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FINER ESTIMATES ON

THE 2-DIMENSIONAL MATCHING PROBLEM

by Luigi Ambrosio & Federico Glaudo

Abstract. — We study the asymptotic behaviour of the expected cost of the random matching
problem on a 2-dimensional compact manifold, improving in several aspects the results of
[AST18]. In particular, we simplify the original proof (by treating at the same time upper and
lower bounds) and we obtain the coefficient of the leading term of the asymptotic expansion of
the expected cost for the random bipartite matching on a general 2-dimensional closed manifold.
We also sharpen the estimate of the error term given in [Led18] for the semi-discrete matching.
As a technical tool, we develop a refined contractivity estimate for the heat flow on random
data that might be of independent interest.

Résumé (Estimations plus fines sur le problème de couplage). — Nous étudions le comporte-
ment asymptotique de l’espérance du coût du problème de couplage aléatoire dans une variété
compacte de dimension 2, améliorant en de nombreux points les résultats de [AST18]. En par-
ticulier, nous simplifions la preuve originale et nous déterminons le coefficient dominant du
développement asymptotique de l’espérance du coût du couplage aléatoire biparti dans une va-
riété compacte de dimension 2. Nous précisons aussi l’estimation du terme d’erreur dans [Led18]
pour le couplage semi-discret. Nous développons une estimation de contraction plus fine pour
le flot de la chaleur sur des données aléatoires qui peut avoir un intérêt indépendant du reste
de l’article.
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738 L. Ambrosio & F. Glaudo

1. Introduction

The bipartite matching problem is a very classical problem in computer science. It
asks to find, among all possible matching in a bipartite weighted graph, the one that
minimizes the sum of the costs of the chosen edges. The most typical instance of the
matching problem arises when trying to match two families (Xi)16i6n and (Yi)16i6n

of n points in a metric space (M,d) and the cost of matching two points Xi and Yj
depends only on the distance d(Xi, Yj).

We will investigate a random version of the problem, that is, in its most general
form, the following one.

Problem (Random bipartite matching). — Let (M,d,m) be a metric measure space
such that m is a probability measure and let p > 1 be a fixed exponent. Given two fam-
ilies (Xi)16i6n and (Yi)16i6n of independent random points m-uniformly distributed
on M , study the value of the expected matching cost

E
[

min
σ∈Sn

1

n

n∑
i=1

dp
(
Xi, Yσ(i)

)]
.

For brevity we will denote with En the mentioned expected value, dropping the depen-
dence on (M,d,m) and p > 0.

The coefficient 1/n before the summation is inserted both for historical reasons and
because it will make things easier when we will move to the context of probability
measures.

Let us remark that, without any further assumption on M and m, the statement
of the problem is too general to be interesting.

In the special case M = [0, 1]
d, m = L d|M the problem has been studied deeply

in the literature. As a general reference, we suggest the reading of the book [Tal14],
which devotes multiple chapters to the treatment of the random matching problem.
Before summarizing the main known results in this setting, let us remark that also the
weighted setting (M = Rd, m a generic measure with adequate moment estimates)
has attracted a lot of attention since it is the most useful in applications (see [DSS13,
BLG14, FG15, WB17]).

Dimension = 1. — When d = 1, so M = [0, 1], the problem is much easier compared
to other dimensions. Indeed on the interval a monotone matching is always optimal.
Thus the study of En reduces to the study of the probability distribution of the k-
th point in the increasing order (that is Xk if the sequence (Xi) is assumed to be
increasing). In particular it is not hard to show

En ≈ n−p/2.

In the special case d = 1 and p = 2 we can even compute En explicitly

En =
1

3(n+ 1)
.

J.É.P. — M., 2019, tome 6



Finer estimates on the 2-d matching problem 739

A monograph on the 1-dimensional case where the mentioned results, and much more,
can be found is [BL14].

Dimension > 3. — When d > 3, for any 1 6 p <∞ it holds

En ≈ n−p/d.

For p = 1, the result is proved in [DY95, Tal92], whereas the paper [Led17] addresses
all cases 1 6 p < ∞ with methods, inspired by [AST18], similar to the ones we are
going to use.

In [BB13, Th. 2] the authors manage to prove the existence of the limit of the
renormalized cost

lim
n→∞

En · np/d

under the constraint 1 6 p < d/2, but the value of the limit is not determined.

Dimension = 2. — When d = 2, the study of En becomes suddenly more delicate. As
shown in the fundamental paper [AKT84], for any 1 6 p <∞, the growth is

En ≈
( log(n)

n

)p/2
.

Their proof is essentially combinatorial and following such a strategy there is little
hope to be able to compute the limit of the renormalized quantity

lim
n→∞

En ·
( n

log(n)

)p/2
.

Much more recently, in 2014, in [CLPS14] the authors claimed that, if p = 2, the
limit value is 1/2π with an ansatz supporting their claim (see also [CS14] for a deeper
analysis of the 1-dimensional case). Then in [AST18] it was finally proved that the
claim is indeed true. The techniques used in this latter work are completely different
from the combinatorial approaches seen in previous works on the matching problem,
indeed the tools used come mainly from the theory of partial differential equations
and optimal transport.

Semi-discrete matching problem, large scale behaviour. — In the semi-discrete match-
ing problem, a single family of independent and identically distributed points
(Xi)16i6n has to be matched to the reference measure m. By rescaling, and possibly
replacing the empirical measures with a Poisson point process, the semi-discrete
matching problem can be connected to the Lebesgue-to-Poisson transport problem of
[HS13], see [GHO18] where the large scale behaviour of the optimal maps is deeply
analyzed.

As in [AST18], we will focus on the case where (M,d) is a 2-dimensional compact
Riemannian manifold, m is the volume measure and the cost is given by the square of
the distance. From now on we are going to switch from the language of combinatorics
and computer science to the language of probability and optimal transport. Thus,
instead of matching two family of points we will minimize the Wasserstein distance
between the corresponding empirical measures.

J.É.P. — M., 2019, tome 6



740 L. Ambrosio & F. Glaudo

We will prove the following generalization of [AST18, Eq. (1.2)] to manifold different
from the torus and the square.

Theorem 1.1 (Main theorem for bipartite matching). — Let (M, g) be a 2-dimensional
compact closed manifold (or the square [0, 1]

2) whose volume measure m is a probabil-
ity. Let (Xi)i∈N and (Yi)i∈N be two families of independent random points m-uniformly
distributed on M . Then

lim
n→∞

n

log(n)
· E
[
W 2

2

(
1

n

n∑
i=1

δXi ,
1

n

n∑
i=1

δYi

)]
=

1

2π
.

In the context of the semi-matching problem we simplify the proof contained in
[AST18] and strengthen the estimate of the error term provided in [Led18].

Theorem 1.2 (Main theorem for semi-discrete matching). — Let (M, g) be a 2-dimen-
sional compact closed manifold (or the square [0, 1]

2) whose volume measure m is a
probability. Let (Xi)i∈N be a family of independent random points m-uniformly dis-
tributed on M . There exists a constant C = C(M), such that∣∣∣∣∣E

[
W 2

2

(
1

n

n∑
i=1

δXi
,m

)]
− log(n)

4πn

∣∣∣∣∣ 6 C
√

log(n) log log(n)

n
.

In order to describe our approach let us focus on the semi-discrete matching prob-
lem. Very roughly, we compute a first-order approximation of the optimal transport
from m to 1

n

∑
δXi

and we show, overcoming multiple technical difficulties, that very
often the said transport is almost optimal. In some sense, this strategy is even closer
to the heuristics behind the ansatz proposed in [CLPS14], compared to the strategy
pursued in [AST18] (even though many technical points will be in common).

More in detail, here is a schematic description of the proof.

µn µn,t µ̂n,t m
P ∗t T̂n,t

Tn,t

Figure 1.1. Sketch of the proof strategy.

(1) Let us denote µn := 1
n

∑
δXi the empirical measure. We construct a regularized

version of µn, called µn,t, that is extremely near to µn in the Wasserstein distance.
(2) We consider a probabilistic event An,tξ similar to {‖µn,t −m‖∞ < ξ} and show

that such an event is extremely likely. The event considered is rather technical, but
should be understood as the intuitive event: “the Xi are well-spread on M”.

(3) With a known trick in optimal transport (Dacorogna-Moser coupling), we con-
struct a transport map Tn,t from m to µn,t.

(4) In the event An,tξ , we derive from Tn,t an optimal map T̂n,t from m into a
measure µ̂n,t that is extremely near in the Wasserstein distance to µn,t.

(5) We conclude computing the average cost of T̂n,t.

J.É.P. — M., 2019, tome 6



Finer estimates on the 2-d matching problem 741

The regularized measure µn,t is obtained from µ through the heat flow, namely µn,t =

P ∗t (µn) where t > 0 is a suitably chosen time (see Section 2.2.3 for the definition
of P ∗t ). In Section 5 we develop an improved contractivity estimate for the heat flow
on random data and we use it to show that µn and µn,t are sufficiently near in the
Wasserstein distance. The probabilistic event An,tξ is defined and studied in Section 3.
Let us remark that this is the only section where probability theory plays a central
role. The map Tn,t is constructed in Section 4 as the flow of a vector field. The
map T̂n,t is simply the exponential map applied on (a slightly modified version of)
the same vector field. Optimality of T̂n,t follows from the fact that it has small C2-
norm (see [Gla19, Th. 1.1] or [Vil09, Th. 13.5]). We will devote Appendix A to showing
that µn,t and µ̂n,t are sufficiently near in the Wasserstein distance.

In Sections 6 and 7 we will prove our main theorems for the semi-discrete matching
problem and the bipartite matching problem. The proofs are almost equal.

Differently from the proof contained in [AST18], we do not need the duality theory
of optimal transport as it is completely encoded in the mentioned theorem stating
that a small map is optimal. In this way, we do not need to manage the upper-bound
and the lower-bound of the expected cost separately. Last but not least, as will be
clear by the comments scattered through the paper, our proof is just one little step
away from generalizing the results also to weighted manifolds and manifolds with
boundary.

Acknowledgements. — We thank F. Stra and D.Trevisan for useful comments, during
the development of the paper, and the paper’s reviewers for their constructive and
detailed observations.

2. General setting and notation

The setting and definitions we are going to describe in this section will be used in
the whole paper. Only in the section devoted to the bipartite matching we are going
to change slightly some definitions.

Whenever we say A . B we mean that there exists a positive constant C = C(M)

that depends only on the manifold M such that A 6 CB. If we add a subscript
like .p it means that the implicit constant is allowed to depend also on p. Even
though this notation might be a little confusing initially, it is extremely handy to
avoid the introduction of a huge number of meaningless constant factors.

With P(M) we will denote the set of Borel probability measures on the manifoldM .

2.1. Ambient manifold. — Let M be a closed compact 2-dimensional Riemannian
manifold and let m be its volume measure. We will always work, under no real loss
of generality, under the assumption that m is a probability measure. Unless stated
otherwise, this will be the ambient space for all our results.

It is very tempting to work in the more general setting of weighted/with boundary
manifolds. Indeed it might seem that most of what we obtain could be easily achieved
also for weighted/with boundary manifolds. Nonetheless, there is an issue that we

J.É.P. — M., 2019, tome 6



742 L. Ambrosio & F. Glaudo

could not solve. The estimate on the derivatives of the heat kernel we use, specifically
Theorem 3.9, seems to be known in literature only for a closed and nonweighted
manifold. Apart from that single result (that most likely holds also in the weighted
setting if the weight is sufficiently smooth) everything else can be easily adapted to
the weighted and nonclosed setting. In an appendix to this work, we manage to extend
the mentioned estimate to the case of the square (and thus all our results apply also
when M = [0, 1]

2).
By weighted manifold we mean a Riemannian manifold where the measure is per-

turbed as mV = e−V m where V : M → R is a smooth function (i.e., the weight). The
matching problem is very susceptible to the change of the reference measure (as the
case of Gaussian measures, recently considered in [Led17, Led18, Tal18], illustrates)
and therefore gaining the possibility to add a weight would broaden the scope of our
results.

Even though we are not able to generalize Theorem 3.9, during the paper we
will outline what are the changes necessary to make everything else work in the
weighted/with boundary case.

Let us say now the fundamental observation that is necessary to handle the
weighted/with boundary case: we have to adopt the right definition of Laplacian.

In the weighted (or even with boundary) setting, the standard Laplacian must be
replaced by the so called drift-Laplacian (still denoted ∆ for consistency), also named
Witten Laplacian, characterized by the identity

(2.1)
∫
M

−∆u · ϕdmV =

∫
M

∇u · ∇ϕdmV

for any ϕ ∈ C∞(M). This operator is related to the standard Laplace-Beltrami oper-
ator ∆̃ by ∆ = ∆̃−∇V ·∇ (see [Gri06]) and, in the case of manifolds with boundary,
(2.1) encodes the null Neumann boundary condition. Using this definition everywhere,
almost all the statements and proofs that we provide in the nonweighted closed setting
can be adapted straight-forwardly to the weighted/with boundary setting.

2.2. Random matching problem notation

2.2.1. Empirical measures. — Let (Xi)16i6n be a family of independent random
points m-uniformly distributed on M . Let us define the empirical measure associated
to the family of random points

µn :=
1

n

n∑
i=1

δXi
.

When two independent families (Xi) and (Yi) of random points m-uniformly dis-
tributed on M will be considered, we will denote with µn0 and µn1 the empirical mea-
sures associated respectively to (Xi) and (Yi).

The main topic of this paper is the study the two quantities

E
[
W 2

2 (µn,m)
]

and E
[
W 2

2 (µn0 , µ
n
1 )
]
.

J.É.P. — M., 2019, tome 6



Finer estimates on the 2-d matching problem 743

2.2.2. Wasserstein distance

The quadratic Wasserstein distance, denoted by W2( · , · ), is the distance induced
on probability measures by the quadratic optimal transport cost

W 2
2 (µ, ν) := min

π∈Γ(µ,ν)

∫
M×M

d(x, y)2 dπ(x, y),

where Γ(µ, ν) is the set of Borel probability measures on the product M ×M whose
first and second marginals are µ and ν respectively. See the monographs [Vil09] or
[San15] for further details. Let us recall that when both measures are given by a
sum of Dirac masses the Wasserstein distance becomes the more elementary bipartite
matching cost

W 2
2 (µn0 , µ

n
1 ) =

1

n
min
σ∈Sn

n∑
i=1

d (Xi, Yσ(i))
2 .

2.2.3. Heat flow regularization. — For any positive time t > 0, let µn,t be the evolu-
tion through the heat flow of µn, that is

µn,t = P ∗t (µn) =

(
1

n

n∑
i=1

pt(Xi, · )
)

m = un,tm,

where un,t is implicitly defined as the density of µn,t with respect to m. Let us recall
that P ∗t denotes the heat semigroup on the space of measures and pt( · , · ) is the heat
kernel at time t. For some background on the heat flow on a compact Riemannian
manifold, see for instance [Cha84, Chap. 6].

Why are we regularizing µn through the heat flow? First of all let us address a
simpler question: why are we regularizing at all? The intuition is that regularization
allows us to ignore completely the small-scale bad behaviour that is naturally associ-
ated with the empirical measure. For example, the regularization is necessary to gain
the uniform estimate we will show in Theorem 3.3.

But why the heat flow? A priori any kind of good enough convolution kernel that
depends on a parameter t > 0 would fit our needs. Once again the intuition is pretty
clear: the heat flow is the best way to go from the empirical measure to the standard
measure. Indeed it is well known from [JKO98] that the heat flow can be seen as the
gradient flow in the Wasserstein space induced by the relative entropy functional (see
[Erb10] for the extension of [JKO98] to Riemannian manifolds). More practically, the
semigroup property of the heat kernel provides a lot of identities and estimates and
plays a crucial role also in the proof of the refined contractivity property of Section 5.

2.2.4. The potential fn,t. — It is now time to give the most important definition.
Let fn,t : M → R be the unique function with null mean such that

(2.2) −∆fn,t = un,t − 1.

The hidden idea behind this definition, underlying the ansatz of [CLPS14], is a lin-
earization of the Monge-Ampère equation under the assumption that un,t is already
extremely near to 1. We suggest the reading of the introduction of [AST18] for a

J.É.P. — M., 2019, tome 6



744 L. Ambrosio & F. Glaudo

deeper explanation. The mentioned linearization hints us that ∇fn,t should be an
approximate optimal map from the measure µ to the measure µn,t. We will see in
Proposition 4.3 and later in Theorem 1.2 that this is indeed true.

Let us remark that, as much as possible, we try to be consistent with the notation
used in [AST18].

3. Flatness of the regularized density

Definition 3.1 (Norm of a tensor). — Given a 2-tensor field τ ∈ T 0
2 (M), let the

operator norm at a point x ∈M be defined as

|τ(x)| = sup
u,v∈TxMr{0}

|τ(x)[u, v]|
|u||v|

.

The infinity norm of the tensor τ is then defined as the supremum of the pointwise
norm

‖τ‖∞ = sup
x∈M
|τ(x)|.

Remark 3.2. — With this norm, it holds

|X(γ(1))−X‖| 6 L(γ) · ‖∇X‖∞

whenever γ : [0, 1] → M is a smooth curve, X is a smooth vector field and X‖ ∈
Tγ(1)M is the parallel transport of X(γ(0)) onto Tγ(1)M along γ.

For a fixed ξ > 0, we want to investigate how unlikely is the event

An,tξ :=
{
‖∇2fn,t‖∞ < ξ

}
.

Let us recall that (2.2) implies

‖un,t − 1‖∞ = ‖−∆fn,t‖∞ . ‖∇2fn,t‖∞,

thus the event An,tξ is very similar to (and is contained in) the event considered in
[AST18, Prop. 3.10]. Let us remark that taking a larger t > 0 will of course assure us
that An,tξ is extremely likely, but, as we will see, taking a t > 0 that is too large is
unfeasible.

Our goal is showing the following estimate on the probability of An,tξ .

Theorem 3.3. — There exists a constant a = a(M) > 1 such that, for any n ∈ N,
0 < ξ < 1 and 0 < t < 1 it holds

P
(
(An,tξ )c

)
.

1

ξ2t3
a−ntξ

2

.

The proof of Theorem 3.3 will follow rather easily via a standard concentration
inequality once we have established some nontrivial inequalities concerning the heat
kernel.

In fact, a vast part of this section will be devoted to a fine study of qt, that is a
time-averaged heat kernel.

J.É.P. — M., 2019, tome 6



Finer estimates on the 2-d matching problem 745

Definition 3.4. — Let us denote with qt : M ×M → R the unique function with
null mean value such that −∆qt(x, y) = pt(x, y)−1, where the Laplacian is computed
with respect to the second variable.

Remark 3.5. — All the derivatives of qt will be performed on the second variable. In
the weighted and with boundary setting the definition of qt stays the same, whereas
the Laplace operator changes meaning (as explained in Section 2.1).

Remark 3.6. — The kernel qt arises naturally in our investigation because, as we will
see later, it holds

fn,t(y) =
1

n

n∑
i=1

qt(Xi, y).

Let us show some properties of the kernel qt. As a consequence of the decay of the
heat kernel when t goes to infinity, for any x, y ∈M and t > 0, it holds

∆y

∫ ∞
t

ps(x, y)− 1 ds =

∫ ∞
t

∆yps(x, y) ds =

∫ ∞
t

d

ds
ps(x, y) ds = 1− pt(x, y),

therefore we have the fundamental identity

(3.1) qt(x, y) =

∫ ∞
t

(ps(x, y)− 1) ds.

Let us also remark that qt is symmetric qt(x, y) = qt(y, x). Furthermore, for all y ∈M
the average value of ∇yqt( · , y) is null, indeed it holds∫

M

∇yqt(x, y) dm(x) =

∫
M

∇y
(∫ ∞

t

(ps(x, y)− 1) ds

)
dm(x)

=

∫ ∞
t

∇y
(∫

M

ps(x, y) dm(x)

)
ds =

∫ ∞
t

∇y(1) ds = 0.

Similarly we can prove that the average value is null also for higher derivatives.
Now we want to deduce some estimates for the time-averaged kernel qt from the

related estimates for the standard heat kernel. Therefore let us start stating some
well-known estimates related to the heat kernel. The interested reader can find more
about heat kernel estimates on the monographs [SC10, Gri99].

Theorem 3.7 (Trace formula). — It holds∫
M

(pt(x, x)− 1) dm(x) =
1

4πt
+O

(
1/
√
t
)
.

Proof. — It is proved in [MS67] for smooth manifolds, possibly with smooth bound-
ary. To handle the case of the square, we need the formula for Lipschitz domains that
is proved in [Bro93]. For weighted manifolds it is proved in [CR17, Th. 1.5]. �

Theorem 3.8 (Heat kernel estimate). — There exists a suitable a = a(M) > 1 such
that, for any 0 < t < 1 and x, y ∈M , it holds

pt(x, y) .
1

t
a−d

2(x,y)/t.

J.É.P. — M., 2019, tome 6



746 L. Ambrosio & F. Glaudo

Proof. — It is proved in [CLY81, Th. 4, Rem. at p. 1050]. For the proof in the weighted
and with boundary setting, see [ZLJ16, Th. 1.2]. �

Theorem 3.9 (Heat kernel derivatives estimate). — For any N > 1, 0 < t < 1 and
x, y ∈M , it holds

|∇Npt(x, y)| .N
( 1

tN/2
+
dN (x, y)

tN

)
pt(x, y).

Proof. — For closed compact manifolds it can be found in [ST98] or in [Hsu99,
Cor. 1.2]. We prove the special case M = [0, 1]

2 in Appendix B. �

Remark 3.10. — The estimate on the derivatives of the heat kernel provided by the
previous theorem is fundamental for the approach presented here. Furthermore, as
anticipated in Section 2.1, the need for such an estimate is exactly the obstruction to
the generalization of our result to the weighted or with boundary setting.

Let us also remark that we will use the estimate only for N 6 3.

We are now ready to state and prove some estimates on the kernel qt. The first one
has an algebraic flavor, whereas Proposition 3.12 and Corollary 3.13 are hard-analysis
estimates deduced from Theorems 3.8 and 3.9.

Proposition 3.11. — For any t > 0 it holds∫
M

∫
M

|∇yqt(x, y)|2 dm(y) dm(x) =
|log(t)|

4π
+O(1).

Proof. — Let us ignore the integral in dm(x). Recalling the formula stated in (3.1)
and the definition of qt, integrating by parts we obtain∫

M

|∇yqt(x, y)|2 dm(y) =

∫
M

(pt(x, y)− 1)

∫ ∞
t

(ps(x, y)− 1) ds dm(y),

thence, applying Fubini’s theorem and the semigroup property of pt, we can continue
this chain of identities

=

∫ ∞
t

∫
M

(pt(x, y)ps(y, x)− 1) dm(y) ds =

∫ ∞
t

(ps+t(x, x)− 1) ds

=

∫ ∞
2t

(ps(x, x)− 1) ds.

After integration with respect to x, the statement follows thanks to Theorem 3.7. �

The following proposition plays a central role in all forthcoming results. Indeed,
the kind of estimate we obtain on the derivatives of qt is exactly the one we need to
deduce strong integral inequalities.

Proposition 3.12. — For any N > 1, 0 < t < 1 and x, y ∈M it holds

|∇Ny qt(x, y)| .N
1

dN (x, y) + tN/2
.
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Proof. — For the sake of brevity, let us denote d = d(x, y).
Applying (3.1) together with Theorems 3.8 and 3.9, through some careful estimates

of the involved quantities and the change of variables d2/s = w, we obtain

|∇Ny qt(x, y)| 6
∫ ∞
t

|∇Nps(x, y)|ds .N 1 +

∫ 1

t

( 1

sN/2
+
(d
s

)N)1

s
a−d

2/s ds

6 1 +

∫ ∞
t

( 1

sN/2
+
(d
s

)N)1

s
a−d

2/s ds

= 1 +
1

dN

∫ d2/t

0

(
w(N/2)−1 + wN−1

)
a−w dw

= 1 +
1

tN/2
·
∫ d2/t

0

(
w(N/2)−1 + wN−1

)
a−w dw

(d2/t)
N/2

.

The desired statement now follows from the elementary inequality

∀x > 0 :

∫ x

0

(w(N/2)−1 + wN−1)a−w dw .N
xN/2

1 + xN/2
,

which is a consequence of the two estimates

∀ 0 < x < 1 :

∫ x

0

(w(N/2)−1 + wN−1)a−w dw .N xN/2,

∀x > 1 :

∫ x

0

(w(N/2)−1 + wN−1)a−w dw .N 1. �

Corollary 3.13. — Let us fix a natural number N > 1 and a real number p > 2/N .
For any 0 < t < 1 and x, y ∈M the following two inequalities hold(1)∫

M

|∇Ny qt(x, y)|p dm(y) .N,p t
1−Np/2,∫

M

|∇Ny qt(x, y)|p dm(x) .N,p t
1−Np/2.

When p = 2/N , the same inequalities hold if t1−Np/2 is replaced with |log(t)|.

Proof. — We are going to prove only the case Np > 2 when the integral is in dm(y),
the proof of the other case being very similar.

To prove the desired result we just have to insert the inequality stated in Propo-
sition 3.12 inside the coarea formula (in the very last inequality below we use the

(1)Let us remark that the two inequalities are not equivalent. Indeed in the first one we are
integrating with respect to the variable y, that is the differentiation variable, whereas in the second
one we are integrating with respect to the variable x, that is not the differentiation variable.
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change of variables r2 = st):∫
M

|∇Ny qt(x, y)|p dm(y) .N,p

∫
M

1

(dN (x, y) + tN/2)p
dm(y)

.N,p

∫
B(x,inj(M)/2)

1

(dN (x, y) + tN/2)p
dm(y)

=

∫ inj(M)/2

0

1

(rN + tN/2)p
H 1(∂B(x, r)) dr

.
∫ inj(M)/2

0

r

(rN + tN/2)p
dr .N,p t

1−Np/2.

Let us recall that H 1 is the Hausdorff measure induced by the Riemannian distance.
In our inequalities we have implicitly applied the known estimate (see [Pet98]) on the
measure of the spheres on a smooth Riemannian manifold. It would be possible to
obtain the same result applying only the estimate on the measure of the balls (that
is a somewhat more elementary inequality) and Cavalieri’s principle instead of the
coarea formula. �

We are going to transform the results we have proved about qt into inequalities
concerning fn,t.

As anticipated, it holds

(3.2) fn,t(y) =
1

n

n∑
i=1

qt(Xi, y).

Such an identity can be proved showing that both sides have null mean and the same
Laplacian:

−∆fn,t(y) = un,t(y)− 1 = P ∗t

(
1

n

n∑
i=1

δXi
− 1

)
(y) =

1

n

n∑
i=1

pt(Xi, y)− 1

= −∆

(
1

n

n∑
i=1

qt(Xi, · )
)

(y).

Lemma 3.14. — The following approximation holds

E
[∫

M

|∇fn,t|2 dm

]
=
|log(t)|

4πn
+O (1/n) .

Proof. — Using the linearity of the expected value and the independence of the vari-
ables Xi, we obtain

E
[∫

M

|∇fn,t|2 dm(y)

]
=

1

n

∫
M

∫
M

|∇yqt|2 dm(y) dm(x)

and therefore, applying Proposition 3.11, we have proved the desired approximation.
�

Remark 3.15. — The previous lemma is contained in [AST18, Lem. 3.16].
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Our next goal is proving Theorem 3.3. In order to do so we will need Bernstein
inequality for the sum of independent and identically distributed random variables.
We are going to state it here exactly in the form we will use. One of the first reference
containing the inequality is [Ber46], whereas one of the first in English is [Hoe63].
A more recent exposition can be found in the survey [CL06, Th. 3.6,3.7] (alternatively,
see the monograph [BLM03]).

Theorem 3.16 (Bernstein inequality). — Let X be a centered random variable such
that, for a certain constant L > 0, it holds |X| 6 L almost surely. If (Xi)16i6n are
independent random variables with the same distribution as X, for any ξ > 0 it holds

P
(∣∣∣∣∑n

i=1Xi

n

∣∣∣∣ > ξ

)
6 2 exp

(
− nξ2

2E [X2] + 2
3Lξ

)
.

Proof of Theorem 3.3. — Our strategy is to gain, for any y ∈ M , a pointwise bound
on the probability P

(
|∇2fn,t(y)| > ξ

)
through the aforementioned concentration in-

equality and then to achieve the full result using a sufficiently fine net of points onM .
Let us fix y ∈M . Recalling (3.2), we can apply Theorem 3.16 in conjunction with

Proposition 3.12 and Corollary 3.13 and obtain(2)

P
(
|∇2fn,t(y)| > ξ

)
. exp

(
− nξ2

2‖∇2qt( · , y)‖22 + 2
3‖∇2qt( · , y)‖∞ξ

)
. exp

(
−nCtξ2

)
,

where C = C(M) is a suitable constant.
Let us now fix ` > 0 such that ` · L = ξ/2, where L is the Lipschitz constant of

|∇2f |. Let (zi)16i6N(`) ⊆M be an `-net on the manifold. Through a fairly standard
approach, we can find such a net with N(`) . `−2. Furthermore, it is easy to see,
considering the bound imposed on `, that if |∇2f |(zi) < ξ/2 for any 1 6 i 6 N(`),
then ‖∇2f‖∞ < ξ. Therefore we have

P
(
‖∇2fn,t‖∞ > ξ

)
6
N(`)∑
i=1

P
(
|∇2fn,t|(zi) > ξ/2

)
.

1

`2
exp

(
−nCtξ2/4

)
=

4L2

ξ2
exp(−nCtξ2/4).

The statement follows noticing that, thanks to (3.2), L can be bounded from
above by(3)

max
x∈M
‖∇3qt(x, ·)‖∞ . t−3/2,

where we used Proposition 3.12 in the last inequality. �

(2)Note that we are applying Theorem 3.16 to matrix-valued random variables. In order to prove
this generalization it is sufficient to apply the theorem to each entry of the matrix.

(3)The definition of the infinity norm for a 3-tensor is analogous to the definition given for
2-tensors in Definition 3.1.

J.É.P. — M., 2019, tome 6



750 L. Ambrosio & F. Glaudo

Remark 3.17. — Let us stress that if t � log(n)/n, Theorem 3.3 shows that quite
often the hessian of fn,t is very small.

More precisely, if ξn > 1/n and tn = log(a)−1κnlog(n)/n with κn > 1, then

P
(
(An,tnξn

)c
)
.

1

nκnξ2n−5
.

This observation will play a major role in the last sections as it will allow us to ignore
completely the complementary event An,tξ as it is sufficiently small.

4. Transport cost inequality

Given two density functions u0, u1 : M → R, the Dacorogna-Moser coupling (see
[Vil09, 16-17]) gives us a “first-order” approximation of the optimal matching between
them. With this technique in mind, following the ideas developed in [AST18, Led17],
we are presenting a proposition that generalizes some of the results mentioned in those
two papers. Its proof is simpler than those presented in [AST18, Led17] but relies on
the Benamou-Brenier formula (see [BB00]). Let us remark that our application of the
Benamou-Brenier formula is somewhat an overkill, nonetheless we believe that using
it makes the result much more natural.

For the ease of the reader let us recall the said formula before stating the proposition
and its proof.

Definition 4.1 (Flow plan). — Given two measures µ0, µ1 ∈ P(M), a flow plan is
the joint information of a weakly continuous curve of measures µt ∈ C0([0, 1] ,P(M))

and a time-dependent Borel vector field (vt)t∈(0, 1) on M such that, in (0, 1)×M , the
continuity equation holds in the distributional sense

d

dt
µt + div(vtµt) = 0.

Theorem 4.2 (Benamou-Brenier formula). — Given two measures µ0, µ1 ∈ P(M),
it holds

W 2
2 (µ0, µ1) = inf

{∫ 1

0

∫
M

|vt|2 dµt dt : (µt, vt) is a flow plan between µ0 and µ1

}
.

In addition, if (µt, vt) is a flow plan with ‖vt‖∞ + ‖∇vt‖∞ ∈ L∞(0, 1), the flow at
time 1 induced by the vector field vt is a transport map between µ0 and µ1 and its cost
can be estimated by ∫ 1

0

∫
M

|vt|2 dµt dt.

Proposition 4.3. — Given two positive, smooth density functions u0, u1 in M , let
f ∈ C∞(M) be the unique solution of −∆f = u1 − u0 with null mean. For any
increasing function θ ∈ C1([0, 1]) such that θ(0) = 0 and θ(1) = 1, it holds

W 2
2 (u0m, u1m) 6

∫
M

|∇f |2
(∫ 1

0

θ′(t)2

u0(1− θ(t)) + u1θ(t)
dt

)
dm.
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Furthermore a map that realizes the cost at the right hand side is the flow at time 1

induced by the time-dependent vector field

vt(x) =
θ′(t)∇f(x)

u0(1− θ(t)) + u1θ(t)
.

Proof. — Let us define the convex combination ut := (1 − θ(t))u0 + θ(t)u1. It is
straightforward to check

d

dt
ut(x) + div

(
ut(x) ·

( θ′(t)
ut(x)

∇f(x)
))

= 0,

hence, thanks to the Benamou-Brenier formula, we have

W 2
2 (u0m, u1m) 6

∫ 1

0

∫
M

θ′(t)2

u2
t

|∇f |2ut dm dt =

∫
M

|∇f |2
∫ 1

0

θ′(t)2

ut
dtdm. �

Corollary 4.4. — Given two smooth, positive density functions u0, u1 in M , let f ∈
C∞(M) be the unique solution of −∆f = u1 − u0 with null mean. It holds

(4.1) W 2
2 (u0m, u1m) 6 4

∫
M

|∇f |2

u0
dm

and also

(4.2) W 2
2 (u0m, u1m) 6

∫
M

|∇f |2 log(u1)− log(u0)

u1 − u0
dm,

where the ratio is understood to be equal to 1 if u1 = u0.

Proof. — The inequality (4.1) would follow from Proposition 4.3 if we were able to
find a function θ such that for any x ∈M it holds

(4.3)
∫ 1

0

θ′(t)2

u0(x)(1− θ(t)) + u1(x)θ(t)
dt 6

4

u0(x)
.

Let us start with the observation

u0(1− θ(t)) + u1θ(t) > u0(1− θ(t))

and therefore, in order to get (4.3), it suffices to have∫ 1

0

θ′(t)2

1− θ(t)
dt 6 4

that is satisfied with equality by θ(t) = 1− (1− t)2.
The inequality (4.2) follows from Proposition 4.3 choosing θ(t) = t and computing

the definite integral. �

Remark 4.5. — The inequality (4.1) will be used when we can control only one of
the two densities involved, whereas the sharper (4.2) will be used when we can show
that both densities are already very close to 1.
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Remark 4.6. — On a compact Riemannian manifold, it is well-known that the Wasser-
stein distance W 2

2 (u0m, u1m) is controlled by the relative entropy and by the Fisher
information (see [OV00]). In our setting this kind of inequalities is not sufficient, as
we need estimates that are almost-sharp when u0, u1 ≈ 1. Moreover, both the rela-
tive entropy and the Fisher information depend on the pointwise value of the relative
density u1/u0, but we need estimates that depend nonlocally on the density (as we
must take into account themacroscopical differences between u0 and u1). On the other
hand, (4.1) and (4.2) control the Wasserstein distance with the negative Sobolev norm
‖(u1/u0)− 1‖H−1 , that is nonlocal, and (4.2) is almost-sharp when u0, u1 ≈ 1.

5. Refined contractivity of the heat flow

The following proposition (see for example [EKS15, Th. 3]) is the well-known Hölder
continuity of the heat flow with respect to the Wasserstein distance.

Proposition 5.1. — Given a measure µ ∈ P(M) and a positive t > 0, it holds

W 2
2 (µ, P ∗t (µ)) . t.

In this section we are going to prove a more refined (asymptotic) contractivity
result, when µ is an empirical measure built from an i.i.d. family with law m.

The following theorem proves that the estimate described in Proposition 5.1 is far
from being sharp when the measure µ is the empirical measure generated by n random
points. Indeed it shows that the average growth of the Wasserstein distance squared
is not linear after the threshold t = log log(n)/n.

Such a trend would be expected if the matching cost had magnitudeO(log log(n)/n),
but its magnitude is O(log(n)/n). This quirk shall be seen as a manifestation of the
fact that, in dimension 2, the obstructions to the matching are both the global and
local discrepancies in distribution between the empirical measure and the reference
measure (see [Tal14, §4.2] for further details on this intuition). Regularizing with the
heat kernel we take into account only the short-scale discrepancies and thus we stop
observing linear growth way before the real matching cost is achieved.

Given that in higher dimension the main obstruction to the matching is concen-
trated in the microscopic scale, we don’t think that a similar statement can hold
in dimension d > 2. With the wording “similar statement” we mean the fact that
E
[
W 2

2 (µn,t,m)
]
� t when t = O(n−d/2) (let us recall that, if d > 2, the expected

matching cost has order O(n−d/2)).

Theorem 5.2. — Given a positive integer n ∈ N, let (Xi)16i6n be n independent
random points m-uniformly distributed on M . Let µn = 1

n

∑n
i=1 δXi

be the empirical
measure associated to the points (Xi)16i6n. There exists a constant C = C(M) > 0

such that, for any time t = α/n with α > C log(n), denoting µn,t = P ∗t (µn), it holds

E
[
W 2

2 (µn, µn,t)
]
.

log(α)

n
(� α/n = t ) .
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Proof. — Our approach consists of using Proposition 5.1 to estimate the distance
between µn and µn,1/n and then adopting Proposition 4.3 to estimate the distance
from µn,1/n to µn,t.

Let un,s = 1
n

∑n
1 ps(Xi, · ) be the density of P ∗s (µn) and let us fix the time t0 = 1/n.

Recalling Proposition 5.1, it holds

E
[
W 2

2 (µn, µn,t)
]
6 2E

[
W 2

2 (µn, µn,t0)
]

+ 2E
[
W 2

2 (µn,t0 , µn,t)
]

.
1

n
+ E

[
W 2

2 (µn,t0 , µn,t)
]
.

In order to bound E
[
W 2

2 (µn,t0 , µn,t)
]
, let us restrict our study to the event An,t1/2. As

stated in Theorem 3.3, such an event is so likely (as a consequence of the assumption
α � log(n)) that its complement can be completely ignored because all quantities
that we are estimating have polynomial growth in n (recall Remark 3.17).

Let us denote f : M → R the null mean solution to the Poisson equation −∆f =

un,t0 − un,t, representable as
∫ t
t0
un,s − 1 ds. Recalling that we are in the event An,t1/2,

we can apply (4.1) and obtain

W 2
2 (µn,t0 , µn,t) 6 4

∫
M

|∇f |2

un,t
dm .

∫
M

|∇f |2 dm.

Using the independence of pa(Xi, y) and pb(Xj , y) for a, b > 0, y ∈ M and i 6= j, we
are now able to compute the expected value

E
[
W 2

2 (µn,t0 , µn,t)
]
. E

[∫
M

|∇f |2 dm

]
= E

[∫
M

−∆f · f dm

]
= E

[∫
M

(un,t0 − un,t)
(∫ t

t0

un,s − 1 ds

)
dm

]
=

1

n

∫ t

t0

E
[∫

M

(pt0(X, y)− pt(X, y))ps(X, y) dm(y)

]
ds

=
1

n

∫ t

t0

∫
M

(pt0+s(x, x)− pt+s(x, x)) dm(x) ds

6
1

n

∫ t+t0

2t0

∫
M

(ps(x, x)− 1) dm(x) ds .
1

n

∫ t+t0

2t0

1

s
ds .

log(α)

n

that is exactly the desired result. Let us remark that in one of the inequalities we
have exploited the bound pr(x, x) > 1 with r = t + s, a simple consequence of the
Chapman-Kolmogorov property. �

Remark 5.3. — Before going on, let us take a minute to isolate and describe the
approach we have employed to restrict our study to the event An,t1/2.

Let X,Y be random variables such that X ≡ Y in an event A. It holds

|E [X]− E [Y ]| 6 (‖X‖∞ + ‖Y ‖∞)P
(
Ac
)
.

Therefore, exactly as we did in the previous proof, if the event A is much smaller
than the inverse of the magnitude of X and Y , we can safely exchange X and Y when
computing expected values.
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Remark 5.4. — In order to exploit Remark 5.3 in the proofs of Theorems 1.1, 1.2
and 5.2, it is necessary to check that all involved quantities have at most polynomial
growth in n (see Remark 3.17).

Let us prove, for example, that
∫
M
|∇fn,t|2 dm has polynomial growth in n when-

ever t = t(n) > 1/n. Thanks to standard elliptic estimates, it holds

‖∇fn,t‖2 . ‖∆fn,t‖2 = ‖un,t − 1‖2 6 sup
x∈M
‖pt(x, · )‖2 . t−1,

where in the last inequality we have applied Theorem 3.8. Thence, the desired control
over

∫
M
|∇fn,t|2 dm follows from the condition on t = t(n).

For the proof of Theorem 1.2 this turns out to be sufficient, whereas for the proofs of
Theorems 1.1 and 5.2 some similar (but not identical) quantities should be controlled.
We do not write explicitly how to control them as the exact same reasoning works
with minor changes.

6. Semi-discrete matching

This section is devoted to the computation, with an asymptotic estimate of the
error term, of the average matching cost between the empirical measure generated by
n random points and the reference measure.

An estimate of the error term was recently provided by Ledoux in [Led18,
Eqs. (16) & (17)]. Our estimate is slightly better than the one proposed by Ledoux;
indeed he estimates the error as O(log log(n) log(n)3/4/n) whereas our estimate is
O(
√

log log(n) log(n)/n)

Let us briefly sketch the strategy of the proof.

Step 1. — The inequality developed in the previous section allows us to choose t of
magnitude O(log3(n)/n) while keeping W 2

2 (µn, µn,t) under strict control. With such
a choice of the regularization time, we can apply Theorem 3.3 and get that An,tξ is
a very likely event. Without Theorem 5.2 we would have been able only to choose
t = o(log(n)/n) and that would have invalidated the proof.

Step 2. — Using (4.2) we estimate the matching cost between µn,t and m. It comes
out that, in the event An,tξ , this matching cost is almost equal to∫

M

|∇fn,t|2 dm

and we are able to evaluate it thanks to Lemma 3.14.
The statement we are giving here is slightly stronger than the statement given in

the introduction (as we can now use the function fn,t).

Theorem 1.2. — Let (M, g) be a 2-dimensional compact closed manifold (or the square
[0, 1]

2) whose volume measure m is a probability. Let (Xi)i∈N be a family of inde-
pendent random points m-uniformly distributed on M . For a suitable choice of the
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constant γ > 0, setting t(n) = γlog3(n)/n, it holds

E

[∣∣∣∣∣W2

(
1

n

n∑
i=1

δXi
,m

)
−

√∫
|∇fn,t(n)|2 dm

∣∣∣∣∣
]
.

√
log log(n)

n
.

Furthermore it also holds

E
[∣∣∣∣W 2

2

(
1

n

n∑
i=1

δXi
,m

)
−
∫
|∇fn,t(n)|2 dm

∣∣∣∣] .
√

log(n) log log(n)

n
,

from which follows

lim
n→∞

n

log(n)
· E
[
W 2

2

(
1

n

n∑
i=1

δXi ,m

)]
=

1

4π
.

Proof. — Let us fix a parameter ξ = 1/log n and the time variable

t = log(a)−1γ
log3 n

n
,

so that Remark 3.17 gives

P
(
(An,tξ )c

)
.

1

nγ−5
.

Hence, by choosing γ > 0 sufficiently large, we can obtain any power-like decay we
need.

Recalling Theorem 5.2, we obtain

(6.1) E
[
W 2

2 (µn, µn,t)
]
.

log log(n)

n
.

Thanks to Proposition 4.3 we know that µn,t is the push-forward of m through the
flow at time 1 of the time-dependent vector field

Ys =
∇fn,t

1 + s(un,t − 1)
.

Thus, if we assume to be in the event An,tξ with n sufficiently large, we can apply
Proposition A.1 with X = ∇fn,t and Ys = ∇fn,t/(1 + s(un,t − 1)) to obtain

(6.2) W 2
2 (µn,t, exp(∇fn,t)#m) . ξ2

∫
M

|∇fn,t|2 dm.

Still working in the event An,tξ , thanks to [Gla19, Th. 1.1], we can say (for a sufficiently
large n) that

(6.3) W 2
2 (exp(∇fn,t)#m,m) =

∫
M

|∇fn,t|2 dm.

Once again, as we have done in the proof of Theorem 5.2, let us notice that the
restriction of our analysis to the event An,tξ is not an issue. Indeed its complement
is so small that, because all the quantities involved have no more than polynomial
growth in n, using the approach described in Remark 5.3, we can restrict our study
to the event An,tξ thanks to Theorem 3.3.
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Hence, joining (6.1), (6.2) and (6.3) with the triangle inequality, we can get

E

[∣∣∣∣∣W2

(
1

n

n∑
i=1

δXi
,m

)
−

√∫
|∇fn,t|2

∣∣∣∣∣
]

.

√
log log(n)

n
+ ξ E

[∫
M

|∇fn,t|2 dm

]1/2

.

Thus the first part of the statement follows from the choice ξ = 1/log n, that gives,
recalling Lemma 3.14, that the leading term in the right hand side is the first sum-
mand.

The second part of the statement follows once again from (6.1), (6.2) and (6.3).
But instead of using the triangular inequality we use the elementary inequality

E
[
|(D + C)2 − C2|

]
6 E

[
D2
]1/2 (E [D2

]1/2
+ 2E

[
C2
]1/2)

that holds for any choice of square integrable random variables C,D. More in detail
we apply the said inequality with D = A+B and

A = W2(µn,m)−W2(µn,t,m),

B = W2(µn,t,m)−

√∫
M

|∇fn,t|2 dm,

C =

√∫
M

|∇fn,t|2 dm.

To estimate E
[
D2
]
we proceed as follows

E
[
D2
]
. E

[
A2
]

+ E
[
B2
]
6 E

[
W 2

2 (µn, µn,t)
]

+ E
[
W 2

2 (µn,t, exp(∇fn,t)#m)
]
,

where we have applied (6.3). Then (6.1) and (6.2) provide the inequalities necessary
to conclude. �

Remark 6.1. — In the work [CLPS14], the authors claim that the higher order error
term should be O( 1

n ). Unfortunately with our approach it is impossible to improve
the estimate on the error term from

√
log(n) log log(n)/n to 1/n. Indeed, even ignor-

ing all the complex approximations and estimates, our expansion involves the term
|log t|/4πn. Thence we would be obliged to set t = O (1/n). The issue is that this
growth of t does not allow us to exploit Theorem 3.3. Indeed, if t = O (1/n), we are
not able anymore to prove that An,tξ is a very likely event (even when ξ is fixed) and
our strategy fails.

7. Bipartite matching

Exactly as we have computed the expected cost for the semi-discrete matching
problem, we are going to do the same for the bipartite (or purely discrete) matching
problem (i.e., we have to match two families of n random points trying to minimize
the sum of the distances squared).
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The approach is almost identical to the one described at the beginning of Section 6.
Let us remark that this result is new for a general 2-dimensional closed manifold M .
Indeed in the work [AST18] the authors manage to handle the bipartite matching only
whenM is the 2-dimensional torus (or the square). Their approach is custom-tailored
for the torus and thence very hard to generalize to other manifolds.

Theorem 1.1 (Main theorem for bipartite matching). — Let (M, g) be a 2-dimensional
compact closed manifold (or the square [0, 1]

2) whose volume measure m is a probabil-
ity. Let (Xi)i∈N and (Yi)i∈N be two families of independent random points m-uniformly
distributed on M . It holds the asymptotic behaviour

lim
n→∞

n

log(n)
· E
[
W 2

2

(
1

n

n∑
i=1

δXi ,
1

n

n∑
i=1

δYi

)]
=

1

2π
.

Proof. — Let us warn the reader that in this proof the definitions of fn,t and of An,t
change. The change is a natural consequence of the presence of two families of points.
We decided to keep the same notation as the role and meaning of the objects do not
change at all. We will skip the parts of the proof identical to the proof of Theorem 1.2.

Let us fix a parameter ξ = 1/log n and the time variable t = log(a)−1γlog3(n)/n

where γ > 0 is a sufficiently large constant.
Analogously to what we have done in the semi-discrete case, let us define

µn0 :=
1

n

n∑
i=1

δXi , µn1 :=
1

n

n∑
i=1

δYi

and the associated regularized measures and densities

µn,t0 := P ∗t µ
n
0 = un,t0 m, µn,t1 := P ∗t µ

n
1 = un,t1 m.

Let us denote with fn,t : M → R the unique function with null mean value such
that −∆fn,t = un,t1 − un,t0 . Of course it holds fn,t = fn,t1 − fn,t0 where the functions
fn,t0 and fn,t1 are defined exactly as in (2.2) but using µn,t0 and µn,t1 in place of µ.

Hence, we can apply Theorem 3.3 on fn,t0 and fn,t1 to obtain the estimate

P
(
(An,tξ )c

)
.

1

ξ2t3
a−ntξ

2

.

Here An,tξ is defined as the intersection of the events An,tξ,ι for ι = 0, 1, where An,tξ,ι is

An,tξ,ι := {‖∇2fn,tι ‖∞ < ξ}.

From now on the proof goes along the exact same lines of the proof of Theorem 1.2
(just replacing µn with µn1 and m with µn0 ) apart from the computation of

E
[∫

M

|∇fn,t|2 dµn,t0

]
.

Indeed in the semi-discrete case we could blindly apply Lemma 3.14, whereas now we
have to compute it.
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Thanks to Theorem 3.3 and Remark 5.3, we can assume to be in the event
{‖un,t − 1‖∞ < ξ} as it is so likely that its complement can be safely ignored. Thus,
if we replace µn,t0 with m, we obtain

(7.1) E
[∫

M

|∇fn,t|2 dµn,t0

]
= (1 +O(ξ))E

[∫
M

|∇fn,t|2 dm

]
.

As already done in the proof of Lemma 3.14, using the linearity of the expected value
and the independence of the random points we can easily compute

E
[∫

M

|∇fn,t|2 dm

]
=

2

n

∫
M

∫
M

|∇yqt|2 dm(y) dm(x)

and therefore, applying Proposition 3.11, we have shown

E
[∫

M

|∇fn,t|2 dm

]
=
|log(t)|

2πn
+O (1/n)

that, together with (7.1), is exactly the result we needed to complete the proof. �

Remark 7.1 (Interpolation between semi-discrete and bipartite)
The proof given for the bipartite case is flexible enough to handle also families

of random points with different cardinalities. Given a positive rational number q ∈ Q
and a natural number n ∈ N such that qn ∈ N, let (Xi)16i6n and (Yi)16i6qn be two
families of independent random points m-uniformly distributed on M . Then, exactly
as we have proved Theorem 1.1, we can show

E
[
W 2

2

(
1

n

n∑
i=1

δXi
,

1

qn

qn∑
i=1

δYi

)]
∼ log(n)

4πn
(1 + 1/q) .

Let us remark that when q � 1 we recover the result of the semi-discrete case.

Appendix A. Stability of vector fields flows

In this appendix we are going to obtain a stability result for flows of vector fields
on a compact Riemannian manifold. This kind of results are well known, but we could
not find a statement in literature that could fit exactly our needs. The proof has a
very classical flavor, borrowing the majority of the ideas from the uniqueness theory
for ordinary differential equations. Nonetheless it might seem a little technical as we
are working on a Riemannian manifold and we are using both flows of vector fields
and the exponential map.

Given a compact closed Riemannian manifold M , we assume in this section that
X ∈ χ(M) is a vector field such that ‖∇X‖∞ < 1/2 (see Definition 3.1) and such
that ‖X‖∞ is sufficiently small with respect to inj(M).

Proposition A.1. — Under the previous assumptions on X, if (Yt)06t61 is a time
dependent vector field such that, for a suitable 0 < ξ < 1, it holds pointwise

|Yt −X| < ξ|X|,

then
d(expp(X), FYt

1 (p)) . (‖∇X‖∞ + ξ)|X|(p)

J.É.P. — M., 2019, tome 6



Finer estimates on the 2-d matching problem 759

for any p ∈M . In particular, for any µ ∈ P(M), it holds

W 2
2 (exp(X)#µ, (F

Yt
1 )#µ) . (‖∇X‖∞ + ξ)2

∫
M

|X|2 dµ.

Proof. — Let us begin with a technical lemma that proves the result for a single
pathline of the flow (denoted by γ) if, instead of the exponential map, the flow of X
is considered.

Lemma A.2. — Under the previous assumptions on X, if γ : [0, 1]→M is a C1 curve
such that |γ′ −X ◦ γ| 6 ξ|X| ◦ γ, then it holds

d
(
FX1 (γ(0)), γ(1)

)
6 4ξ|X|(γ(0)),

where FXt : M →M is the flow induced by X at time t.

Proof. — The approach we are going to carry on is standard and it involves finding
a suitable differential inequality for the left hand side that automatically implies the
desired inequality.

Let us define p := γ(0). As X is sufficiently small, we can be sure that, at any
time 0 6 t 6 1, FXt (p) and γ(t) are very near. Therefore the function D : [0, 1]→ R
defined as D(t) := d(FXt (p), γ(t)) is Lipschitz and differentiable where it does not
vanish.

•
p

•
FXt (p)

•
γ(t)

α

X(p)

Figure A.1. Curves involved in the proof of Lemma A.2.

Let us fix a time 0 < t 6 1 such that D(t) > 0 and let us denote with
α : [0, D(t)]→M a minimizing unit speed geodesic from FXt (p) to γ(t). Hence,
considering the expression of the differential of the Riemannian distance, we have

d

dt
D(t) = 〈α′(D(t)), γ′(t)〉 − 〈α′(0), X(FXt (p))〉.
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Denoting X‖ : α → Tα the parallel transportation of X from α(0) = FXt (p) to
α(D(t)) = γ(t), we can carry on our computations

= 〈α′(D(t)), γ′(t)−X‖(γ(t))〉 6 |γ′(t)−X‖(γ(t))|
6 |γ′(t)−X(γ(t))|+ |X(γ(t))−X‖(γ(t))| 6 ξ|X|(γ(t)) + D(t)‖∇X‖∞
6 ξ

(
|X|(FXt (p)) + D(t)‖∇X‖∞

)
+ D(t)‖∇X‖∞

= ξ|X|(FXt (p)) + (1 + ξ)D(t)‖∇X‖∞
6 ξ

(
|X|(p) + d(p, FXt (p))‖∇X‖∞

)
+ (1 + ξ)D(t)‖∇X‖∞.

Our goal is now to estimate d(p, FXt (p)) with |X|(p). That is a fairly easy task and
can be achieved differentiating the said quantity. Indeed it holds

d

dt
d(p, FXt (p)) 6 |X(FXt (p))| 6 |X(p)|+ d(p, FXt (p))‖∇X‖∞

and hence we can obtain the bound

(A.1) d(p, FXt (p)) 6 |X|(p)e
t‖∇X‖∞ − 1

‖∇X‖∞
.

Replacing (A.1) into our chain of inequalities we can finally get
d

dt
D(t) 6 ξ|X|(p)e‖∇X‖∞ + (1 + ξ)D(t)‖∇X‖∞

6 2ξ|X|(p) + D(t).

The statement follows easily integrating this last inequality. �

As anticipated, the main issue with the previous lemma is that instead of the
exponential map, it uses the flow of X. We will use a trick that involves applying the
lemma again to replace the flow with the exponential map. In order for our trick to
work we need the following simple estimate.

Lemma A.3. — Under the previous assumptions on X, for any 0 6 t 6 1 and for any
p ∈M , it holds∣∣∣∣ d

dt
expp(tX)−X(expp(tX))

∣∣∣∣ 6 2‖∇X‖∞ · |X(expp(tX))|.

Proof. — Let γ(t) := expp(tX) be the unique geodesic with initial data γ(0) = p and
γ′(0) = X(p). Whenever X(γ(t)) 6= γ′(t), it holds

d

dt
|γ′(t)−X(γ(t))| = 〈∇γ

′X,X(γ(t))− γ′(t)〉
|γ′(t)−X(γ(t))|

and thus ∣∣∣∣ d

dt
|γ′(t)−X(γ(t))|

∣∣∣∣ 6 ‖∇X‖∞|X(p)|

that, recalling the assumption ‖∇X‖∞ 6 1
2 , implies the statement. �
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We can now prove the first part of the proposition. Let us fix a point p ∈ M .
Thanks to Lemma A.2 we know

d(FX1 (p), FYt
1 (p)) 6 4ξ|X|(p).

Furthermore, what we have shown in Lemma A.3 is exactly what we need to apply
again Lemma A.2 to the geodesic expp(tX), obtaining

d(FX1 (p), expp(X)) 6 8‖∇X‖∞|X|(p).

Joining this two inequalities we obtain the first part of the statement.
The part of the statement about theWasserstein distance between the push-forward

measures follows trivially from what we have already proved, thanks to the following
well-known lemma.

Lemma A.4. — Let (X,m) be a probability space and let (Y, d) be a metric space.
Given two maps f, g : X → Y it holds

Wp(f#m, g#m) 6 ‖d(f, g)‖Lp(m).

Proof. — Let us consider the map T : X → Y × Y defined as T (x) := (f(x), g(x)).
The key observation is that T#m is a transport plan from f#m to g#m, therefore

W p
p (f#m, g#m) 6

∫
Y×Y

d(y1, y2)p dT#m(y1, y2) =

∫
X

d(f(x), g(x))p dm(x). �

Remark A.5. — If the manifold M has a smooth boundary, the previous proposition
can be easily adapted as far as the vector fields X and Yt are both tangent to the
boundary. Indeed, under this assumption, if we extend arbitrarily the manifold M to
a closed compact manifold(4) M̃ , the result keeps holding exactly as it is stated.

Appendix B. Heat kernel on the square

We will explicitly construct the Neumann heat kernel on the domain [0, 1]
2 in order

to show the validity of Theorem 3.9 in this setting. The expression of the Neumann
heat kernel on the square is folklore, but for the ease of the reader we report it here.

Let G < Isom(R2) be the subgroup of isometries generated by the four transfor-
mations

– (x1, x2) 7→ (x1, x2 + 2),
– (x1, x2) 7→ (x1 + 2, x2),
– (x1, x2) 7→ (−x1, x2),
– (x1, x2) 7→ (x1,−x2).

The group G is generated by the reflections with respect to any horizontal or vertical
line with integer coordinates. The square [0, 1]

2 is a fundamental cell for the action
of the group G. For any x ∈ R2, we will denote Gx the orbit of the point x under the
action of G.

(4)The extension is necessary to give a sense to the exponential map.
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{ } = Gx

x

Figure B.1. Chosen x ∈ [0, 1]
2, the points in Gx are generated by reflections.

Let pt : R2 × R2 → (0, ∞) be the heat kernel on the plane, that is

pt(x, y) =
1

4πt
e−|x−y|

2/4t.

Let us define the associated kernel p̃t : R2 × R2 → (0, ∞) as

p̃t(x, y) :=
∑
x′∈Gx

pt(x
′, y).

Our goal is showing that p̃t is exactly the (Neumann) heat kernel for the domain
[0, 1]

2. All the needed verifications are readily done, apart from the fact that p̃t
satisfies the Neumann boundary conditions. This property follows from the following
simple symmetries of p̃t:

∀x, y ∈ R2,∀ g ∈ G : p̃t(x, y) = p̃t(g(x), y) = p̃t(x, g(y)).

It is now time to prove Theorem 3.9 for p̃t.

Proof of Theorem 3.9 for M = [0, 1]
2. — First, we are going to prove explicitly Theo-

rem 3.9 for the heat kernel on the plane.
As one can show by induction, it holds

∂n1
y1 ∂

n2
y2 y2pt(x, y) = pt(x, y) ·

∑
2β−α=n1+n2
06α,β6n1+n2

∑
m1+m2=α

cm1,m2
n1,n2

(x1 − y1)m1(x2 − y2)m2t−β ,
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for some suitable coefficients cm1,m2
n1,n2

. From this formula, it follows

|∇Npt(x, y)| .N pt(x, y)
∑

2β−α=N
06α,β6N

|x− y|αt−β

.N t−1−N/2
∑

06α6N

( |x− y|2
4t

)α/2
e−|x−y|

2/4t.
(B.1)

For any 0 < w 6 u and 0 6 α 6 N it holds

(B.2) uα/2e−u .N (1 + wN/2)e−w.

If we apply the latter inequality (for the special case u = w) in (B.1), we get

(B.3) |∇Npt(x, y)| .N t−1−N/2
(

1 +
( |x− y|2

4t

)N/2)
e−|x−y|

2/4t.

Let us move our attention to p̃t. If we take x, y ∈ [0, 1]
2 and t 6 1, applying (B.3)

we are able to show

|∇N p̃t(x, y)| 6
∑
x′∈Gx

|∇Npt(x′, y)| .N t−1−N/2
∑
x′∈Gx

(
1+
( |x′ − y|2

4t

)N/2)
e−|x

′−y|2/4t.

Using that |x − y| 6 |x′ − y| for any x′ ∈ Gx, recalling (B.2) and noticing the
exponential decay of the quantities when x′ goes to infinity, from the latter inequality
we can deduce

|∇N p̃t(x, y)| .N t−1−N/2
(

1 +
( |x− y|2

4t

)N/2)
e−|x−y|

2/4t

= t−1e−|x−y|
2/4t
(
t−N/2 +

( |x− y|
2t

)N)
. p̃t(x, y)

(
t−N/2 +

( |x− y|
t

)N)
that is the desired result. �
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