σ),−ε

2

2
∆M − ε2V

]
ψε(t), ψε(t)

)
=

1

iε2
(Opε([σ,H(λ)]ψε(t), ψε(t))− 1

iε

(
Opε(V · πλ(V )σ)ψε(t), ψε(t)

)
− 1

2i
(Opε(∆Mσ)ψε(t), ψε(t))− 1

i
([Opε(σ),V]ψε(t), ψε(t)) .

For σ(u,n) (which commutes with H(λ)) we have
d

dt
`u,ε(t) =

1

iε2

([
Opε(σ

(u,n)),−ε
2

2
∆M − ε2V

]
ψε(t), ψε(t)

)
= − 1

iε

(
Opε(V · πλ(V )σ(u,n))ψε(t), ψε(t)

)
− 1

2i

(
Opε(∆Mσ

(u,n))ψε(t), ψε(t)
)

+O(ε),

J.É.P. — M., 2021, tome 8



Observability and controllability for the Schrödinger equation 1503

where we used [Opε(σ
(u,n)),V] = O(ε) in L (L2(M)) by Proposition 2.7. By [19,

Lem. 4.1], there exists a symbol σ1(x, λ) such that

V · πλ(V )σ(u,n)(x, λ) = [σ1(x, λ), H(λ)](B.3)

(V · πλ(V )σ1(x, λ)) =
(
(n+ d/2)iZ (λ) − 1

2 ∆M

)
σ(u,n)(x, λ).

The proof of these relations is discussed at the end of the proof of Proposition C.1
where we use quite similar properties. We then write for t, t′ ∈ R,

`u,ε(t)− `u,ε(t′) = − 1

iε

∫ t

t′
(Opε([σ1, H(λ)])ψε(s), ψε(s)) ds

− 1

2i

∫ t

t′

(
Opε(∆Mσ

(u,n))ψε(s), ψε(s)
)
ds+O(ε|t− t′|).

Besides, using (B.2) for the symbol σ1, we deduce

− 1

iε
(Opε([σ1, H(λ)])ψε(t), ψε(t))

= −ε
i

([Opε(σ1),V]ψε(t), ψε(t))− ε d
dt

(Opε(σ1)ψε(t), ψε(t))

− 1

i

(
Opε(V · πλ(V )σ1)ψε(t), ψε(t)

)
− ε

2i

(
Opε(∆Mσ1)ψε(t), ψε(t)

)
.

This implies

(B.4)

`u,ε(t)− `u,ε(t′) = −1

i

∫ t

t′

(
Opε(V · πλ(V )σ1)ψε(s), ψε(s)

)
ds

− 1

2i

∫ t

t′
(Opε(∆Mσ1)ψε(s), ψε(s)) ds +O(ε|t− t′|)

= (n+ d/2)

∫ t

t′

(
Opε(Z

(λ)σ)ψε(s), ψε(s)
)
ds+O(ε|t− t′|),

which concludes the proof. �

The continuity of the map t 7→ (Π
(λ)
n Γt1z∗Π

(λ)
n , γt1z∗) follows from Lemma B.1 and

the Arzelà-Ascoli theorem. Note that, equation (B.4) of the proof of Lemma B.1 also
implies the transport equation (2.19).

Finally, let us prove Point (2) of Proposition 2.12. We use the relation
1

ε
[−ε2∆M ,Opε(σ)] =

1

ε
Opε([H(λ), σ])− 2 Opε(V · πλ(V )σ)− εOpε(∆Mσ).

together with (B.1). We denote by ςt the scalar measure Γtdγt1v∗ and we use that for
the finite dimensional representations π(0,ω), we have π(0,ω)(Vj) = iωj . In the limit
ε→ 0, we obtain that for any function θ ∈ L1(R) and any symbol σ ∈ A0 commuting
with H(λ),∫

R×M×z∗
θ(t) Tr(V · π(V )σ(x, λ)Γt(x, λ))dγt(x, λ)dt

+

∫
R×M×v∗

θ(t)iω · V σ(x, ω)dςt(x, ω)dt = 0.
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Since Γt commutes with H(λ) and V · π(V )σ is off-diagonal when σ is diagonal
(see (B.3)), we deduce that the first term of the left-hand side of the preceding relation
is 0. Therefore, ∫

R×M×v∗
θ(t)ω · V σ(x, ω)dςt(x, ω)dt = 0,

which implies the invariance of ςt(x, ω) by the map (x, ω) 7→ (Exp(sω ·V )x, ω), s ∈ R.

Appendix C. Wave packet solutions to the Schrödinger equation

We assume here V = 0. We prove that the solution of (1.3) with an initial datum
which is a wave packet can be approximated by a wave packet. We focus on the case
where the harmonics verify Φ1 = Φ2 = h0, see the discussion preceding Remark C.2
for more details. We work in G, keeping in mind that by Remark 2.6, the result
extends to M . Note that the results of this section give in particular a second proof
of the necessary part of Theorem 1.4 in case V = 0.

Proposition C.1. — Let uε(t) be the solution of equation (1.3) with V = 0 and initial
data of the form

uε0 = WP εx0,λ0
(a, h0, h0),

where (x0, λ0) ∈ M × (z∗ r {0}), a ∈ S (G) and h0 is the first Hermite function.
Then, there exists a map (t, x) 7→ a(t, x) in C 1(R,S (G)) such that for all k ∈ N,

uε(t, x) = WP εx(t),λ0
(a(t, ·), h0, h0) +O(

√
ε)

in Σkε (see (4.7) for definition), with

x(t) = Exp
(d

2
tZ (λ0)

)
x0.

In particular, this proposition means that, contrary to what happens in Riemannian
manifolds, there are wave packet solutions of the Schrödinger equation which remain
localized even in very long time (of order ∼ 1 independently of ε). For example, this is
not the case for the torus (see [2, 11]) or semi-classical completely integrable systems
(see [1]).

In what follows, we use the notation πλ(X) for denoting the operator such that

F (Xf)(λ) = πλ(X)F (f), ∀ f ∈Hλ,

where X ∈ g (recall that Xf is defined in (1.2)). Using an integration by part in the
definition of F (Xf)(λ) and the fact that (πλx)∗ = πλ−x, we obtain in particular

X(πλxΦ1,Φ2) = (πλ(X)πλxΦ1,Φ2)

and, in view of (4.6), we have

(C.1) πλ(P
(λ)
j ) =

√
|λ|∂ξj and πλ(Q

(λ)
j ) = i

√
|λ|ξj .
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We recall that extending the definition to −∆G, we have πλ(−∆G) = H(λ), where
H(λ) is the harmonic oscillator

(C.2) H(λ) = |λ|
d∑
j=1

(−∂2
ξj + ξ2

j ).

Of course, we also have the relations

H(λ) = −
d∑
j=1

πλ(Vj)
2 = −

d∑
j=1

(
πλ(P

(λ)
j )2 + πλ(Q

(λ)
j )2

)
.

In the sequel, in order to simplify notations, since λ = λ0 is fixed, we write Pj and Qj
instead of P (λ0)

j and Q(λ0)
j . We also use the notation Πn instead of Π

(λ0)
n .

Proof of Proposition C.1. — We construct a function vε(t, x) of the form

(C.3) vε(t, x) = |λε|d/2ε−p/2
(
σε(t, δε−1/2(x−1

0 x))πλε
x−1
0 x

h0, h0

)
, λε =

λ0

ε2
,

which solves for all t ∈ R,

i∂tv
ε + 1

2 ∆gv
ε = O(

√
ε)

in all the spaces Σεk, k ∈ N. More precisely, we look for σε(t, x) =
∑N
j=1 ε

j/2σj(t, x),
for some N ∈ N to be fixed later and some maps (t, x) 7→ σj(t, x) that are smooth
maps from R × G to L (L2(Rd)), and we shall require that σ0(t, x) = a(t, x) Id for
some smooth function a satisfying a(0, x) = a(x) (note that, more rigorously, these
operator-valued maps are the values at λ = λ0 of fields of operators σj(t, x, λ) over
the spaces Hλ = L2(Rd) of representations, as the symbols of the pseudodifferential
calculus). Then, an energy estimate shows that uε(t) − vε(t) = O(

√
ε) in L2(G) for

all t ∈ R.
In view of (4.3), it is equivalent to construct a family ṽε(t, x)=εQ/4vε(t, x(t)δ√ε(x))

which satisfies
iε∂tṽ

ε − i d
2

Z (λ0)ṽε +
1

2
∆Gṽ

ε = O(ε
√
ε)

and

ṽε(t, x) =

N∑
j=0

εj/2(σj(t, x)πλ0

δ
ε−1/2 (x)h0, h0), N ∈ N.

We emphasize that if we look for operators σj(t, x) which are of finite rank, then,
decomposing σj(t, x)h0 on the Hermite basis, the function (σj(t, x)πλ0

δ
ε−1/2 (x)h0, h0) is

a sum of terms of the form

(aj,β(t, x)πλ0

δ
ε−1/2 (x)h0, hβ),

which means that vε(t) satisfying (C.3) is indeed a sum of wave packets.
Let us now construct the operators σj(t, x). In order to simplify the notations,

we set S0 = |λ0|d/2 and

L = i
d

2
Z (λ0) − 1

2
∆G.
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Note that

i
d

2
Z (λ0)πλ0

x = −S0π
λ0
x

and that S0 is such that H(λ0)h0 = 2S0h0. We denote by Π0 the orthogonal projector
on the eigenspace of the operator H(λ0) for the eigenvalue 2S0. For any operator-
valued σ(t, x), we have the following result:

(iε∂t −L )
(
σ(t, x)πλ0

δ
ε−1/2 (x)h0, h0

)
=
S0

ε

(
σ(t, x)πλ0

δ
ε−1/2 (x)h0, h0

)
− 1

2ε

(
σ(t, x)H(λ0)πλ0

δ
ε−1/2 (x)h0, h0

)
+

1√
ε

(
V σ(t, x) · πλ0(V )πλ0

δ
ε−1/2 (x)h0, h0

)
+
(
(iε∂t −L )σ(t, x)πλ0

δ
ε−1/2 (x)h0, h0

)
,

where V σ ·Πλ0(V ) =
∑2d
j=1 VjσΠλ0(Vj). Equivalently, we can write the latter relation

under the more convenient form:

(C.4) (iε∂t −L )
(
σ(t, x)πλ0

δ
ε−1/2 (x)h0, h0

)
=

1

2ε

(
[H(λ0), σ(t, x)]πλ0

δ
ε−1/2 (x)h0, h0

)
+

1√
ε

(
V σ(t, x) · πλ0(V )πλ0

δ
ε−1/2 (x)h0, h0

)
+
(
(iε∂t −L )σ(t, x)πλ0

δ
ε−1/2 (x)h0, h0

)
.

Therefore, for σ0 = a ∈ C 1(R,S (G)) a scalar map, we have

(iε∂t −L )
(
σ0(t, x)πλ0

δ
ε−1/2 (x)h0, h0

)
=
(
rε0(t, x)πλ0

δ
ε−1/2 (x)h0, h0

)
,

with

rε0(t, x) =
1√
ε

(
V σ0(t, x) · πλ0(V )πλ0

δ
ε−1/2 (x)h0, h0

)
+
(
(iε∂t −L )σ0(t, x)πλ0

δ
ε−1/2 (x)h0, h0

)
.

In other words, for any σ0(t, x) which is scalar, the rest term is of order ε−1/2. At the
end of the proof, we will specify our choice of σ0 in (C.9).

We now focus on constructing correction terms in order to compensate the rest
term rε0(x). Note that since Π0h0 = h0, we also have

rε0(t, x) =
1√
ε

(
Π0V σ0(t, x) · πλ0(V )πλ0

δ
ε−1/2 (x)h0, h0

)
+
(
(iε∂t −L )σ0(t, x)πλ0

δ
ε−1/2 (x)h0, h0

)
.

The multline term involves the scalar operator (iε∂t − L )σ0(t, x) which commutes
with Π0 while the first one depends on Π0V σ0(t, x) ·πλ0(V ) which does not. For con-
structing σ1(t, x), we use the computation (C.4) and the fact that for symbols σ(t, x)

that anti-commute withH(λ0), one can find θ(t, x) such that σ(t, x) = [H(λ0), θ(t, x)].
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Construction of the approximate solution up to
√
ε. — We have already noticed in Sec-

tion B.2 that if

θ0(t, x) = − 1

2i|λ0|

d∑
j=1

(
Pjσ0(t, x)πλ0(Qj)−Qjσ0(t, x)πλ0(Pj)

)
,

we have the following relations that we prove below

V σ0(t, x) · πλ0(V ) = −[H(λ0), θ0(t, x)],(C.5)

Π0(V θ0(t, x) · πλ0(V ))Π0 =
1

2
Π0

(
i
d

2
Z λ0σ0(t, x)− 1

2
∆Gσ0(t, x)

)
Π0(C.6)

=
1

2
Π0L σ0(t, x).

Therefore, setting
σ1(t, x) = 2Π0θ0(t, x),

and using (C.4), we obtain that

(iε∂t −L )
(
σ1(t, x)πλ0

δ
ε−1/2 (x)h0, h0

)
= −1

ε

(
V σ0(t, x) · πλ0(V )πλ0

δ
ε−1/2 (x)h0, h0

)
+

1√
ε

(
L σ0(t, x)πλ0

δ
ε−1/2 (x)h0, h0

)
+
(
(iε∂t −L )σ1(t, x)πλ0

δ
ε−1/2 (x)h0, h0

)
.

Therefore, the function

ṽε1(t, x) =
(
(σ0(t, x) +

√
εσ1(t, x))πλ0

δ
ε−1/2 (x)h0, h0

)
satisfies in Σkε the equation

(iε∂t −L )ṽε1(t, x) = rε1(t, x) +O(ε
√
ε)

with

rε1(t, x) = −
√
ε
(
L σ1(t, x)πλ0

δ
ε−1/2 (x)h0, h0

)
+ iε

(
∂tσ0(t, x)πλ0

δ
ε−1/2 (x)h0, h0

)
.

Construction of the approximate solution up to ε. — We observe that by construction
θ0(t, x) and σ1(t, x) anticommute with H(λ0). Therefore, there exists σ2(t, x) such
that

(C.7) L σ1(t, x) =
1

2
[H(λ0), σ2(t, x)],

and the function

ṽε2(t, x) =
(
(σ0(t, x) +

√
εσ1(t, x) + ε

√
εσ2(t, x))πλ0

δ
ε−1/2 (x)h0, h0

)
satisfies the equation

(iε∂t −L )ṽε2(t, x) = rε2(t, x) +O(ε
√
ε)

with

rε2(t, x) = ε
(
V σ2(t, x) · πλ0(V )πλ0

δ
ε−1/2 (x)h0, h0

)
+ iε

(
∂tσ0(t, x)πλ0

δ
ε−1/2 (x)h0, h0

)
.
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At this stage of the proof, we observe that by choosing an adequate term σ3, the
off-diagonal part of the symbol V σ2 ·πλ0(V ) can be treated in the same manner than
the off-diagonal term L σ1. Finally we are left with

ṽε3(t, x) =
(
(σ(t, x) +

√
εσ1(t, x) + ε

√
εσ2(t, x) + ε2σ3(t, x))πλ0

δ
ε−1/2 (x)h0, h0

)
and the equation

(iε∂t −L )ṽε3(t, x) = rε3(t, x) +O(ε3/2)

with
rε3(t, x) = ε

(
(i∂tσ0 + Π0V σ2(t, x) · πλ0(V )Π0)πλ0

δ
ε−1/2 (x)h0, h0

)
.

Construction of the approximate solution up to ε3/2. — For concluding the proof, we use
the specific form of the term Π0V σ2(t, x) · πλ0(V )Π0. We claim, and we prove below,
that there exists a selfadjoint differential operator L̃ such that

(C.8) Π0V σ2(t, x) · πλ0(V )Π0 = L̃ σ0(t, x)Π0.

Therefore, it is enough to choose the function σ0(t, x) as the solution of the equation

(C.9) i∂tσ0(t, x) + L̃ σ0(t, x) = 0, σ0(0, x) = a(x).

Proof of relations (C.5), (C.6) and (C.8). — Let us begin with (C.5). Using (C.1)
and (C.2), we get that for 1 6 j 6 d there holds

[H(λ0), πλ0(Qj)] = 2i|λ|πλ0(Pj) and [H(λ0), πλ0(Pj)] = −2i|λ0|πλ0(Qj).

Therefore

[H(λ0), θ0] = − 1

2i|λ|

d∑
j=1

(
Pjσ0[H,πλ0(Qj)]−Qjσ0[H,π(λ0)(Pj)]

)
= −

d∑
j=1

(
Pjσ0π

λ0(Pj) +Qjσ0π
(λ0)(Qj)

)
= −V σ0 · πλ0(V ),

which gives (C.5).
The relation (C.6) is a direct application of [19, Lem.B.2] which states that if

T :=

( 2d∑
j1=1

Vj1π
λ0(Vj1)

)
◦
( d∑
j2=1

(
Pj2π

λ0(Qj2)−Qj2πλ0(Pj2)
))
,

then
ΠnTΠn = |λ0|

(
(n+ d/2)Z (λ0) +

i

2
∆G

)
Πn,

where Πn denotes the orthogonal projector on Vect(hα, |α| = n) (recall that Πn

depends on λ0 since it is defined from H(λ0) but we omit this fact in the notation).
Note that these relations are nothing but consequences of the elementary properties
of the creation-annihilation operators ∂ξj and iξj .
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Let us now prove the claim (C.8). We use the notations of [19] and introduce the
operators

Rj :=
1

2
(Pj − iQj), and Rj :=

1

2
(Pj + iQj).

By (4.6), the operators

πλ0(Rj) =

√
|λ0|
2

(∂ξj + ξj) and πλ0(Rj) =

√
|λ0|
2

(∂ξj − ξj)

are the creation-annihilation operators associated with the harmonic oscillator H(λ0).
The well-known recursive relations of the Hermite functions give for α ∈ Nd and
j = 1, . . . , d,

πλ0(Rj)hα =

√
|λ0|
2

√
2αj hα−1j πλ0(Rj)hα = −

√
|λ0|
2

√
2(αj + 1)hα+1j .

In the preceding formula, we use the convention hα−1j = 0 as soon as αj = 0. Actually,
one has π(Rj)h0 = 0. We will also use the expression of Π0π(Rj) that derives from
these formula.

Let us now compute σ2. Starting from
d∑
j=1

(
Pjπ

λ0(Qj)−Qjπλ0(Pj)
)

= −2i

d∑
j=1

(
Rjπ

λ0(Rj)−Rjπλ0(Rj)
)
,

and using Π0π
λ0(Rj) = 0, we obtain

σ1(t, x) = −2Π0

|λ0|

d∑
j=1

Rja(t, x)πλ0(Rj).

Therefore σ1 = Π0σ1Π1 can be written

Π0σ1Π1 = − 2

|λ0|

d∑
j=1

Rja(t, x)Π0π
λ0(Rj).

We deduce from (C.7) that

Π0σ2Π1 = − 1

|λ0|
Π0L σ1Π1.

Therefore

σ2(t, x) =
2

|λ0|2
d∑
j=1

LRja(t, x)Π0π
λ0(Rj).

We now use that for any operator-valued σ(t, x),

V σ ·Πλ0(V ) = 2

d∑
k=1

(
Rkσπ

λ0(Rk) +Rkσπ
λ0(Rk)

)
J.É.P. — M., 2021, tome 8
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and we obtain

V σ2 ·Πλ0(V ) =
4

|λ0|2
d∑

j,k=1

(
RkLRja(t, x)Π0π

λ0(Rj)π
λ0(Rk)

+RkLRja(t, x)Π0π
λ0(Rj)π

λ0(Rk)
)
.

When computing the diagonal part of the operator above or, more precisely Π0V σ2 ·
Πλ0(V )Π0, we use the relation Π0π(Rj)π(Rk) = Π0π(Rk)π(Rj) = 0 when j 6= k and
we find

Π0V σ2 ·Πλ0(V )Π0 =
4

|λ0|2
d∑
j=1

RjLRja(t, x)Π0π
λ0(Rj)π

λ0(Rj).

Using

RjRj =
1

4
(P 2
j +Q2

j ) +
i

4
Z (λ0) and [Rj , Rj ] =

i

2
Z (λ0),

we obtain

RjLRj = (L − iZ (λ0))RjRj and Π0π
λ0(Rj)π

λ0(Rj) = −|λ0|
2

Π0

and therefore

Π0V σ2 ·Πλ0(V )Π0 =− 2

|λ0|

d∑
j=1

(L − iZ (λ0))RjRjaΠ0

=− 2

|λ0|
(L − iZ (λ0))

(1

4
∆G +

id

4
Z (λ0)

)
aΠ0

=− 1

2|λ0|

(
i ((d/2)− 1) Z (λ0) − 1

2 ∆G

)
(∆G + idZ (λ0))aΠ0,

which concludes the proof of (C.8) with

L̃ = − 1

2|λ0|

(
i ((d/2)− 1) Z (λ0) − 1

2 ∆G

)
(∆G + idZ (λ0)),

that is clearly self-adjoint. �

In case the harmonics of the initial wave packet are no more equal to h0, e.g.

uε0 = WP εx0,λ0
(a, hα, hα)

with α ∈ Nd of length n, the operator ΠnV σ2π(V )Πn is not scalar: it is matricial
since one must add terms of the form (bβ(t, x)πλ0

x hα, hβ) for all β ∈ Nd of length n.
Equation (C.9) is then replaced by an equation with values in finite-rank operators.
Setting F (σ0) = ΠnV σ2π(V )Πn, F is a linear map on S (G,L (Vn)), where Vn =

Vect(hα, |α| = n). We endow this set of matrix-valued functions with the scalar
product 〈a, b〉 =

∫
G

TrL (Vn)(a(x)b(x))dx. Then, one can define two linear maps A
and S such that F = S + A with S self-adjoint, A skew symmetric and A ◦ S = S ◦A.
Observing that σ0(0) = a(x) IdVn ∈ KerA, one then solves i∂tσ0 = F (σ0) in KerA,
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which induces the solution σ0(t) = e−itSσ0(0). As a conclusion, noticing that the
argument would be the same for

uε0 = WP εx0,λ0
(a, hγ , hα)

for α 6= γ, we deduce the following remark from the linearity of the equation and the
fact that the set of Hermite functions generates L2(Rd).

Remark C.2. — The solution to (1.3) with V = 0 and initial data which is a wave
packet is asymptotic to a wave packet in finite time.

References
[1] N. Anantharaman, C. Fermanian Kammerer & F. Macià – “Semiclassical completely integrable

systems: long-time dynamics and observability via two-microlocal Wigner measures”, Amer. J.
Math. 137 (2015), no. 3, p. 577–638.

[2] N. Anantharaman & F. Macià – “Semiclassical measures for the Schrödinger equation on the
torus”, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 6, p. 1253–1288.

[3] H. Bahouri – “Non prolongement unique des solutions d’opérateurs ‘somme de carrés’”, Ann.
Inst. Fourier (Grenoble) 36 (1986), no. 4, p. 137–155.

[4] H. Bahouri, C. Fermanian Kammerer & I. Gallagher – “Dispersive estimates for the Schrödinger
operator on step-2 stratified Lie groups”, Anal. PDE 9 (2016), no. 3, p. 545–574.

[5] H. Bahouri, P. Gérard & C.-J. Xu – “Espaces de Besov et estimations de Strichartz généralisées
sur le groupe de Heisenberg”, J. Anal. Math. 82 (2000), p. 93–118.

[6] K. Beauchard & P. Cannarsa – “Heat equation on the Heisenberg group: observability and appli-
cations”, J. Differential Equations 262 (2017), no. 8, p. 4475–4521.

[7] K. Beauchard, J. Dardé & S. Ervedoza – “Minimal time issues for the observability of Grushin-
type equations”, Ann. Inst. Fourier (Grenoble) 70 (2020), no. 1, p. 247–312.

[8] A. Bonfiglioli, E. Lanconelli & F. Uguzzoni – Stratified Lie groups and potential theory for their
sub-Laplacians, Springer Monographs in Math., Springer, Berlin, 2007.

[9] J.-M. Bony – “Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy
pour les opérateurs elliptiques dégénérés”, Ann. Inst. Fourier (Grenoble) 19 (1969), no. 1,
p. 277–304.

[10] N. Burq & C. Sun – “Time optimal observability for Grushin Schrödinger equation”, 2019, to
appear in Anal. PDE, arXiv:1910.03691v3.

[11] N. Burq & M. Zworski – “Control for Schrödinger operators on tori”, Math. Res. Lett. 19 (2012),
no. 2, p. 309–324.

[12] V. Chabu, C. Fermanian Kammerer & F. Macià – “Semiclassical analysis of dispersion phenomena”,
in Analysis and partial differential equations: perspectives from developing countries, Springer
Proc. Math. Stat., vol. 275, Springer, Cham, 2019, p. 84–108.

[13] , “Wigner measures and effective mass theorems”, Ann. H. Lebesgue 3 (2020), p. 1049–
1089.

[14] M. Combescure & D. Robert – Coherent states and applications in mathematical physics, Theo-
retical and Math. Physics, Springer, Dordrecht, 2012.

[15] L. J. Corwin & F. P. Greenleaf – Representations of nilpotent Lie groups and their applications.
Part I. Basic theory and examples, Cambridge Studies in Advanced Math., vol. 18, Cambridge
University Press, Cambridge, 1990.

[16] M. Duprez & A. Koenig – “Control of the Grushin equation: non-rectangular control region and
minimal time”, ESAIM Control Optim. Calc. Var. 26 (2020), article no. 3 (18 pages).

[17] C. Fermanian Kammerer – “Mesures semi-classiques 2-microlocales”, C. R. Acad. Sci. Paris Sér.
I Math. 331 (2000), no. 7, p. 515–518.

[18] , “Analyse à deux échelles d’une suite bornée de L2 sur une sous-variété du cotangent”,
Comptes Rendus Mathématique 340 (2005), no. 4, p. 269–274.

[19] C. Fermanian Kammerer & V. Fischer – “Quantum evolution and sub-Laplacian operators on
groups of Heisenberg type”, 2019, to appear in J. Spectral Theory, arXiv:1910.14486.

J.É.P. — M., 2021, tome 8

http://arxiv.org/abs/1910.03691v3
http://arxiv.org/abs/1910.14486


1512 C. Fermanian Kammerer & C. Letrouit

[20] , “Semi-classical analysis on H-type groups”, Sci. China Math. 62 (2019), no. 6, p. 1057–
1086.

[21] , “Defect measures on graded Lie groups”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 21
(2020), p. 207–291.

[22] C. Fermanian Kammerer & P. Gérard – “Mesures semi-classiques et croisement de modes”, Bull.
Soc. math. France 130 (2002), no. 1, p. 123–168.

[23] C. Fermanian Kammerer & C. Lasser – “Propagation through generic level crossings: a surface
hopping semigroup”, SIAM J. Math. Anal. 40 (2008), no. 1, p. 103–133.

[24] V. Fischer & M. Ruzhansky – Quantization on nilpotent Lie groups, Progress in Math., vol. 314,
Birkhäuser/Springer, Cham, 2016.

[25] P. Gérard – “Mesures semi-classiques et ondes de Bloch”, in Séminaire sur les Équations aux
Dérivées Partielles, 1990–1991, École Polytechnique, Palaiseau, 1991, Exp. No. XVI, 19 p.

[26] , “Microlocal defect measures”, Comm. Partial Differential Equations 16 (1991), no. 11,
p. 1761–1794.

[27] P. Gérard & E. Leichtnam – “Ergodic properties of eigenfunctions for the Dirichlet problem”,
Duke Math. J. 71 (1993), no. 2, p. 559–607.

[28] P. Gérard, P. A. Markowich, N. J. Mauser & F. Poupaud – “Homogenization limits and Wigner
transforms”, Comm. Pure Appl. Math. 50 (1997), no. 4, p. 323–379, Erratum: Ibid. 53 (2000),
no. 2, p. 280–281.

[29] G. A. Hagedorn – “Semiclassical quantum mechanics. I. The ~ → 0 limit for coherent states”,
Comm. Math. Phys. 71 (1980), no. 1, p. 77–93.

[30] B. Helffer, A. Martinez & D. Robert – “Ergodicité et limite semi-classique”, Comm. Math. Phys.
109 (1987), no. 2, p. 313–326.

[31] L. Hörmander – “Hypoelliptic second order differential equations”, Acta Math. 119 (1967),
p. 147–171.

[32] S. Jaffard – “Contrôle interne exact des vibrations d’une plaque rectangulaire”, Portugal. Math.
47 (1990), no. 4, p. 423–429.

[33] A. Kaplan – “Fundamental solutions for a class of hypoelliptic PDE generated by composition
of quadratic forms”, Trans. Amer. Math. Soc. 258 (1980), no. 1, p. 147–153.

[34] A. Koenig – “Non-null-controllability of the Grushin operator in 2D”, Comptes Rendus Mathé-
matique 355 (2017), no. 12, p. 1215–1235.

[35] C. Lasser & S. Teufel – “Propagation through conical crossings: an asymptotic semigroup”,
Comm. Pure Appl. Math. 58 (2005), no. 9, p. 1188–1230.

[36] C. Laurent & M. Léautaud – “Tunneling estimates and approximate controllability for hypoel-
liptic equations”, 2017, to appear in Mem. Amer. Math. Soc., arXiv:1703.10797.

[37] G. Lebeau – “Control for hyperbolic equations”, in Journées “Équations aux Dérivées Partielles”
(Saint-Jean-de-Monts, 1992), École Polytechnique, Palaiseau, 1992, p. 24.

[38] , “Contrôle de l’équation de Schrödinger”, J. Math. Pures Appl. (9) 71 (1992), no. 3,
p. 267–291.

[39] , “Équation des ondes amorties”, in Algebraic and geometric methods in mathematical
physics (Kaciveli, 1993), Math. Phys. Stud., vol. 19, Kluwer Acad. Publ., Dordrecht, 1996,
p. 73–109.

[40] C. Letrouit – “Subelliptic wave equations are never observable”, 2020, arXiv:2002.01259.
[41] C. Letrouit & C. Sun – “Observability of Baouendi-Grushin-type equations through resolvent

estimates”, 2020, to appear in J. Inst. Math. Jussieu, arXiv:2010.05540.
[42] J.-L. Lions – Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1.

Contrôlabilité exacte, Recherches en Mathématiques Appliquées, vol. 8, Masson, Paris, 1988.
[43] P.-L. Lions & T. Paul – “Sur les mesures de Wigner”, Rev. Mat. Iberoamericana 9 (1993), no. 3,

p. 553–618.
[44] F. Macià – “High-frequency propagation for the Schrödinger equation on the torus”, J. Funct.

Anal. 258 (2010), no. 3, p. 933–955.
[45] , “The Schrödinger flow in a compact manifold: high-frequency dynamics and dispersion”,

in Modern aspects of the theory of partial differential equations, Oper. Theory Adv. Appl., vol.
216, Birkhäuser/Springer Basel AG, Basel, 2011, p. 275–289.

J.É.P. — M., 2021, tome 8

http://arxiv.org/abs/1703.10797
http://arxiv.org/abs/2002.01259
http://arxiv.org/abs/2010.05540


Observability and controllability for the Schrödinger equation 1513

[46] , “High-frequency dynamics for the Schrödinger equation, with applications to dispersion
and observability”, in Nonlinear optical and atomic systems, Lect. Notes in Math., vol. 2146,
Springer, Cham, 2015, p. 275–335.

[47] F. Macià & G. Rivière – “Two-microlocal regularity of quasimodes on the torus”, Anal. PDE 11
(2018), no. 8, p. 2111–2136.

[48] , “Observability and quantum limits for the Schrödinger equation on Sd”, in Probabilistic
methods in geometry, topology and spectral theory, American Mathematical Society, Providence,
RI, 2019, p. 139–153.

[49] L. Miller – “Propagation d’ondes semi-classiques à travers une interface et mesures 2-micro-
locales”, PhD Thesis, École Polytechnique, Palaiseau, 1996.

[50] F. Nier – “A semi-classical picture of quantum scattering”, Ann. Sci. École Norm. Sup. (4) 29
(1996), no. 2, p. 149–183.

[51] N. V. Pedersen – “Matrix coefficients and a Weyl correspondence for nilpotent Lie groups”,
Invent. Math. 118 (1994), no. 1, p. 1–36.

[52] L. Tartar – “H-measures, a new approach for studying homogenisation, oscillations and concen-
tration effects in partial differential equations”, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990),
no. 3-4, p. 193–230.

[53] M. E. Taylor – Noncommutative harmonic analysis, Math. Surveys and Monographs, vol. 22,
American Mathematical Society, Providence, RI, 1986.

Manuscript received 8th October 2020
accepted 16th August 2021

Clotilde Fermanian Kammerer, Univ Paris Est Creteil, CNRS, LAMA
F-94010 Creteil, France
Univ Gustave Eiffel, LAMA
F-77447 Marne-la-Vallée, France
E-mail : clotilde.fermanian@u-pec.fr
Url : https://perso.math.u-pem.fr/fermanian.clotilde/

Cyril Letrouit, Sorbonne Université, Université Paris-Diderot, CNRS, Inria, LJLL
75005 Paris, France
DMA, École normale supérieure, CNRS, PSL Research University
75005 Paris, France
E-mail : letrouit@ljll.math.upmc.fr
Url : https://www.math.ens.fr/~letrouit/

J.É.P. — M., 2021, tome 8

mailto:clotilde.fermanian@u-pec.fr
https://perso.math.u-pem.fr/fermanian.clotilde/
mailto:letrouit@ljll.math.upmc.fr
https://www.math.ens.fr/~letrouit/

	1. Introduction
	2. Semi-classical analysis on quotient manifolds
	3. Proof of the sufficiency of the geometric conditions
	4. Non-commutative wave packets and the necessity of the geometric control
	Appendix A. Representations of H-type groups
	Appendix B. Pseudodifferential operators and semi-classical measures
	Appendix C. Wave packet solutions to the Schrödinger equation
	References

