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THE TANGENT COMPLEX OF K-THEORY

by Benjamin Hennion

Abstract . —We prove that the tangent complex of K-theory, in terms of (abelian) deformation
problems over a characteristic 0 field k, is the cyclic homology (over k). This equivalence
is compatible with λ-operations. In particular, the relative algebraic K-theory functor fully
determines the absolute cyclic homology over any field k of characteristic 0. We also show that
the Loday-Quillen-Tsygan generalized trace comes as the tangent morphism of the canonical
map BGL∞ → K. The proof builds on results of Goodwillie, using Wodzicki’s excision for cyclic
homology and formal deformation theory à la Lurie-Pridham.

Résumé (Le complexe tangent de la K-théorie) . — Dans cet article, nous prouvons que le
complexe tangent de la K-théorie, en termes de problèmes de déformations formels et sur un
corps k de caractéristique nulle, n’est autre que l’homologie cyclique sur k. Cette équivalence est
de plus compatible aux λ-opérations. Nous démontrons également que le morphisme tangent
du morphisme canonique BGL∞ → K est homotope au morphisme de trace généralisée de
Loday-Quillen et Tsygan. La démonstration s’appuie sur des résultats de Goodwillie, à l’aide
du théorème d’excision pour l’homologie cyclique de Wodzicki et de la théorie des déformations
formelles à la Lurie-Pridham.
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Introduction

Computing the tangent space of algebraic K-theory has been the subject of many
articles. The first attempt known to the author is due to Spencer Bloch [Blo73] in
1973. It was then followed by a celebrated article of Goodwillie [Goo86] in 1986.
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896 B. Hennion

Considering the following example, we can easily forge an intuition on the matter.
Let A be a smooth commutative Q-algebra and G(A) be the group

G(A) = [GL∞(A),GL∞(A)]

of elementary matrices. It admits a universal central extension

1 −→ K2(A) −→ G(A)+ −→ G(A) −→ 1

by the second K-theory group of A. The group G(A)+ is the Steinberg group of A.
This above exact sequence can also be extended as an exact sequence

(1) 1 −→ K2(A) −→ G(A)+ −→ GL∞(A) −→ K1(A) −→ 1.

This exact sequence can be thought as the universal extension of GL∞ by K-theory
(both K2 and K1 here). This idea leads to Quillen’s definition of K-theory through
the +-construction.

Consider now the tangent Lie algebra gl∞ of GL∞ : B 7→ GL∞(B). Its current Lie
algebra gl∞(A) := gl∞ ⊗Q A also admits a universal central extension, this time by
the first cyclic homology group

(2) 0 −→ HCQ
1 (A) −→ gl∞(A)+ −→ gl∞(A) −→ 0.

The obvious parallel between these two central extensions leads to the idea that the
(suitably considered) tangent space (or rather complex) of K-theory should be cyclic
homology. We will give a meaning to this folkloric statement, prove it and provide a
comparison between these extensions (see below).

In both of the aforementioned articles of Bloch and Goodwillie, the tangent space
is considered in a rather naive sense: as if K-theory were an algebraic group. Bloch
defines the tangent space of K-theory at 0 in K(A) (for A a smooth commutative
algebra over Q) as the fiber of the augmentation

K(A[ε]) −→ K(A),

where ε squares to 0. Goodwillie then extends and completes the computation by
showing that relative (rational) K-theory is isomorphic to relative cyclic homology,
in the more general setting where A is a simplicial associative Q-algebra. He shows
that for any nilpotent extension A′ of A, the homotopy fibers of K(A′)⊗Q→ K(A)⊗Q
and of HCQ

• (A′)→ HCQ
• (A) are quasi-isomorphic.

In this article, we give another definition of the tangent space of K-theory using
deformation theory, over any field k containing Q. We then show that this tangent
space is equivalent to the absolute and k-linear cyclic homology. Before explaining
exactly how this tangent space is defined, let us state the main result. In this intro-
duction, we will restrict for simplicity to the connective case(1) (or equivalently to the

(1)For the unbounded case, we essentially replace in what follows A ⊗k B with its connective
cover (A⊗k B)60.
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The tangent complex of K-theory 897

case of simplicial algebras). With our definition of tangent complex, for any unital
simplicial k-algebra A, we have

TK(A),0 ' HCk
•−1(A),

where the right-hand-side denotes the (shifted) k-linear (absolute) cyclic homology
of A. Of course, for this to hold for any field k, the left-hand side has to depend on k.
This dependence occurs by only considering relative K-theory of nilpotent exten-
sions A′ of A of the form

A′ = A⊗k B −→ A,

where B is a (dg-)Artinian commutative k-algebra with residue field k. This defines
a functor

K(AA) : dgArtk −→ Sp>0

B 7−→ hofib(K(A⊗k B)→ K(A))

from the category of dg-Artinian commutative k-algebras with residue field k to
the category of connective spectra. The category of such functors dgArtk → Sp>0

admits a full subcategory of formal deformation problems – i.e., of functors satisfying
a Schlessinger condition (see Definition 2.1.1). The datum of such a functor is now
equivalent to the datum of a complex of k-vector spaces. The induced fully faithful
functor dgModk → Fct(dgArtk,Sp>0) admits a left adjoint – denoted by `Ab –
that forces the Schlessinger conditions.

We define(2) the tangent complex of K-theory (of A) as

TK(A),0 := `Ab(K(AA))

and our main theorem now reads

Theorem 1 (see Corollary 3.1.3). — Let A be any (H-)unital dg-algebra over k, with
char(k) = 0. There is a natural equivalence

H−•
(
TK(A),0

)
' HCk

•−1(A).

This equivalence is furthermore compatible with the λ-operations on each side.

We later extend this result to the case where A is replaced by a quasi-compact quasi-
separated scheme.

As a consequence, the K-theory functor fully determines the cyclic homology func-
tors over all fields of characteristic 0. Moreover, it gives its full meaning to the use of
“Additive K-theory” as a name of cyclic homology (see [FT87]).

Using our theorem, we then prove (see Theorem 4.2.1) that the canonical natural
transformation BGL∞ → K (encoding the aforementioned universal central extension

(2)This definition is somewhat close to this idea of Goodwillie derivatives, but for functors defined
on categories of non-abelian nature (of commutative algebras in our case). Replacing dgArtk with
complexes of k-vector spaces would give us the Goodwillie derivative of the K-theory functor, namely
Hochschild homology. See Remark 3.1.6.
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898 B. Hennion

of GL∞) induces a morphism gl∞(A) → HCk
• (A) of homotopical Lie algebras (i.e.,

a L∞-morphism). Such a morphism corresponds to a morphism of complexes

CEk
• (gl∞(A)) −→ HCk

•−1(A)

from the Chevalley-Eilenberg homological complex to cyclic homology. We will show
that this morphism identifies with the Loday-Quillen-Tsygan generalized trace. In par-
ticular, it exhibits HCk

•−1(A) as the kernel of the universal central extension of gl∞(A).
As a consequence, the extensions (1) and (2) above are indeed tangent to one another.

Structure of the proof. — The proof of Theorem 1 goes as follows. First, we show in
Section 2.3 that the tangent complex TK(A),0 only depends on the (relative) rational
K-theory functor K ∧ Q. Using the work of Goodwillie [Goo86], we know the rela-
tive rational K-theory functor is equivalent (through the Chern character), with the
relative rational cyclic homology functor: K ∧Q ' HCQ

•−1. We get

TK(A),0 := `Ab(K(AA)) ' `Q
(
HCQ

•−1(AA)
)
,

where HCQ
•−1(AA) : dgArtk → dgMod60

Q maps an Artinian dg-algebra B over k

to the connective Q-dg-module hofib(HCQ
•−1(A ⊗k B) → HCQ

•−1(A)), and where `Q

is the left adjoint of the fully faithful functor dgModk → Fct(dgArtk,dgMod60
Q )

mapping V to B 7→ (V ⊗k Aug(B))60.
Since cyclic homology if well defined for non-unital algebras, we also have a functor

HCQ
•−1(A A) mapping an Artinian B to the (shifted) cyclic homology of the augmen-

tation ideal A A(B) := A⊗k Aug(B).
We then argue that the functor `Q is (non-unitally) symmetric monoidal (once

restricted to a full subcategory, see Proposition 2.3.9). Since `Q(A ⊗k Aug(−)) = A,
this implies the equivalence `Q HCQ

•−1(A A) ' HCk
•−1(A).

We will then prove (see Theorem 3.1.1) that the induced morphism

`Q HCQ
•−1(A A)

∼−→ `Q HCQ
•−1(AA)

is a quasi-isomorphism. We use here the assumption that A is unital (or at least
H-unital). This excision statement is close to Wodzicki’s excision theorem for cyclic
homology [Wod89]. The structure of our proof relies on a paper by Guccione and
Guccione [GG96], where the authors give an alternative proof of Wodzicki’s theorem.
Nonetheless, our Theorem 3.1.1 is strictly speaking not a consequence of Wodzicki’s
theorem, and the proof is somewhat more subtle.

Composing these quasi-isomorphisms, we find the announced theorem

TK(A),0 := `Ab(K(AA)) ' `Q(HCQ
•−1(AA)) ' `Q(HCQ

•−1(A A)) ' HCk
•−1(A).

Possible generalizations. — In this article, we work (mostly for simplicity) over a
field k of characteristic 0. The results will also hold over any commutative Q-algebra,
or, more generally, over any eventually coconnective simplicial Q-algebra.(3) This can

(3)so that the theory of formal moduli problems would still work flawlessly.

J.É.P. — M., 2021, tome 8



The tangent complex of K-theory 899

surely also be done over more geometric bases like schemes or stacks (and bounded
enough derived versions of such).

A more interesting generalization would be to (try to) work over the sphere spec-
trum. Since we only need in what follows ‘abelian’ formal moduli problems, it is not
so clear that the characteristic 0 assumption is necessary. There would, however, be
significant difficulties to be overcome, starting with a Wodzicki’s excision theorem for
topological cyclic homology.

Notations. — From now on, we fix the following notations

– Let k be a field of characteristic 0.
– Let dgModk denote the category of (cohomologically graded) complexes of

k-vector spaces. Let dgMod60
k be its full subcategory of connective objects (i.e., V •

such that V n = 0 for n > 0). Let dgModk and dgMod60
k denote the ∞-categories

obtained from the above by inverting the quasi-isomorphisms.
– Let dgAlgnu

k be the category of (possibly non-unital) associative algebras in
dgModk (with its usual graded tensor product). We denote by dgAlgnu,60

k its full
subcategory of connected objects and by dgAlgnu,60

k ⊂ dgAlgnu
k the associated

∞-categories.
– For A ∈ dgAlgnu,60

k , we denote by dgBiModnu,60
A the category of connective

k-complexes with a left and a right action of A. We denote by dgBiModnu,60
A the

associated ∞-category.(4)

– Let cdga60
k denote the category of connective commutative dg-algebras over k.

We denote by cdga60
k its ∞-category.

– Let sSets be the ∞-category of spaces, Sp>0 the ∞-category of connective
spectra, and Σ∞ : sSets� Sp>0 :Ω∞ the adjunction between the infinite suspension
and loop space functors.

Acknowledgements. — The question answered in this text naturally appeared while
working on [FHK19] with G. Faonte and M.Kapranov. A discussion with G.Ginot
and M.Zeinalian raised the problem dealt with in our last section. I thank them
for the many discussions we had, that led to this question. I thank D.Calaque,
P-G.Plamondon, J. Pridham and M.Robalo for useful discussions on the content of
this article.

Finally, I thank J. Pridham for bringing [Pri16] to my attention when the first
version of our work appeared online. Some arguments used in [Pri16] are fairly similar
to those we use here.

(4)In the case where A is unital to begin with, the∞-category of connective A-bimodules embeds
fully faithfully into dgBiModnu,60

A . Its image is spanned by those modules on which a unit acts by
an equivalence. See [Lur16, 5.4.3.5 & 5.4.3.14].
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900 B. Hennion

1. Relative cyclic homology and K-theory

In this first section, we will introduce cyclic homology, K-theory and the relative
Chern character between them. Most of the content has already appeared in the
literature. The only original fragment is the extension of some of the statements and
proofs to simplicial H-unital algebras.

1.1. Hochschild and cyclic homologies

(A). Definitions. — Fix an associative dg-algebra A ∈ dgAlgnu
k . Assuming (for a

moment) that A is unital, its Hochschild homology is

HHk
• (A) = A⊗L

A⊗kAo A.

It comes with a natural action of the circle, and we define its cyclic homology HCk
• (A)

to be the (homotopy) coinvariants HHk
• (A)hS1 under this action. To define these

homologies for a non-unital algebra A, we first formally add a unit to A and form
A+ ' A⊕k. We then define F (A) = hocofib(F (k)→ F (A+)) for F being either HHk

•

or HCk
• . These definitions turn out to agree with the former ones when A is already

unital.
Unfortunately, we will need later down the road a construction of HCk

• (A) for A
non-unital that does not rely on the one for unital algebras. We will therefore work
with the following explicit models. We will first define strict functors, and then invert
the quasi-isomorphisms.

We fix A ∈ dgAlgnu
k a (not necessarily unital) associative algebra in complexes

over k. We also fix an A-bimodule M . Throughout this section, the tensor product ⊗
will always refer to the tensor product over k.

Definition 1.1.1. — We call the (augmented) Bar complex of A with coefficient inM
and denote by Bk

• (A,M) the ⊕-total complex of the bicomplex

· · · −→M ⊗k A
⊗2 −b′−−−−→M ⊗k A

−b′−−−−→M −→ 0

with M in degree 0 and with differential −b′ : M ⊗ A⊗n → M ⊗ A⊗n−1 given on
homogeneous elements by

b′(a0 ⊗ · · · ⊗ an) =

n−1∑
i=0

(−1)εia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an,

where εi = i+
∑
j<i |aj | (|a| standing for the degree of the homogeneous element a).

One easily checks that b′ squares to 0 and commutes with the internal differentials
of A and M .

We denote by Bk
• (A) the complex Bk

• (A,A).

Assuming A is unital and the right action of A on M is unital, we can build a
nullhomotopy of Bk

• (A,M) ' 0. This contractibility does not hold for general non-
unital algebras and modules.

J.É.P. — M., 2021, tome 8



The tangent complex of K-theory 901

Definition 1.1.2 (Wodzicki). — The dg-algebra A as above is called H-unital if
Bk

• (A) ' 0. The A-bimodule M is called H-unitary over A if Bk
• (A,M) ' 0.

Remark 1.1.3. — In the above definitions, we only used the right action of A on M .
In the original article of Wodzicki, such a module M would be called right H-unitary.
A similar notion exists for left modules.

Remark 1.1.4. — If A is H-unital, then the right module M ⊗ A is H-unitary, for
any M . Indeed, we then have Bk

• (A,M ⊗A) 'M ⊗Bk
• (A) ' 0.

Definition 1.1.5. — We denote by H k
• (A,M) the ⊕-total complex of the bicomplex

· · · −→M ⊗k A
⊗2 b−−→M ⊗k A

b−−→M −→ 0

with M in degree 0 and with differential b : M ⊗A⊗n →M ⊗A⊗n−1 given on homo-
geneous elements by

b(a0 ⊗ · · · ⊗ an) = b′(a0 ⊗ · · · ⊗ an) + (−1)(|an|+1)εnana0 ⊗ · · · ⊗ an−1.

Here also, the differential squares to 0 and is compatible with the internal differentials
of A and M .

We denote by H k
• (A) the complex H k

• (A,A).

If A is (H-)unital, the complex H k
• (A) is the usual Hochschild complex, that

computes the Hochschild homology of A. For general A’s, we need to compensate for
the lack of contractibility of the Bar-complex with some extra-term.

Let t,N : A⊗n+1 → A⊗n+1 by the morphisms given on homogeneous elements by
the formulas

t(a0 ⊗ · · · ⊗ an) = (−1)(|an|+1)εnan ⊗ a0 ⊗ · · · ⊗ an−1 and N =

n∑
i=0

ti.

One easily checks that they define morphisms of complexes 1− t : Bk
• (A)→H k

• (A)

and N : H k
• (A)→ Bk

• (A). Moreover we have N(1− t) = 0 and (1− t)N = 0. We can
therefore define Hochschild and cyclic homology as follows.

Definition 1.1.6. — We define the Hochschild homology HHk
• (A) and the cyclic ho-

mology HCk
• (A) of A as the ⊕-total complexes of the following bicomplexes

HHk
• (A) : · · · −−−−−→ 0 −−−−−−−−−−→ 0 −−−−−→ Bk

• (A)
1− t−−−−−→H k

• (A)→ 0→ · · ·

HCk
• (A) : · · · N−−−→ Bk

• (A)
1− t−−−−−→H k

• (A)
N−−−→ Bk

• (A)
1− t−−−−−→H k

• (A)→ 0→ · · ·

where in both cases, the rightmost H k
• (A) is in degree 0. The Connes exact sequence

is the obvious fiber and cofiber sequence

HHk
• (A) HCk

• (A) HCk
• (A)[2]B

induced by the above definitions.

J.É.P. — M., 2021, tome 8



902 B. Hennion

Remark 1.1.7. — The Hochschild homology of A is the homotopy cofiber of

1− t : Bk
• (A) −→H k

• (A).

In particular, we have a fiber (and cofiber) sequence

Bk
• (A)

1− t−−−−−→H k
• (A) −→ HHk

• (A).

If A is H-unital, then we have H k
• (A) ' HHk

• (A). Moreover, under this assumption,
using the reduced Bar complex as a resolution of A as a A⊗Ao-dg-module, we easily
show:

HHk
• (A) ' A⊗L

A⊗Ao A.

Remark 1.1.8. — The normalization N can be seen as a morphism N : HHk
• (A) →

HHk
• (A)[−1], which in turn is an action of (the k-valued homology of) the circle S1

on HHk
• (A). Choosing a suitable resolution of k as an H•(S1) := H•(S1,k)-module,

we find
HCk

• (A) = HHk
• (A)hS1 = HHk

• (A)⊗L
H•(S1) k.

(B). Relation to Chevalley-Eilenberg homology. — Cyclic homology is sometimes refer-
red to as additive K-theory for the following reason: it is related to (the homology of)
the Lie algebra gl∞(A) of finite matrices the same way K-theory is related to (the
homology of) the group GL∞(A).

More specifically, for A a dg-algebra, the generalized trace map is a morphism

Tr: CEk
• (gl∞(A)) −→ HCk

• (A)[1]

used by Loday-Quillen [LQ83] and Tsygan [Tsy83] to prove (independently) the follow-
ing statement for A a discrete algebra, and by Burghelea [Bur86] for general dg-alge-
bras.

Theorem 1.1.9 (Loday-Quillen, Tsygan, Burghelea). — When A is unital, the mor-
phism Tr induces an equivalence of Hopf algebras

CEk
• (gl∞(A)) ' Symk(HCk

• (A)[1]),

where the product on the left-hand-side is given by the direct sum of matrices.

1.2. Filtrations, relative homologies and Wodzicki’s excision theorem

Definition 1.2.1. — Let f : A → B be a map of (possibly non-unital) connective(5)

dg-algebras. The relative Hochschild (resp. cyclic) homology of A over B is the homo-
topy fiber

HHk
• (f) := hofib(HHk

• (A) −→ HHk
• (B))(

resp. HCk
• (f) := hofib(HCk

• (A) −→ HCk
• (B))

)
.

(5)For simplicity, we restrict ourselves to the connective case. The general case – unneeded for
our purposes – would work similarly.

J.É.P. — M., 2021, tome 8
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If I denotes the homotopy fiber of f endowed with its induced (non-unital) algebra
structure, we have canonical morphisms

ηHH : HHk
• (I) −→ HHk

• (f) and ηHC : HCk
• (I) −→ HCk

• (f).

Theorem 1.2.2 (Wodzicki). — Let I → A → B be an extension of (possibly non-
unital) connective dg-algebras. If I is H-unital, then the induced sequences

HHk
• (I) −→ HHk

• (A) −→ HHk
• (B)

HCk
• (I) −→ HCk

• (A) −→ HCk
• (B)

are fiber and cofiber sequences. In other words, the canonical morphisms ηHH and ηHC

are equivalences.

Wodzicki proves in [Wod89] the above theorem in the case where A, B and I are
concentrated in degree 0. Although his proof should be generalizable to connective
dg-algebras, some computations seem to become tedious. Fortunately, Guccione and
Guccione published in [GG96] another proof of this result, that is very easily gener-
alizable to connective dg-algebras. There is also a more recent article of Donadze and
Ladra [DL14] proving this result for simplicial algebras.

We will actually not need Theorem 1.2.2 in what follows. We will, however, need to
reproduce some steps of its proof in a more complicated situation. In this subsection,
we will give a short proof of Theorem 1.2.2, where we have isolated the statements to
be used later. The proof closely follows the work of [GG96].

We fix f : A→ B a degree-wise surjective morphism in dgAlgnu,60
k . We denote by I

the kernel of f . Let M ∈ dgBiModnu,60
A .

(A). A filtration from Bk
• (I,M) to Bk

• (A,M) and from H k
• (I,M) to H k

• (A,M)

We introduce a filtration on both Bk
• (A,M) and H k

• (A,M). These filtrations were
originally found in [GG96].

Fix n ∈ N. Let p ∈ N. We set

Mn
p =

{
M ⊗Ap if p 6 n
M ⊗A⊗n ⊗ I⊗p−n if p > n.

We denote by Fn
Bk

•
(f,M) (resp. Fn

H k
•

(f,M)) the subcomplex of Bk
• (A,M) (resp.

H k
• (A,M)) given as the total complex of the bicomplex

Fn
Bk

•
(f,M) : · · · →Mn

p
−b′−−−−→Mn

p−1
−b′−−−−→ · · · −b

′
−−−−→Mn

1
−b′−−−−→Mn

0 → 0(
resp. Fn

H k
•

(f,M) : · · · →Mn
p

b−−−−→Mn
p−1

b−−−−→ · · · b−−−−→Mn
1

b−−−−→Mn
0 → 0

)
.

In particular, we have

F 0
Bk

•
(f,M) = Bk

• (I,M), Bk
• (A,M) ' colimn Fn

Bk
•
(f,M)

F 0
H k

•
(f,M) = H k

• (I,M) and H k
• (A,M) ' colimn Fn

H k
•

(f,M).

J.É.P. — M., 2021, tome 8



904 B. Hennion

Lemma 1.2.3. — The quotients

Fn+1
Bk

•
(f,M)

/
Fn

Bk
•
(f,M) and Fn+1

H k
•

(f,M)
/
Fn

H k
•

(f,M)

are isomorphic to the complex

A⊗n ⊗B ⊗Bk
• (I,M)[n+ 1].

Proof. — We have Mn+1
p /Mn

p
' 0 if p 6 n and Mn+1

p /Mn
p
' A⊗n ⊗ B ⊗ Ip−n ⊗M

else. A rapid computation shows that in the induced differential

A⊗n ⊗B ⊗ Ip+1−n ⊗M −→ A⊗n ⊗B ⊗ Ip−n ⊗M

is equal to idA⊗n⊗B ⊗(−b′) in the case of Fn+1
Bk

•
(f,M)/Fn

Bk
•
(f,M) and to idA⊗n⊗B ⊗b′

in the case of Fn+1
H k

•
(f,M)/Fn

H k
•

(f,M). �

Corollary 1.2.4. — If M is H-unitary as an I-bimodule, then

0 ' Bk
• (I,M) ' Bk

• (A,M) and H k
• (I,M) 'H k

• (A,M).

Corollary 1.2.5. — Let N be a connective left B-dg-module. If I is H-unital then

H k
• (A,N ⊗ I) 'H k

• (I,N ⊗ I) = Bk
• (I,N ⊗ I) ' 0.

Proof. — The first equivalence is an application of the above corollary. The equality
follows from the trivial observation that the left action if I on N is trivial. The last
equivalence is implied by the fact that I is H-unital, together with Remark 1.1.4. �

(B). A filtration from Bk
• (A,B) to Bk

• (B) and from H k
• (A,B) to H k

• (B)

For n, p ∈ N, we set

Nn
p :=

{
B⊗p+1 if p 6 n
B⊗n+1 ⊗A⊗p−n else.

We define Qn
Bk

•
(f) (resp. Qn

H k
•

(f)) as the quotient of Bk
• (A,B) (resp. of H k

• (A,B))
given by

Qn
Bk

•
(f) : · · · −→ Nn

p
−b′−−−−→ Nn

p−1
−b′−−−−→ · · · −b

′
−−−−→ Nn

1
−b′−−−−→ Nn

0 −→ 0(
resp. Qn

H k
•

(f) : · · · −→ Nn
p

b−−−−→ Nn
p−1

b−−−−→ · · · b−−−−→ Nn
1

b−−−−→ Nn
0 −→ 0

)
.

We have Q0
Bk

•
(f) ' Bk

• (A,B) and Q0
H k

•
(f) 'H k

• (A,B), as well as

colimn Qn
Bk

•
(f) ' Bk

• (B) and colimn Qn
H k

•
(f) 'H k

• (B).

Lemma 1.2.6. — For any n ∈ N, we have:

ker
(
Qn

Bk
•
(f)→ Qn+1

Bk
•

(f)
)
' Bk

• (A,B⊗n+1 ⊗ I)[n+ 1]

ker
(
Qn

H k
•

(f)→ Qn+1
H k

•
(f)
)
'H k

• (A,B⊗n+1 ⊗ I)[n+ 1].
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Proof. — We have {
Kn
p := ker(Nn

p → Nn+1
p ) ' 0 if p 6 n,

Kn
p ' B⊗n+1 ⊗ I ⊗A⊗p−n−1 else.

The differential b′ induces the differential Kn
p+1 → Kn

p given on a homogeneous tensor
b0 ⊗ · · · ⊗ bn ⊗ in+1 ⊗ an+2 ⊗ · · · ⊗ ap+1 by the formula

± b0 ⊗ · · · ⊗ bn ⊗ in+1an+2 ⊗ an+3 ⊗ · · · ⊗ ap+1

+

p∑
j=n+2

±b0 ⊗ · · · ⊗ bn ⊗ in+1 ⊗ an+2 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ap+1.

The other terms, for 0 6 j 6 n, cancel because of the vanishing of the composite
I → A→ B. The conclusion follows. �

Corollary 1.2.7. — If I is H-unital, then

Bk
• (A,B) ' Bk

• (B) and H k
• (A,B) 'H k

• (B).

Proof. — It follows from Lemma 1.2.6 and Corollary 1.2.5 that the filtration from
H k

• (A,B) to H k
• (B) we just introduced is quasi-constant. The case of Bk

• is similar.
�

(C). Proof of Theorem 1.2.2. — We start with an extension I → A→ B of connective
dg-algebras. Up to suitable replacements, we can assume that f : A→ B is a degree-
wise surjective, and that I is its kernel. Consider the commutative diagram

H k
• (I)

H k
• (A, I) H k

• (A) H k
• (A,B)

H k
• (B).

α

β

The functor H k
• (A,−) preserves fiber sequences, and therefore the horizontal se-

quence is a fiber sequence. From Corollary 1.2.4 and Corollary 1.2.7, we deduce that α
and β are quasi-isomorphisms. In particular the diagonal sequence is a fiber sequence.
Similarly, we show that the sequence

Bk
• (I) −→ Bk

• (A) −→ Bk
• (B)

is a fiber sequence. The result then follows from the definitions of HHk
• and HCk

• .

(D). Invariance under quasi-isomorphisms. — Let us record for future use that all
the constructions of the previous paragraphs are well-behaved with respect to quasi-
isomorphisms.
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Lemma 1.2.8. — The following statements hold.
(1) Let A → A′ be a quasi-isomorphism in dgAlgnu,60

k and let M1 → M2 be a
quasi-isomorphism of connective A′-bimodules. The induced morphisms

Bk
• (A,M1) −→ Bk

• (A′,M1) −→ Bk
• (A′,M2)

and H k
• (A,M1) −→H k

• (A′,M1) −→H k
• (A′,M2)

are quasi-isomorphisms. In particular, we have quasi-isomorphisms

Bk
• (A) −→ Bk

• (A,A′) −→ Bk
• (A′) and H k

• (A) −→H k
• (A,A′) −→H k

• (A′)

as well as
HHk

• (A) −→ HHk
• (A′) and HCk

• (A) −→ HCk
• (A′).

(2) Let f : A→ B and g : A′ → B′ be two fibrations in dgAlgnu,60
k and let A→ A′

and B → B′ be two quasi-isomorphisms commuting with f and g. Denote by I and I ′
the kernels of f and g, respectively (so that the induced morphism I → I ′ is a quasi-
isomorphism too). Then

(a) The following induced morphisms are quasi-isomorphisms:

Qn
Bk

•
(f) −→ Qn

Bk
•
(g), Qn

H k
•

(f) −→ Qn
H k

•
(g).

(b) For any morphism of connective A′-bimodules M1 → M2, the induced
morphisms

Fn
Bk

•
(f,M1) −→ Fn

Bk
•
(g,M1) −→ Fn

Bk
•
(g,M2)

and Fn
H k

•
(f,M1) −→ Fn

H k
•

(g,M1) −→ Fn
H k

•
(g,M2)

are quasi-isomorphisms.

Proof. — These are standard arguments: each of the complexes at hand is defined as
the total space of a simplicial object. In particular, it comes with a canonical filtration
whose graded parts are of one of the following forms (up to the obvious notational
changes)

M ⊗k A
⊗n or M ⊗k A

⊗n ⊗k I
p−n or B⊗n+1 ⊗k A

⊗p−n.

Since k is a field, the induced morphisms between these graded parts are quasi-
isomorphisms and the result follows. �

Corollary 1.2.9. — The functors Bk
• , H k

• , Qn
Bk

•
, Qn

H k
•
, Fn

Bk
•
, Fn

H k
•
, HHk

• and HCk
•

descend to ∞-functors (that we will denote in the same way) between the appropriate
∞-categories localized along quasi-isomorphisms.

1.3. Relative cyclic homology and K-theory. — In this subsection, we recall the
fundamental notions of K-theory and of the equivariant Chern character, at least in
the relative setting.

We consider the (connective) K-theory functor as an∞-functor dgAlg60
k → Sp>0.

Let (dgAlg60
k )∆1

nil denote the ∞-category of morphisms A → B that are surjective
with nilpotent kernel at the level of H0.
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Definition 1.3.1. — The relative K-theory functor is the ∞-functor

K: (dgAlg60
k )∆1

nil −→ Sp>0

given on a morphism f : A→ B by the homotopy fiber K(f) = hofib(K(A)→ K(B)).

Since the map H0A→ H0B is surjective with nilpotent kernel, the map K1(A)→
K1(B) is also surjective while the map K0(A)→ K0(B) is an isomorphism. In partic-
ular, the spectrum K(f) is connected.

Remark 1.3.2. — Using Bass’ exact sequence, one can easily show (see for instance
[Bei14, §2.8]) that relative connective K-theory and relative non-connective K-theory
are equivalent:

K(f) := hofib(K(A) −→ K(B)) ' hofib(Knc(A) −→ Knc(B)) ∈ Sp.

Definition 1.3.3. — The relative cyclic homology functor is the ∞-functor

HCk
• : (dgAlg60

k )∆1

nil −→ dgMod60
k

given on f : A→ B by HCk
• (f) := hofib(HCk

• (A)→ HCk
• (B)).

Remark 1.3.4. — Goodwillie’s definition of relative K-theory and cyclic homology in
[Goo86] differs from ours by a shift of 1.

The main result of [Goo86] states that the Chern character induces an equivalence
ch: K ∧ Q → HCQ

• [1]. The construction of the relative Chern character from the
absolute one is straightforward. We will however need a more hands-on construction
in Section 4. The two constructions have been proven to coincide by Cortiñas and
Weibel in [CW09] (see Remark 1.3.11 below).

In order to construct our relative Chern character, we will need some explicit model
for relative K-theory of connective dg-algebras over k (containing Q). For convenience,
we will work with the equivalent model of simplicial k-algebras. We denote by sAlgk

the category of simplicial (unital) algebras over k, endowed with its standard model
structure.

(A). Matrix groups and K-theory. — We start by recalling notions from [Wal85] (see
also [Goo86]).

For A ∈ sAlgk, we denote by Mn(A) the simplicial set obtained by taking n × n-
matrices level-wise. Finally, we define the group of invertible matrices as the pullback

GLn(A) Mn(A)

GLn(π0A) Mn(π0A).

We have π0(GLn(A)) ' GLn(π0A) and πi(GLn(A)) ' Mn(πiA) for i > 1. In partic-
ular, this construction preserves homotopy equivalences. The simplicial set GLn(A)

is a group-like simplicial monoid and we denote by BGLn(A) its classifying space.
Finally, we denote by BGL∞(A) the colimit colimn BGLn(A).
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Applying Quillen’s plus construction to BGL∞(A) yields a model for K-theory,
so that there is an equivalence

K0×BGL∞(−)+ ' Ω∞K .

Based on this equivalence, we will build in the next paragraph a model for relative
K-theory using relative Volodin spaces.

(B). Relative Volodin construction. — The Volodin model for the K-theory of rings first
appeared in [Vol71] in the absolute case. The relative version seems to originate from
an unpublished work of Ogle and Weibel. It can also be found in [Lod92]. We will
need a version of that construction for simplicial algebras over k.

We fix a fibration f : A → B in sAlgk such that the induced morphism π0(A) →
π0(B) is surjective. In particular, the morphism f is level-wise surjective. We denote
by I its kernel and we assume that π0I is nilpotent in π0A.

Definition 1.3.5. — Let n > 1 and let σ be a partial order on the set {1, . . . , n}.
We denote by Tσn(A, I) the sub simplicial set of Mn(A) given in dimension p by the
subset of Mn(Ap) consisting of matrices of the form 1 + (aij) with aij ∈ Ip if i is not
lower than j for the order σ.

As a simplicial set, Tσn(A, I) is isomorphic to a simplicial set of the form Aα × Iβ
with α and β are integers depending on σ, such that α + β = n2. In particular, this
construction is homotopy invariant. Moreover, the map Tσn(A, I) → Mn(A) factors
through GLn(A). Actually, Tσn(A, I) is a simplicial subgroup of the simplicial monoid
GLn(A).

Definition 1.3.6. — We define the relative Volodin space X(A, I) as the union
X(A, I) :=

⋃
n,σ

BTσn(A, I) ⊂ BGL∞(A).

The group π1(X(A, I)) contains as a maximal perfect subgroup the group E(π0(A))

and we apply the plus construction to this pair.

Proposition 1.3.7. — The inclusion X(A, I)→ BGL∞(A) induces a fiber sequence
X(A, I)+ −→ BGL∞(A)+ −→ BGL∞(B)+.

In particular, we have a (functorial) equivalence
X(A, I)+ ' Ω∞K(f).

Proof. — This is a classical argument, that can be found in [Lod92, §11.3] for rings.
We simply extend it to simplicial algebras. We start by drawing the following com-
mutative diagram

X(A, 0) X(A, I) Ω∞K(f)

X(A, 0) BGL∞(A) BGL∞(A)+

0 BGL∞(B)+ BGL∞(B)+

(a) (b) (c)
(1)

(2)

(3)
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The space X(A, 0) is acyclic (see [Sus81] for the discrete case, the simplicial case
being deduced by colimits). It follows (by the properties of the plus construction), that
row (2) is a fibration sequence. Obviously, so are row (3) and columns (a) and (c).
It now suffices to show that column (b) is a fibration sequence. Consider the commu-
tative diagram

X(A, I) BGL∞(A) BGL∞(B)+

X(B, 0) BGL∞(B) BGL∞(B)+.

(τ) p

The square (τ) is homotopy Cartesian. Indeed, the morphism p is induced by a point-
wise surjective fibration of group-like simplicial monoids (recall that we assumed π0(I)

to be nilpotent). It is therefore a fibration. We can now see that the diagram is carte-
sian on the nose by looking at its simplices. The bottom row is a fibration sequence.
It follows that the top row (which coincides with column (b)) is also a fibration se-
quence.

As a consequence, row (1) induces a fibration sequence in homology. Since X(A, 0)

is acyclic, the homologies of X(A, I) and of Ω∞K(f) are isomorphic. It follows that
X(A, I)+ and Ω∞K(f) are homotopy equivalent. �

(C). Malcev’s theory. — In order to construct our relative Chern character

ch: K ∧Q −→ HCQ
• [1],

it is now enough to relate the homology of the relative Volodin spaces X(A, I) with
cyclic homology. This step uses Malcev’s theory, that relates homology of nilpotent
uniquely divisible groups (such as Tσn(A, I) for A discrete) with the homology of an
associated nilpotent Lie algebra. The original reference is [Mal49].

For simplicity, we will only work with Lie algebras of matrices. We assume for
now that A is a discrete unital Q-algebra. Let n ⊂ gln(A) be a nilpotent sub-Lie
algebra (for some n). Denote by N the subgroup N := exp(n) ⊂ GLn(A). We have
the following proposition (for a proof, we refer to [SW92, Th. 5.11]).

Proposition 1.3.8 (Malcev, Suslin-Wodzicki). — There is a quasi-isomorphism

Q[BN ] := C•(BN,Q) −→ CEQ
• (n)

functorial in n, where BN denotes the classifying space of N . Moreover, this quasi-
isomorphism is compatible with the standard filtrations on these complexes.

The construction of this quasi-isomorphism is based on two statements. First, the
completion of the algebras U (n) and Q[N ] along their augmentation ideals are isomor-
phic and, second, the standard resolutions of Q as a trivial module on these algebras
are compatible. It follows that this quasi-isomorphism is actually compatible with the
standard filtrations on both sides.

Fix I ⊂ A a nilpotent ideal. For n ∈ N and σ a partial order on {1, . . . , n}, we denote
by tσn(A, I) ⊂ gln(A) the (nilpotent) Lie algebra of matrices (aij) such that aij ∈ I if i
is not smaller than j for the partial order σ. We have then by definition Tσn(A, I) =
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exp(tσn(A, I)) and therefore a quasi-isomorphism τ : Q[BTσn(A, I)] → CEQ
• (tσn(A, I))

functorial in A and I.
Return now to the general case of a morphism of simplicial rings f : A → B such

that π0A→ π0B is surjective with nilpotent kernel. First, we replace A so that A→ F

is a filtration (i.e., is levelwise surjective) and ker(A0 → B0) is nilpotent. Using the
monoidal Dold–Kan correspondence (see [SS03]), we can further assume An (resp. Bn)
to be a nilpotent extension of A0 (resp. B0). All in all, we have replaced f with an
equivalent morphism, which is levelwise surjective and such that the kernel I is (level-
wise) nilpotent. Both functors Q[BTσn(−,−)] and CEQ

• (tσn(−,−)) preserve geometric
realizations and we therefore get a (functorial) quasi-isomorphism

τ : Q[BTσn(A, I)] −→ CEQ
• (tσn(A, I))

by applying τ level-wise.

(D). The relative Chern character. — The usual construction (used among others by
Goodwillie) is based on the absolute Chern character ch: K → HCQ

• (−)[1]. It is a
(functorial) morphism of spectra K(f) → HCQ

• (f)[1]. We will only need the induced
relative (and Q-linear) version:

Definition 1.3.9. — We will denote by ch the (Q-linear) relative Chern character

ch: K(f) ∧Q −→ HCQ
• (f)[1].

Theorem 1.3.10 (Goodwillie [Goo86]). — The morphism ch is a quasi-isomorphism.

In order to compare a tangent map to the generalized trace in Section 4, we will
need another description of the relative Chern character. Using the natural inclusion
tσn(A, I)→ gl∞(A) and the generalized trace map, we get a morphism

CEQ
• (tσn(A, I)) −→ CEQ

• (gl∞(A)) −→ HCQ
• (A)[1]

whose image lies in the subcomplex HCQ
• (f)[1]. We find

Q[BTσn(A, I)]
∼−→ CEQ

• (tσn(A, I))
Tr−−−→ HCQ

• (f)[1].

Taking the colimit on n and σ, we find a version of the relative Chern character

chQ : Q[Ω∞K(f)] ' Q[X(A, I)] −→ HCQ
• (f)[1].

This version a priori does not descend to a morphism of spectra. However, Cortiñas
and Weibel proved that ch induces a morphism Q[Ω∞K(f)] → HCQ

• (f)[1] that is
functorially homotopic to our chQ (see [CW09]).

Remark 1.3.11. — Cortiñas and Weibel only consider the case of discrete algebras.
If f : A → B is a surjective morphism of simplicial algebras, we can reduce to the
discrete case. Indeed, writing f as a geometric realization of discrete fn : An → Bn
and setting In = ker(fn), we find Q[X(A, I)] ' colim[n] Q[X(An, In)] as well as
HCQ

• (f) ' colim[n] HCQ
• (fn). The relative Chern characters evaluated on I ⊂ A→ B

are then (both) determined by their value on discrete algebras, and therefore coincide
using Cortiñas and Weibel’s result.
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(E). The case of H-unital algebras. — In the proof of our main result, we will use a
Goodwillie theorem for H-unital algebras. To extend Theorem 1.3.10 to this context,
we will need the following result of Suslin and Wodzicki [SW92] (see [Tam18] for its
generalization to simplicial Q-algebras)

Theorem 1.3.12 (Suslin-Wodzicki, Tamme). — If I → A → B is an extension of
(possibly non-unital) simplicial Q-algebras and I is H-unital, then the induced sequence

K(I) ∧Q −→ K(A) ∧Q −→ K(B) ∧Q

is a fiber sequence of connective spectra. In particular, if either A → B admits a
section or I is nilpotent, it is also a cofiber sequence.

We fix a nilpotent extension f : A� B of H-unital simplicial k-algebras. We get a
commutative diagram whose rows and columns are fiber and cofiber sequences

K(f) ∧Q K(k n f) ∧Q 0

K(A) ∧Q K(k nA) ∧Q K(k) ∧Q

K(B) ∧Q K(k nB) ∧Q K(k) ∧Q,

'

'

where the functor kn− formally adds a (k-linear) unit.(6) We get a natural equivalence

K(f) ∧Q ' K(k n f) ∧Q.

Similarly, using Theorem 1.2.2, we have HCQ
• (f)[1] ' HCQ

• (kn f)[1]. Theorem 1.3.10
thus leads to the following

Corollary 1.3.13. — There is a functorial equivalence

ch: K(f) ∧Q ∼−→ HCQ
• (f)[1],

in the more general case of f : A → B a nilpotent extension of H-unital simplicial
Q-algebras (that coincides with the relative Chern character when both A and B are
unital).

2. Formal deformation problems

Infinitesimal deformations of algebraic objects can be encoded by a tangential struc-
ture on the moduli space classifying these objects. In [Pri10] and [Lur11], Pridham
and Lurie established an equivalence between so-called formal moduli problems and
differential graded Lie algebras. This section starts by recalling Pridham and Lurie’s
works. We then establish some basic facts about abelian or linear formal moduli
problems.

(6)So k n− is the left adjoint to the forgetful functor sAlgk → sAlgnuk
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2.1. Formal moduli problems and dg-Lie algebras

Definition 2.1.1. — Let dgArtk ⊂ cdga60
k /k denote the full subcategory of aug-

mented connective k-cdga’s spanned by Artinian(7) ones. Let C be an ∞-category
with finite limits.

We say that a functor F : dgArtk → C satisfies the condition (S) if

(S)


(S1) The object F (k) is final in C .
(S2) For any map A→ B ∈ dgArtk that is surjective on H0, the induced
morphism F (k ×B A)→ F (k)×F (B) F (A) is an equivalence.

Definition 2.1.2. — A pre-FMP (pre-formal moduli problem) is a functor dgArtk →
sSets. We denote by PFMPk their category. A FMP (formal moduli problem) is a
pre-FMP F satisfying the condition (S). We denote by FMPk the category of formal
moduli problems, and by i : FMPk → PFMPk the inclusion functor.

Example 2.1.3. — Let X be an Artin (and possibly derived) stack and x ∈ X be a
k-point. The functor B 7→ {x} ×X(k) X(B) defined on Artinian dg-algebras satisfies
the Schlessinger condition (see [TV08] for instance). It thus defines a formal moduli
problem.

The category PFMPk is presentable, and the full subcategory FMPk is strongly
reflexive. In particular, the inclusion i : FMPk → PFMPk admits a left adjoint.

Definition 2.1.4. — We denote by L: PFMPk → FMPk the left adjoint to the
inclusion i. We call it the formalization functor.

Definition 2.1.5. — A shifted dg-Lie algebra over k is a complex V together with a
dg-Lie algebra structure on V [−1]. We denote by dgLieΩ

k the ∞-category of shifted
dg-Lie algebras.

Remark 2.1.6. — The notation Ω is here to remind us the shift in the Lie structure.
Note that shifting a complex V by −1 amounts to computing its (pointed) loop space
ΩV ' V [−1].

Theorem 2.1.7 (Pridham, Lurie). — The functor T : FMPk → dgModk (computing
the tangent complex) factors through the forgetful functor dgLieΩ

k → dgModk. In
other words, the tangent complex TF of a formal moduli problem admits a natural
shifted Lie structure. Moreover, the functor F 7→ TF induces an equivalence

FMPk ' dgLieΩ
k .

Definition 2.1.8. — We denote by ` the composite functor ` := T ◦ L: PFMPk →
dgLieΩ

k , and by e : dgLieΩ
k
∼−→ FMPk the inverse functor T−1.

(7)Recall that A is called Artinian if its cohomology is finite dimensional over k, and if H0(A) is
a local ring.
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Example 2.1.9. — Let X be a smooth scheme and x ∈ X a k-point. Example 2.1.3
yields an associated formal moduli problem whose tangent complex is TX,x, the tan-
gent space of X at x. The shifted Lie structure is the trivial.

More interestingly, if G is a smooth group scheme, then its classifying stack BG

is an Artin stack. The tangent complex to the associated formal moduli problem is
g[1] = TG,1[1], the shift of the Lie algebra of G. The shifted Lie algebra structure on
g[1] is the usual Lie algebra structure on g. This will be discussed in more detail in
Section 4 below.

Let us recall briefly how the equivalence in Theorem 2.1.7 is constructed. Consider
the Chevalley-Eilenberg cohomological functor

CE•
k : dgLieop

k −→ cdgak
/
k.

It admits a left adjoint, denoted by Dk, so that for any L and B, we have

MapdgLiek
(L,Dk(B)) ' Mapcdgaaug

k
(B,CE•

k(L)).

The equivalence e : dgLieΩ
k
∼−→ FMPk is then given on V ∈ dgLieΩ

k by the formula

e(V )(B) := MapdgLiek
(Dk(B), V [−1]).

Proving this construction indeed defines an equivalence is based on the following key
lemma

Lemma 2.1.10 (see [Lur11, 2.3.5]). — For B ∈ dgArtk, the adjunction morphism

B −→ CE•
k(Dk(B))

is an equivalence.

In what follows, we will need slightly more general versions of formal moduli prob-
lems, namely formal moduli problems with values in an∞-category such as complexes
of vectors spaces or connective spectra.

Definition 2.1.11. — Let C be an ∞-category with all finite limits. A C -valued pre-
FMP is a functor dgArtk → C . A C -valued formal moduli problem (or FMP) is a
C -valued pre-FMP satisfying the condition (S).

We denote by PFMPC
k the category of C -valued pre-FMPs, by FMPC

k the cat-
egory of C -valued FMPs. We also denote by iC : FMPC

k → PFMPC
k the inclusion

functor.

Lemma 2.1.12. — If C is a presentable ∞-category, then PFMPC
k and FMPC

k are
presentable categories, and iC admits a left adjoint.

Definition 2.1.13. — In the above situation, we will denote by LC the left adjoint
to iC .
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Proof of Lemma 2.1.12. — The presentability of PFMPC
k is [Lur09, 5.5.3.6]. Remains

to prove that FMPC
k ⊂ PFMPC

k is a strongly reflexive category (see [Lur09, p. 482]).
Fix a cartesian square (σ) in dgArtk

C A

k B

f(σ)

where f is surjective on H0. We denote by D(σ) ⊂ PFMPC
k the full subcategory

spanned by functors F mapping (σ) to a pullback square. Since FMPC
k =

⋂
(σ) D(σ)

and because of [Lur09, 5.5.4.18], it suffices to prove that D(σ) is strongly reflexive in
PFMPC

k .
Restriction along (σ) defines a functor σ∗ : PFMPC

k → Fct(K,C ) where K =

∆1 × ∆1 is the square. The functor σ∗ admits a left adjoint σ! (namely the left
Kan extension functor, see [Lur09, 4.3.3.7]). A functor F belongs to D(σ) if and only
if σ∗(F ) is a pullback square. By [Lur09, 5.5.4.19], the full subcategory Fct(K,C )

spanned by pullback squares is strongly reflexive. It thus follows from [Lur09, 5.5.4.17]
that D(σ) is strongly reflexive in PFMPC

k . �

We conclude this section by recording a functoriality statement, whose proof is
straightforward and left to the reader.

Lemma 2.1.14. — Let f : C � D : g be an adjunction between presentable ∞-cate-
gories.

(1) Composing with g induces a functor g∗ : PFMPD
k → PFMPC

k that maps for-
mal moduli problems to formal moduli problems.

(2) The induced functor g∗ : FMPD
k → FMPC

k admits a left adjoint f! given by
the composition f! = LD ◦f∗ ◦ iC , where f∗ : PFMPC

k → PFMPD
k is the functor

given by composing with f .
(3) We have f! ◦ LC ' LD ◦f∗.

2.2. Abelian moduli problems. — The moduli problem of concern in this article
is constructed from the (connective) K-theory functor. In particular, its values are
endowed with an abelian group structure, or equivalently are connective spectra.
We shall therefore establish a couple of basic properties of these abelian formal moduli
problems.

(A). Abelian formal moduli problems. — Denote by FMPAb
k (resp. PFMPAb

k ) the
category of abelian group objects (i.e., group-like E∞-monoids) in (pre-)formal moduli
problems. We call their objects abelian (pre-)formal moduli problems.

Forgetting the abelian group structure and the free abelian group functor form an
adjunction

FAb : FMPk � FMPAb
k : GAb .

We also have a similar adjunction
Σ∞ : PFMPk � PFMPAb

k : Ω∞ .
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Note the categoriesPFMPAb
k and FMPAb

k identify withPFMPC
k (resp. FMPC

k ),
when C = Sp>0 is the category of connective spectra (see [Lur16, Rem. 5.2.6.26]).
In particular, the above adjunction is given by applying pointwise the functors
Σ∞ : sSets � Sp>0 : Ω∞. Finally, we denote by iAb : FMPAb

k → PFMPAb
k the

inclusion functor, and by LAb its left adjoint.

Remark 2.2.1. — We have a Beck-Chevalley transformation L ◦Ω∞ → GAb ◦LAb.
It is in general not an equivalence. In particular, an abelian pre-FMPs, such as the
K-theory functor, will have two different associated formal moduli problems, and two
different tangent Lie algebras (one of which will automatically be abelian, see below).

(B). Abelian dg-Lie algebras. — It follows from Theorem 2.1.7 that the category
FMPAb

k is equivalent to the category dgLieΩ,Ab
k of abelian group objects in dgLieΩ

k .
We shall call objects of dgLieΩ,Ab

k abelian dg-Lie algebras.
Although the following statement is well-known to the community, we could not

locate a proof in the literature. We therefore provide one.

Proposition 2.2.2. — The forgetful functor

dgLieΩ,Ab
k −→ dgModk

is an equivalence. In particular FMPAb
k ' dgLieΩ,Ab

k ' dgModk.

Definition 2.2.3. — We denote by TAb : FMPAb
k

∼−→ dgModk the equivalence of
the above proposition. We denote by eAb : dgModk

∼−→ FMPAb
k its inverse.

of the proposition. — For any pointed category, we denote by Ω its pointed loop space
endofunctor. Denote by FMP>n

k the category of FMP in (n − 1)-connective spaces.
In particular, we have FMP>0

k = FMPk. The inclusion of (n− 1)-connective spaces
into all spaces induces a fully faithful functor FMP>n

k → PFMPk. We denote by un
the composite

un : FMP>n
k −→ PFMPk

L−−→ FMPk.

Lemma 2.2.4. — The functor un is an equivalence.

Proof. — For any ∞-category C with finite products, denote by Mongp
En

(C ) the
∞-category of group-like En-monoids in C (see [Lur16, Def. 5.2.6.6]). By [Lur16,
Th. 5.2.6.10], the n-th loop space defines a (pointwise) equivalence Ωn : FMP>n

k →
Mongp

En
(FMPk).

It follows from [BKP18, Prop. 2.15] that taking the n-th loop space also defines
an equivalence FMPk → Mongp

En
(FMPk). Its inverse is homotopic to the composite

functor L ◦Bn, where Bn is the n-fold delooping functor. The composition

FMP>n
k

Ωn−−−→ Mongp
En

(FMPk)
L ◦Bn−−−−−−→ FMPk

is then homotopic to un, and is an equivalence. �
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We continue our proof of Proposition 2.2.2. The forgetful functor f : dgLieΩ
k →

dgModk commutes with limits (and thus with Ω). We get a commutative diagram,
where the leftmost column is obtained by taking the limit of the rows

C1 := limFMP>n
k · · · FMP>2

k FMP>1
k FMP>0

k

C2 := limFMPk · · · FMPk FMPk FMPk

C3 := limdgLieΩ
k · · · dgLieΩ

k dgLieΩ
k dgLieΩ

k

C4 := limdgModk · · · dgModk dgModk dgModk.

'

u∞

Ω Ω

'

u2

Ω
'

u1

'

u0

' T∞

Ω Ω

'
T

Ω

'

T

'

T

f∞

Ω Ω

f

Ω

f f
Ω
∼

Ω
∼

Ω
∼

Since the category dgModk is stable, the projection on the rightmost component is
an equivalence C4 ' dgModk. The category C1 identifies with the category of formal
moduli problems in the limit category

lim(· · · −→ sSets>1 −→ sSets>0) ' Sp>0.

By [Lur16, Rem. 5.2.6.26], C1 is equivalent to FMPAb
k , and therefore

C3 ' dgLieΩ,Ab
k .

Moreover, the equivalence T∞ is homotopic to the equivalence FMPAb
k ' dgLieΩ,Ab

k

induced directly from T : FMPk ' dgLieΩ
k by taking abelian group objects on both

sides. The projections on the rightmost component C1 → FMP>0
k = FMPk and

C3 → dgLieΩ
k identify with the functors forgetting the abelian group structure, while

the functor f∞ : dgLieΩ,Ab
k ' C3 → C4 ' dgModk is the forgetful functor.

Remains to prove that f∞ is an equivalence. Since f is conservative, so is f∞. The
functor f∞ is the limit of functors with left adjoints, and therefore it admits a left
adjoint g∞. Denote by g the left adjoint of f . Up to a shift, the functor g identifies
with the free Lie algebra functor:

g(V ) ' FreeLie(V [−1])[1].

For a fixed V ∈ dgModk ' C4, the adjunction unit V → f∞ ◦ g∞(V ) identifies with
the canonical map

φV : V −→ colimn Ωn(g(V [n])).

The full subcategory of dgModk spanned by V ’s such that φV is an equivalence is
stable under filtered colimits. We may thus assume V to be perfect, concentrated
in (cohomological) degrees lower than some integer m. Fix i ∈ Z. For n > m + i,
the cohomology group Hi(Ωn(g(V [n]))) is independent of n and isomorphic to Hi(V ).
In particular, the map φV is a quasi-isomorphism. �

Definition 2.2.5. — We denote by CEΩ
• : dgLieΩ

k → dgModk the functor mapping
a shifted dg-Lie algebra L to the Chevalley-Eilenberg complex of its shift CE•(L[−1]).

We denote by CEΩ
• : dgLieΩ

k → dgModk the functor mapping a shifted dg-Lie
algebra L to the reduced Chevalley-Eilenberg complex of its shift CE•(L[−1]).
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Definition 2.2.6. — We denote by θ : dgModk ' dgLieΩ,Ab
k → dgLieΩ

k the functor
forgetting the abelian group structure.

Lemma 2.2.7. — The functor θ : dgModk → dgLieΩ
k identifies with the functor map-

ping a complex to itself with the trivial bracket. As a consequence, CEΩ
• is left adjoint

to θ.

Proof. — Denote by h(V ) the (shifted) dg-Lie algebra with trivial bracket built on
V ∈ dgModk. Since g is given as a free (shifted) dg-Lie algebra, there is a canonical
morphism g(V ) → h(V ) given by collapsing the free brackets. By construction, the
functor θ is given by the formula

θ(V ) ' colimn Ωn−1(g(V [n− 1])) ∈ dgLieΩ
k .

In particular, we find a functorial morphism in dgLieΩ
k

θ(V ) ' colimn Ωn−1(g(V [n− 1])) −→ colimn Ωn−1(h(V [n− 1])) ' h(V ).

We have already seen in the proof of Proposition 2.2.2 that the image by f of this
morphism is an equivalence. The first result follows by conservativity of f .

For the second statement, we simply observe that CEΩ
• is the left derived functor

of the abelianization functor L 7→ L/[L,L], which is left adjoint to h. �

(C). Description of the equivalence FMPAb
k ' dgModk. — We will give a more expli-

cit description of the equivalence of Proposition 2.2.2. The definition implies that
TAb : FMPAb

k
∼−→ dgModk simply computes the tangent complex (at the only

k-point). Let us also describe its inverse eAb.

Lemma 2.2.8. — Let B ∈ dgArtk and X = Map(B,−) ∈ FMPk. We have

TFAb(X) ' Aug(B)
∨
,

where Aug computes the augmentation ideal of a given Artinian, and (−)
∨ computes

the k-linear dual.

Proof. — Since B is Artinian, we deduce from Lemma 2.1.10 that B is canonically
equivalent to the Chevalley-Eilenberg cohomology of it (shifted) tangent Lie algebra
TX. It follows that the tangent Lie algebra of FAbX is the dg-module CEΩ

• (TX) '
Aug(B)

∨. �

Proposition 2.2.9. — The functor eAb is equivalent to the functor mapping V ∈
dgModk to the abelian formal moduli problem

B 7−→
(
Aug(B)⊗k V

)60
,

where Aug computes the augmentation ideal of a given Artinian cdga and (−)60

truncates the given complex (and considers it as a connective spectrum through the
Dold-Kan equivalence).
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Proof. — The equivalence dgLieΩ
k ' FMPk is constructed by identifying dgArtk

with a full subcategory of dgLieΩ
k of so-called good (shifted) dg-Lie algebras, that

generates dgLieΩ
k in a certain way. This identification is given by the Chevalley-

Eilenberg functor CEΩ
• . In particular, given V ∈ dgModk, and B ∈ dgArtk, we

have

eAb(V )(B) ' MapFMPAb
k

(
FAb(Map(B,−)), eAb(V )

)
' MapdgModk

(
Aug(B)

∨
, V
)
'
(
Aug(B)⊗k V

)60
. �

(D). Diagrammatic summary. — It follows from Proposition 2.2.2 that an abelian
formal moduli problem is determined by its tangent complex (without any additional
structure).

We denote by `Ab the composite functor `Ab := TAb ◦LAb. We get the commutative
diagrams of right adjoints and of left adjoints

dgLieΩ
k FMPk PFMPk

dgModk FMPAb
k PFMPAb

k

θ

e

T
∼

GAb

i

eAb

TAb

∼
iAb

Ω∞

dgLieΩ
k FMPk PFMPk

dgModk FMPAb
k PFMPAb

k .

CE
Ω

•

e

T
∼

FAb
L

eAb

TAb

∼
LAb

Σ∞

`Ab

2.3. Q-linear moduli problems

(A). Definitions

Definition 2.3.1. — A Q-linear (pre-)FMP is a (pre-)FMP with values in the∞-cate-
gory C = dgMod60

Q . We shorten the notations by setting

FMPQ
k := FMPC

k , PFMPQ
k := PFMPC

k , iQ := iC and LQ := LC .

We denote by jQ the forgetful functor PFMPQ
k → PFMPAb

k and by eQ the functor
dgModk → FMPQ

k given by the formula

eQ(V ) : B 7−→
(
Aug(B)⊗k V

)60 ∈ dgMod60
Q .

Recall that eAb denotes the inverse of the equivalence T : FMPAb
k → dgModk.

Proposition 2.3.2. — The following assertions hold.
(a) The functor jQ : PFMPQ

k → PFMPAb
k preserves formal moduli problems and

is fully faithful.
(b) The functor eAb factors as

eAb ' jQ ◦ eQ : dgModk

eQ−−−→ FMPQ
k

jQ−−−→ FMPAb
k .

(c) The functors eQ : dgModk → FMPQ
k and jQ : FMPQ

k → FMPAb
k are equiva-

lences.
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As a consequence, we have the following factorization of the adjunction LAb a iAb:

dgModk ' FMPAb
k ' FMPQ

k PFMPQ
k PFMPAb

k .

iAb

iQ

LQ

jQ

− ∧Q
LAb

Proof. — The functor jQ is given by post-composing with the limit preserving functor
dgMod60

Q → Sp>0. In particular, it preserves the condition (S). Recall that Q is
idempotent in spectra: Q ∧ Q ' Q. It follows that jQ is fully faithful. This proves
Assertion (a).

Proposition 2.2.9 implies Assertion (b). All is left is Assertion (c), which follows
from Assertion (a) and Assertion (b). �

Definition 2.3.3. — We denote by TQ : FMPQ
k → dgModk the inverse of eQ. We de-

note by `Q the composite TQ ◦LQ.

Remark 2.3.4. — Since k is both initial and final in dgArtk, any F ∈ PFMPQ
k

(resp. in PFMPAb
k ) splits as F ' F ⊕ F (k), where F is pointed (i.e., satisfies the

condition (S1)) and F (k) is the constant functor. Since the inclusion iQ (resp. iAb)
factors through the category of pointed functors, its left adjoint LQ (resp. LAb) can
be decomposed into two functors. The first associates F to F , while the second forces
(S2). In particular, we have

LQ(F ) ' LQ(F ) and `Q(F ) ' `Q(F )(
resp. LAb(F ) ' LAb(F ) and `Ab(F ) ' `Ab(F )

)
.

(B). Generators. — In this paragraph, we will identify families of generators of the
category PFMPQ

k .

Definition 2.3.5. — For B ∈ dgArtk, we denote by SQ(B) ∈ PFMPQ
k (resp. S

Q
(B))

the functor

SQ(B) := C•

(
MapdgArtk

(B,−),Q
) (

resp. S
Q

(B) := C•

(
MapdgArtk

(B,−),Q
))
,

where C•(−,Q) (resp. C•(−,Q)) computes the (reduced) rational homology of a given
simplicial set.

Lemma 2.3.6. — The category PFMPQ
k is generated under colimits by functors of

the form SQ(B). The full subcategory of PFMPQ
k spanned by pointed functors (i.e.,

satisfying the condition (S1)) is generated under colimits by functors of the form
S
Q

(B).

Proof. — Note that PFMPQ
k is equivalent to the ∞-category of Q-linear objects

in PFMPk. As a category of presheaves, PFMPk is generated under colimits
by the representable functors MapdgArtk

(B,−) (for B ∈ dgArtk). It follows that
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PFMPQ
k is generated under colimits by the free Q-linear presheaves generated by

these MapdgArtk
(B,−), i.e., by the SQ(B)’s. The second statement follows. �

We now compute explicitly the formal moduli problem associated to such a gener-
ator.

Lemma 2.3.7. — Let B ∈ dgArtk. There are functorial equivalences

`Q(SQ(B)) ' `Q(S
Q

(B)) ' Aug(B)
∨
,

where (−)
∨ computes the k-linear dual and Aug the augmentation.

Proof. — From Remark 2.3.4, we have `Q(S
Q

(B)) ' `Q(SQ(B)). The result then fol-
lows from Lemma 2.2.8 in conjunction with the factorization from Proposition 2.3.2.

�

(C). Monoidality. — We will now consider monoidal structures on the adjunction

`Q : PFMPQ
k � FMPQ

k ' dgModk : eQ .

We first observe that both sides admit a natural tensor structure: ⊗k on the RHS,
and the pointwise application of ⊗Q on the LHS.

Lemma 2.3.8. — The functor eQ is non-unitally lax symmetric monoidal.

Proof. — We consider the constant moduli problem functor dgModk → PFMPQ
k

mapping V to the constant functor V . It is right adjoint to the symmetric monoidal
functor F 7→ F (k)⊗Q k and therefore inherits a lax monoidal structure.

Let I be the functor I : dgArtk → dgModQ mapping an Artinian B to its aug-
mentation ideal Aug(B). It is by construction an ideal in the commutative algebra
object I : B 7→ B and therefore inherits a non-unital commutative algebra structure.

In particular, the functor eQ : V 7→ τ60
(
V ⊗k I

)
is non-unitally lax symmetric

monoidal. �

As a direct consequence of this lemma, we get that the functor `Q is non-unitally
colax symmetric monoidal.

Proposition 2.3.9. — The functor `Q is non-unitally symmetric monoidal once
restricted to the full subcategory of pointed functors.

Proof. — We are to prove that for any pair F,G ∈ PFMPQ
k of pointed functors (i.e.,

F (k) ' G(k) ' 0), the natural morphism

γF,G : `Q
(
F ⊗Q G

)
−→ `Q(F )⊗k `

Q(G)

is an equivalence. Fixing F , we denote by DF ⊂ PFMPQ
k the full subcategory spanned

by the G’s such that γF,G is an equivalence. Since the tensor products ⊗k and ⊗Q
preserve colimits in each variable, and since `Q preserves colimits, the category DF

is stable under colimits. Using Lemma 2.3.6, we can therefore reduce the question to
the case where G (and by symmetry, also F ) is of the form S

Q
(B). Let B1 and B2 be

Artinian cdga’s over k, and assume that F = S
Q

(B1) and G = S
Q

(B2).
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The reduced Künneth formula provides a (functorial) equivalence

S
Q(
B1 ⊗k B2

)
' C•

(
MapdgArtk

(B1,−)×MapdgArtk
(B2,−),Q

)
' S

Q
(B1)⊗Q S

Q
(B2)⊕ S

Q
(B1)⊕ S

Q
(B2).

Applying `Q on that equivalence, we find using Lemma 2.3.7

Aug
(
B1 ⊗k B2

)∨ ' `Q(SQ
(B1)⊗Q S

Q
(B2)

)
⊕Aug(B1)

∨ ⊕Aug(B2)
∨
.

Since B1 and B2 are perfect as k-dg-modules, the LHS identifies with

Aug(B1)
∨ ⊗k Aug(B2)

∨ ⊕Aug(B1)
∨ ⊕Aug(B2)

∨
.

The map γ
S
Q
(B1),S

Q
(B2)

is thus a retract of the equivalence

`Q(S
Q

(B1 ⊗k B2)) ' Aug(B1 ⊗k B2)
∨

and is therefore itself an equivalence. �

Lemma 2.3.10. — Let C ∈ cdga60
Q and V ∈ dgMod60

C . Let F : dgArtk →
dgMod60

C be a pre-FMP. Tensoring pointwise by V defines a new pre-FMP F ⊗C V .
The canonical morphism

`Q(F ⊗C V ) −→ (`Q F )⊗C V

is an equivalence in dgModk.

Proof. — Since the involved functors preserves all colimits, we can reduce to the
generating case V = C, which is trivial. �

Corollary 2.3.11. — Let F,G ∈ PFMPQ
k . If F is pointed (i.e., F (k) ' 0)) and if

`Q(F ) ' 0, then `Q(F ⊗Q G) ' 0.

Proof. — We split G into the direct sum G ⊕ G(k) where G is pointed and G(k)

is a constant functor. We can therefore assume that G is either pointed or con-
stant. The first case follows from Proposition 2.3.9, while the second case follows
from Lemma 2.3.10 (for C = Q). �

3. Excision

In this section, we fix A an algebra object in PFMPQ
k . We also denote by A the

associated pointed functor

A : B 7−→ hofib(A (B) −→ A (k)).

Note that A inherits a non-unital algebra structure. Finally, we denote by A the
(non-unital) algebra `Q(A ) ' `Q(A ) in dgModk.
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3.1. Main theorem

Theorem 3.1.1. — Consider the canonical morphisms

HHQ
• (A )

αHH−−−−→ HHQ
• (A ) `Q(HHQ

• (A ))
βHH−−−−→ HHk

• (A),

HCQ
• (A )

αHC−−−−→ HCQ
• (A ) `Q(HCQ

• (A ))
βHC−−−−→ HCk

• (A).

The following holds:
(a) The morphisms βHH ◦ `Q(αHH) and βHC ◦ `Q(αHC) are equivalences.
(b) If A is H-unital, then the morphisms `Q(αHH) and `Q(αHC) are equivalences

(and therefore so are βHH and βHC).

Remark 3.1.2. — A direct consequence of Assertion (b) is that the tangent complex
of Hochschild or cyclic homology of a given functor A does not depend on A (k).
This is an excision statement similar to Theorem 1.2.2.

Corollary 3.1.3. — Let C ∈ dgAlgnu
k be H-unital. Denote by AC the functor B 7→

(C ⊗k B)60. There is a functorial equivalence

`Ab(K(AC)) ' HCk
• (C)[1].

Proof. — We have A C = eQ(C) and therefore `Q(AC) ' `Q(A C) ' C. We find

`Ab(K(AC)) ' `Ab(K(AC)) by Remark 2.3.4

' `Q(K(AC) ∧Q) by Proposition 2.3.2

' `Q(HCQ
• (AC)[1]) by Corollary 1.3.13

' `Q(HCQ
• (AC))[1] by Remark 2.3.4

' HCk
• (C)[1] by Theorem 3.1.1. �

Remark 3.1.4. — Using the notations of Definition 2.1.11 for C = Sp the category of
spectra and the proof of Proposition 2.2.2, we get that FMPSp

k (' C3) is equivalent
to dgModk. We get an adjunction

`Sp : PFMPSp
k � FMPSp

k ' dgModk : eSp .

It follows from Remark 1.3.2 and our main theorem that for any algebra object A in
PFMPQ

k such that A := `Q(A ) is H-unital, we have

`Sp(Knc(A )) ' `Ab(K(A )) ' HCk
• (A)[1].

Remark 3.1.5. — The equivalence of Corollary 3.1.3 is defined through the relative
Chern character. We know from [Cat91] and [CHW09] that the Chern character is
compatible with the λ-operations on both sides. It follows that the equivalence of
Corollary 3.1.3 is also compatible with the λ-operations.

Remark 3.1.6 (Goodwillie derivative). — Denote by f the functor Perf60
k → dgArtk

mapping a connective perfect k-complex M to the split square zero extension k⊕M .
Restricting along f defines a functor from PFMP

Sp>0

k to the category of functors
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F : Perf60
k → Sp>0. Such functors F satisfying some Schlessinger-like condition form

a category equivalent to that of k-complexes. We find a commutative diagram

Fct(Perf60
k ,Sp>0) PFMPAb

k

dgModk

− ◦ f

eAbφ

where φ (as well as eAb) is fully faithful. Now, the left adjoints `Ab and (say) ψ
of eAb and φ respectively, do not commute with −◦ f . The functor ψ can actually be
interpreted in terms of Goodwillie derivative. For instance, it can be proved to map
K(Ak) ◦ f to k ∈ dgModk. Note that k[1], seen as a k⊗ k-module, corepresents the
Goodwillie derivative of the K-theory of k:

∂K ' HH•(k,−)[1] : dgModk⊗k −→ Sp.

More generally, one can prove ψ(K(AC) ◦ f) ' HHk
• (C)[1]. Moreover, the Beck-

Chevalley transformation ψ ◦ (− ◦ f) → `Ab is identified with the usual morphism
HHk

• (C)[1]→ HCk
• (C)[1].

We will not use the above remark in what follows, so we will not provide a proof.
Note however that understanding the relationship between ψ and `Ab (and a puta-
tive circle action) may give us a less computational (and more conceptual) proof of
Corollary 3.1.3, based directly on Goodwillie calculus.

Lemma 3.1.7. — Let M ∈ PFMPQ
k be an A -bimodule. Assume that M (k) ' 0. We

set M := `Q(M ) as an A-bimodule. The canonical morphisms

βαB : `Q
(
BQ

• (A ,M )
)
−→ Bk

• (A,M)

βαH : `Q
(
H Q

• (A ,M )
)
−→H k

• (A,M)

are equivalences.

Proof. — The augmented Bar complex BQ
• (A ,M ) identifies as the homotopy cofiber

of the augmentation BQ(A ,M ) → M , where BQ(−,−) denotes the reduced Bar
complex. The latter is obtained as a homotopy colimit of the semi-simplicial Bar
construction. Since `Q preserves colimits, we find using Proposition 2.3.9

`Q
(
BQ(A ,M )

)
' `Q

(
colim[n]∈∆ M ⊗Q A ⊗Qn

)
' colim[n]∈∆M ⊗k A

⊗kn

' Bk(A,M).

Taking the homotopy cofiber of the augmentation on both sides, we find the first
claimed equivalence. Similarly, the functor H Q

• (A ,M ) is again the homotopy colimit
of a standard semi-simplicial diagram. �

of Theorem 3.1.1 (a). — The functor HHQ
• is the homotopy cofiber of the natural

transformation 1 − t : BQ
• → H Q

• . In particular, the morphism βHH ◦ `Q(αHH) is
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an equivalence because of Lemma 3.1.7 (for M = A ) and the fact that `Q preserves
cofiber sequences. In the case of HC, we use Remark 1.1.8 and Lemma 2.3.10:

`Q
(
HCQ

• (A )
)
' `Q

(
HHQ

• (A )⊗Q[ε] Q
)
' `Q

(
HHQ

• (A )
)
⊗Q[ε] Q

' HHk
• (A)⊗Q[ε] Q ' HCk

• (A),

where Q[ε] := H•(S1,Q) ∈ cdga60
Q . �

3.2. Proof of Assertion (b). — The proof of Assertion (b) in Theorem 3.1.1 is more
evolved and relies on the ideas behind Wodzicki’s Theorem 1.2.2. We first reduce the
study of Hochschild and cyclic homology to that of the complexes H and B from
Section 1.1. We will use the following terminology:

Definition 3.2.1. — A morphism f : F → G ∈ PFMPQ
k is an `Q-equivalence if `Q(f)

is an equivalence.

Denote by αH and αB the canonical morphisms

H Q
• (A )

αH−−−−→H Q
• (A ),

BQ
• (A )

αB−−−−→ BQ
• (A ).

As in the previous section, we can easily reduce the proof of Theorem 3.1.1 (b) to
proving that both αH and αB are `Q-equivalences.

Lemma 3.2.2. — If both αH and αB are `Q-equivalences, then so are αHH and αHC.

We will now focus on αH and αB using techniques from Section 1.2.

Proposition 3.2.3. — The canonical morphisms

αB : BQ
• (A ) −→ BQ

• (A ) and αH : H Q
• (A ) −→H Q

• (A )

are `Q-equivalences.

Lemma 3.2.4. — Let M ∈ PFMPQ
k be an A -bimodule. Assume that M (k) ' 0 and

that M := `Q(M ) is H-unital as an A = `Q(A )-bimodule, then

γH : H Q
• (A ,M ) −→H Q

• (A ,M ) and γB : BQ
• (A ,M ) −→ BQ

• (A ,M )

are `Q-equivalences.

Proof. — We focus on γH , the case of γB being identical. Denote by f the canonical
natural transformation A → A (k) (where on the RHS is the constant functor).
We get A ' hofib(f). Recall from Section 1.2 (A) the filtration

H Q
• (A ,M ) ' F 0

H Q
•

(f,M ) −→ · · · −→ Fn
H Q

•
(f,M ) −→ · · ·

with colimn Fn
H Q

•
(f,M ) 'H Q

• (A ,M ).

Applying `Q, we find

`Q
(
H Q

• (A ,M )
)
' `Q

(
F 0

H Q
•

(f,M )
)
−→ · · · −→ `Q

(
Fn

H Q
•

(f,M )
)
−→ · · ·
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Since `Q is a left adjoint and thus preserves colimits, we have

colimn `
Q(Fn

H Q
•

(f,M )
)
' `Q

(
colimn Fn

H Q
•

(f,M )
)
' `Q

(
H Q

• (A ,M )
)
.

It therefore suffices to prove that for any n > 0, the morphism Fn
H Q

•
(f,M ) →

Fn+1

H Q
•

(f,M ) is an `Q-equivalence. Denote by Fn the complex `Q(Fn
H Q

•
(f,M )). Since

dgModk, the codomain of `Q, is a stable ∞-category, it is enough to check that

Fn+1/
Fn ' `

Q
(
Fn+1

H Q
•

(f,M )
/
Fn

H Q
•

(f,M )

)
is contractible. Using Lemma 1.2.3, we get

Fn+1

H Q
•

(f,M )
/
Fn

H Q
•

(f,M ) ' A ⊗n ⊗A (k)⊗BQ
• (A ,M )[n+ 1].

From Lemma 3.1.7, we have `Q
(
BQ

• (A ,M )
)
' Bk

• (A,M) ' 0 (using the assumption
that M is H-unital over A). Since the functor BQ

• (A ,M ) is pointed, we get that
Fn+1/Fn ' 0 using Corollary 2.3.11. We conclude that γH is an `Q-equivalence. �

Lemma 3.2.5. — If A is H-unital, the four canonical morphisms

H Q
• (A ,A (k))

δH−−−−→H Q
• (A (k),A (k)) −→ 0

BQ
• (A ,A (k))

δB−−−→ BQ
• (A (k),A (k)) −→ 0

are `Q-equivalences.

Proof. — The functors H Q
• (A (k),A (k)) and BQ

• (A (k),A (k)) are constant. Their
images by `Q thus vanish, by Remark 2.3.4. It follows that their projections to 0 are
`Q-equivalences. We now focus on the maps δH and δB. Let f : A → A (k) be the
augmentation. Recall from Section 1.2 Section (B) the filtrations by quotients:

BQ
• (A ,A (k)) ' Q0

BQ
•
(f) −→ · · · −→ Qn

BQ
•
(f)

−→ · · · −→ colimn Qn
BQ

•
(f) ' BQ

• (A (k),A (k))

H Q
• (A ,A (k)) ' Q0

H Q
•

(f) −→ · · · −→ Qn
H Q

•
(f)

−→ · · · −→ colimn Qn
H Q

•
(f) 'H Q

• (A (k),A (k)).

Since `Q preserves colimits, it suffices to prove that the transition morphisms Qn →
Qn+1 are `Q-equivalences. Denote by M (n) the A -bimodule A (k)⊗Qn+1 ⊗Q A and
by M(n) its image by `Q. We get from Lemma 1.2.6 two fiber and cofiber sequences

BQ
• (A ,M (n))[n+ 1] −→ Qn

BQ
•
(f) −→ Qn+1

BQ
•

(f)

H Q
• (A ,M (n))[n+ 1] −→ Qn

H Q
•

(f) −→ Qn+1

H Q
•

(f).

Their image by `Q are still cofiber sequences, and it is now enough to prove that both
BQ

• (A ,M (n)) and H Q
• (A ,M (n)) are canceled by `Q. We first observe that M (n)

is pointed: M (n)(k) ' 0. Moreover, we have by Lemma 2.3.10

M(n) = `Q(M (n)) ' A (k)⊗Qn+1 ⊗Q `
Q(A ) = A (k)⊗Qn+1 ⊗Q A.
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Remark 1.1.4 implies that M(n) is H-unitary over A. Using Lemma 3.2.4, we are
reduced to the study of BQ

• (A ,M (n)) and H Q
• (A ,M (n)). By Lemma 3.1.7, we get

`Q
(
BQ

• (A ,M (n))
)
' Bk

• (A,M(n)) ' 0

and, since the left action of A on M(n) is trivial:

`Q
(
H Q

• (A ,M (n))
)
'H k

• (A,M(n)) ' Bk
• (A,M(n)) ' 0. �

Proof of Proposition 3.2.3. — We first observe that αB and αH factor as

BQ
• (A )

γB−−−→ BQ
• (A ,A )

ηB−−−→ BQ
• (A )

H Q
• (A )

γH−−−−→H Q
• (A ,A )

ηH−−−−→H Q
• (A ).

Since A is H-unital and A is pointed, Lemma 3.2.4 implies that γB and γH are
`Q-equivalences. The homotopy cofibers of ηB and ηH are respectively BQ

• (A ,A (k))

and H Q
• (A ,A (k)). They are canceled by `Q because of Lemma 3.2.5. It follows

that ηB and ηH are `Q equivalences, and so are αB and αH .
This concludes the proof of Proposition 3.2.3 and therefore the proof of Theo-

rem 3.1.1. �

3.3. Non-connective K-theory and the case of schemes. — We now extend our
main result (Corollary 3.1.3) to the case of quasi-compact quasi-separated (and pos-
sibly derived) schemes.

Proposition 3.3.1. — Let X be a quasi-compact quasi-separated (and possibly derived)
scheme over k. Denote by Knc

X : dgArtk → Sp the functor mapping an Artinian
dg-algebra B to the non-connective K-theory spectrum of the derived scheme X⊗kB =

X × Spec(B). Using the notations of Remark 3.1.4: the Chern character induces an
equivalence

`Sp(Knc
X ) ' HCk

• (X)[1].

Proof. — We write X ' colimi Spec(Ai) as a finite colimit of Zariski open affine
subschemes. By Zariski descent for K-theory, we have Knc

X ' limi Knc(AAi). Since `Sp
is an exact functor between stable ∞-categories, it preserves finite limits. We find,
using descent for cyclic homology and Corollary 3.1.3:

`Sp(KX) ' `Sp(lim Knc(AAi
)) ' lim `Sp Knc(AAi

) ' lim HCk
• (Ai)[1] ' HCk

• (X)[1].

�

Example 3.3.2 (Relation to the Picard stack). — Let us fix a quasi-compact quasi-
separated (derived) scheme X and consider the (abelian) pre-FMP PicZX :

PicZX : B 7−→ {0} ×
PicZ(X)

PicZ(X ⊗B),

where PicZ is the graded Picard functor. It follows from Example 2.1.3 that PicZX
satisfies the condition (S) and is therefore a formal moduli problem.

Recall that the determinant defines a functorial morphism of spectra from K-theory
to the graded Picard group det : Knc → PicZ. In particular, we get a morphism of
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abelian pre-FMP’s detX : Knc
X → PicZX . Taking the tangent complex yields a mor-

phism

trX : HCk
• (X)[1] ' `Sp(Knc

X ) −→ `Ab(PicZX) ' T(PicZX) ' RΓ(X,OX)[1].

The last equivalence is provided by Example 2.1.9 and the classical computation of
the tangent of the Picard stack of X at the trivial bundle.

The canonical morphism BGm → K similarly induces a section sX of trX . This
identifies RΓ(X,OX) as a summand of HCk

• (X), which corresponds to the weight 0

part in the Hodge decomposition of cyclic homology (see [Wei97]).

4. Application: the generalized trace map

Let A be a connective unital dg-algebra over k. Recall from Section 1.1, Section (B),
that the generalized trace map is a (functorial) morphism

Tr: CEk
• (gl∞(A)) −→ HCk

• (A)[1].

A morphism CEk
• (gl∞(A)) → HCk

• (A)[1] such as Tr amounts to an L∞-morphism
gl∞(A) → HCk

• (A), where the RHS is considered with its abelian L∞-structure.
It corresponds to a map Tr: gl∞(A)→ HCk

• (A) in the ∞-category dgLiek, or equiv-
alently to a map

gl∞(A)[1] −→ θ(HCk
• (A)[1])

in the ∞-category dgLieΩ
k of shifted dg-Lie algebras. Recall that θ : dgModk →

dgLieΩ
k maps a k-dg-module to the abelian shifted dg-Lie algebra built on that mod-

ule.
In this section, we will prove that the generalized trace Tr is tangent (in the sense of

formal moduli problems) to the canonical morphism of functors BGL → K mapping
a vector bundle to its class in K-theory. We will see that BGL→ K induces a tangent
morphism T : gl∞(A)→ θ(HCk

• (A)) of dg-Lie algebras over k and that T is homotopic
to the generalized trace Tr. See Theorem 4.2.1 below for a precise statement.

4.1. The tangent Lie algebra of BGL. — Let AA : dgArtk → dgAlg60
Q denote the

functor B 7→ A⊗kB. Denote by A A its augmentation ideal A A(B) ' A⊗k Aug(B).

Definition 4.1.1. — Let n ∈ N∪ {∞} and let A : dgArtk → dgAlg60
Q be any func-

tor. We denote by BGLn(A ) the functor dgArtk → sSets mapping B ∈ dgArtk to

BGLn(A )(B) := hofib(BGLn(A (B)) −→ BGLn(A (k))).

Remark 4.1.2. — The canonical morphism colimn∈N BGLn(A ) → BGL∞(A ) is an
equivalence.

Example 4.1.3. — We assume A = AA. Denote by exp(gln(A A))(B) the (nilpotent)
subgroup of GLn(AA(B)) of matrices of the form 1 + M , where M is a matrix with
coefficients in A A(B) ' A ⊗k Aug(B). We can then identify the homotopy fiber
BGLn(AA) with

BGLn(AA) ' GLn(AA(k))
/
GLn(AA) ' B exp(gln(A A)).
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For later use, we will work in a slightly bigger generality. Let R be a (possibly
non-unital) discrete k-algebra. We denote by gR the functor

gR : dgAlg60,nu
k −→ dgLie60

k

mapping a connective dg-algebra C to the Lie algebra underlying the associative
algebra C ⊗k R. Examples include the case where R is the algebra of n× n-matrices
with coefficients in k, where we find gR = gln. Obviously, the construction R 7→ gR
is functorial.

For an algebra R, we also denote by BGR(AA) ∈ PFMPk the functor

BGR(AA) : B 7−→ B exp
(
gR
(
A A(B)

))
= B exp

(
gR(A⊗k Aug(B))

)
,

where exp(gR(A⊗k Aug(B))) is the subgroup of (A⊗kB⊗kR)× consisting of elements
of the form 1 +M with M ∈ A⊗k Aug(B)⊗k R.

Lemma 4.1.4. — There is a functorial (in R) equivalence

`(BGR(AA)) ' gR(A)[1] ∈ dgLieΩ
k .

Proof. — Denote by R+ = k n R the unital k-algebra obtained by formally adding
a unit to R. Consider the functor F : dgArtk → sSets mapping B to the maximal
∞-groupoid in

PerfR+⊗kA⊗kB .

Deformations of the perfect module R⊗k A are then controlled by the functor

Def(R⊗k A) : B 7−→ F (B)⊗F (k) {R⊗A}.

It follows from [Lur11, Cor. 5.2.15 and Th. 3.3.1] that the deformations of R⊗kA are
controlled by the dg-Lie algebra gR(A) = End(R⊗k A). Moreover, we have a natural
transformation BGR(AA) → Def(R ⊗k A) which induces an equivalence on the loop
groups. It is therefore an `-equivalence and the result follows. �

Corollary 4.1.5. — For any n ∈ N ∪ {∞}, the (shifted) tangent Lie algebra of
BGLn(AA) is gln(A)[1].

4.2. The generalized trace. — Let A : dgArtk → dgAlg60
Q be any functor.

It comes with a canonical natural transformation BGL∞(A ) → Ω∞K(A ) mapping
a vector bundle to its class. We can now state the main result of this section:

Theorem 4.2.1. — Let A be a connective unital dg-algebra over k. We denote by
AA : dgArtk → dgAlg60

Q the functor B 7→ B ⊗k A. The natural transformation
BGL∞(AA)→ Ω∞K(AA) induces, by taking the tangent Lie algebras, a morphism

T : gl∞(A)[1] ' `(BGL∞(AA)) −→ `(Ω∞K(AA)) −→ θ `Ab(K(AA)) ' θ(HCk
• (A)[1])

in dgLieΩ
k . The morphism T is homotopic to the generalized trace map Tr.
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Proof. — Recall that the equivalence `Ab(K(AA)) ' HCk
• (A)[1] is built through the

relative Chern character K(AA) → jQ HCQ
• (AA)[1]. In particular, the morphism T is

induced by the natural transformation

chGL : BGL∞(AA) −→ Ω∞K(AA) −→ ν(HCQ
• (AA)[1])

where ν ' Ω∞ ◦ jQ : PFMPQ
k → PFMPk is the forgetful functor. Denote by Q[−]

the left adjoint to ν (so that it computes pointwise the rational homology of the given
simplicial set). The natural transformation chGL then factors as

chGL : BGL∞(AA) −→ νQ[BGL∞(AA)] −→ νQ[X(AA,A A)]
ν chQ
−−−−−→ νHCQ

• (AA)[1].

Recalling the construction of chQ and using Malcev’s theory for gl∞(A A), we get the
commutative diagram

BGL∞(AA) νQ[BGL∞(AA)] νQ[X(AA,A A)] νHCQ
• (AA)[1]

νCEQ
• (gl∞(A A)) ν colimn,σ CEQ

• (tσn(AA,A A)) νHCQ
• (AA)[1].

'

chQ

'

i Tr

By functoriality of the generalized trace map, we find that the composite map Tr ◦ i

is homotopic to

νCEQ
• (gl∞(A A))

Tr−−−→ HCQ
• (A A)[1]

ηHC−−−−→ HCQ
• (AA)[1].

All in all, we get that the natural transformation chGL is homotopic to the composite

BGL∞(AA) −→ νCEQ
• (gl∞(A )) −→ HCQ

• (A A)[1]
ηHC−−−−→ HCQ

• (AA)[1].

Passing to the tangent morphism and using the Beck-Chevalley natural transforma-
tion, we find

T : gl∞(A)[1] −→ `νCEQ
• (gl∞(A A)) −→ θ `Q CEQ

• (gl∞(A A)) −→ θ `Q HCQ
• (A A)[1]

∼−→ θ `Q HCQ
• (AA)[1] ' θHCk

• (A)[1].

Lemma 4.2.2. — Let R be a (possibly non-unital) k-algebra and A be a (possibly non-
unital) connective dg-algebra over k. The natural morphism

`Q CEQ
• (gR(A A)) −→ CE

k

• (gR(A))

induced by the lax monoidal structure on eQ is an equivalence.

Remark 4.2.3. — We have gR(A ⊗k −) ' (R ⊗k A) ⊗k −. Up to replacing A with
R ⊗k A, we can assume that R = k. Note that gk = gl1 computes the underlying
dg-Lie algebra of a given dg-algebra.

Proof. — By the above remark, we restrict ourselves to the case R = k. The functor
A A is pointed. In particular, the morphism `Q(A

⊗Qp

A )→ A⊗kp is an equivalence for
any p (see Proposition 2.3.9). Since `Q preserves colimits, we find

`Q(Symp
Q(A

⊗p
A [1])) ' Symp

k(A[1]).
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The Chevalley-Eilenberg complex comes with a natural filtration whose graded parts
are symmetric powers, and the result follows (since `Q preserve colimits). �

As a consequence, we get a commutative diagram, for any A ∈ dgAlg60,nu
k

`Q(CEQ
• (gl∞(A A))) `Q(HCQ

• (A A)[1])

CEk
• (gl∞(A)) HCk

• (A)[1].

`Q(Tr)

'

`Q(αHC) ◦ βHC

Tr

'

In particular, the proof of Theorem 4.2.1 now reduces to the following

Lemma 4.2.4. — For any (possibly non-unital) k-algebra R and any A ∈ dgAlg60,nu
k ,

the tangent morphism of the composite

BGR(AA) −→ Q[BGR(AA)] ' CEQ
• (gR(A A))

is homotopic (as a morphism gR(A)[1] → θ `Q(CEQ
• (gR(A A))) ' θCE

k

• (gR(A)) in
dgLieΩ

k ) to the unit of the adjunction CEΩ
• (−) = CE

k

• (−[−1]) a θ.

Proof. — By Remark 4.2.3, we may assume R = k. We are to study a morphism
A[1] → θCE

k

• (A) in dgLieΩ
k . By adjunction, it suffices to identify the corresponding

morphism CE
k

• (A)→ CE
k

• (A) with the identity. Note that this is the linear tangent of
the Malcev quasi-isomorphism Q[BGR(AA)] ' CEQ

• (gR(A A)). It is actually enough
to study the functorial morphism

ξA : CEk
• (A) −→ CEk

• (A)

obtained by adjoining a unit on both sides.
This construction is functorial in A ∈ dgAlg60,nu

k and moreover the functor A 7→
CEk

• (A) preserves geometric realizations. Since every connective dg-algebra can be
obtained as the geometric realization of a diagram of discrete algebras, the natural
transformation ξ is determined by its values on discrete algebras. We thus restrict to
discrete algebras.

Malcev’s quasi-isomorphism is compatible with the standard filtrations. It follows
that so is ξ. The associated graded part of weight p of both the source and target
of ξA vanishes for p 6 0 and is canonically isomorphic to Symp(A[1]) = (ΛpL)[p] for
positive p’s. In particular, both source and target of ξA live in the heart of Beilinson’s
t-structure on filtered complexes (see the appendix of [Bei87]). We can thus work in
the 1-category of complexes.

With Malcev’s quasi-isomorphism being compatible with the coalgebras struc-
tures, the natural transformation ξ also consists of morphisms of coalgebras. Since
CEk

• : Liek → coAlgfilt
k from discrete Lie algebras to filtered coalgebras is fully faith-

ful, it follows that ξ lifts to a self natural transformation ζ : F ⇒ F of the functor
F : Algnu

k → Liek mapping an algebra to its underlying Lie algebra.
By forgetting down to the category of small sets, we obtain a natural self-trans-

formation (still denoted ζ) of the forgetful functor G : Algk → Sets. The functor G
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is representable by the non-unital algebra k[t]>1 of polynomials P over k such that
P (0) = 0. By the Yoneda lemma, the natural transformation ζ is determined by
P ∈ k[t]>1. The fact that ζ is k-linear implies that P is of degree 1, and the fact that
it preserves the Lie brackets implies that P = at with a2 = a. In particular, the natural
transformation ζ (and therefore also ξ) is either the identity or the 0 transformation.
Since ξ is the image by `Q of the Malcev equivalence Q[BGk(A −)] ' CEQ

• (gk(A −)),
it certainly cannot vanish. �

This concludes the proof of Theorem 4.2.1. �
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