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On the persistence of decorrelation in the theory of
wave turbulence

Anne-Sophie de Suzzoni

À propos de la persitance des décorrélations dans la théorie
de la wave turbulence

Résumé
On étudie les propriétés statistiques des solutions des équations de

Kadomstev-Petviashvili (KP-I et KP-II) sur le tore lorsque la condition ini-
tiale est une variable aléatoire. On se donne une variable aléatoire u0 à valeurs
dans un espace de Sobolev de régularité suffisamment importante telle que ses
coefficients de Fourier soient indépendants. On suppose également que les lois
de ces coefficients sont invariantes par multiplication par eiθ pour tout θ ∈ R.
On s’intéresse alors à la persistance des décorrélations des coefficients de Fou-
rier (un(t))n des solutions de KP-I et KP-II ayant pour condition initiale u0
au sens où l’on estime l’espérance E(unum) en fonction du temps et de la taille
ε de la donnée initiale. Ces estimées sont sensibles à la présence ou l’absence
de résonance au sein des interactions à trois ondes, c’est-à-dire, en notant
ωk la relation de dispersion de KP-I ou KP-II, à si ωk + ωl − ωk+l s’anulle
(modèle résonnant, KP-I) ou non (modèle non résonnant, KP-II). Dand le
cas de l’équation résonante, les espérances E(unum) restent petites jusqu’aux
temps d’ordres o(ε−1) alors que dans le cas de l’équation non-résonante, elles
le restent jusqu’aux temps d’ordre o(ε−5/3). Les techniques sont différentes
en fonction du cas considéré, on utilise le lemme de Gronwall et des estimées
de large déviation gaussiennes dans le cas résonant, et la structure de forme
normale de KP-II dans l’autre.

MSC 2000: 35Q35, 35Q53.
Keywords: Wave turbulence, statistical equilibrium, random initial datum.
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Abstract
We study the statistical properties of the solutions of the Kadomstev-

Petviashvili equations (KP-I and KP-II) on the torus when the initial datum
is a random variable. We give ourselves a random variable u0 with values
in the Sobolev space Hs with s big enough such that its Fourier coefficients
are independent from each other. We assume that the laws of these Fourier
coefficients are invariant under multiplication by eiθ for all θ ∈ R. We investi-
gate about the persistence of the decorrelation between the Fourier coefficients
(un(t))n of the solutions of KP-I or KP-II with initial datum u0 in the sense
that we estimate the expectations E(unum) in function of time and the size
ε of the initial datum. These estimates are sensitive to the presence or not of
resonances in the three waves interaction, that is, denoting ωk the dispersion
relation, whether ωk + ωl − ωk+l can be null (resonant model, KP-I) or not
(non-resonant model, KP-II). In the case of a resonant equation, the expecta-
tions E(unum) remain small up to times of order o(ε−1) whereas in the case
of a non-resonant equation, they do up to times of order o(ε−5/3). The tech-
niques used are different depending on the cases, we use Gronwall lemma and
Gaussian large deviation estimates for the resonant case, and the normal form
structure of KP-II in the other one.

1. Introduction

We present here the results of [1] and [2] about the persistence of decorrelation
between Fourier coefficients of the solution of a Hamiltonian equation. We call

u(t) =
∑

n=(nx,ny)
un(t)ei(nxx+nyy)

the solution of the Kadomstev-Petviashvili equation on the torus of dimension 2
given in terms of its Fourier coefficients. Assuming that initially, these Fourier coef-
ficients un are independent random variables, we are interested in the evolution in
time of the expectation E(unum).

We start by giving the motivation of these studies. It comes from the theory of
wave turbulence and more precisely from the project initiated by Zakharov and
Filonenko in [8]. We refer to [5, 9] for further reading the subject.

1.1. Capillary waves
In this paper, [8], Zakharov and Filonenko introduce the notion of statistical equi-
librium in the framework of capillary waves. They consider a fluid contained in a
domain Ωt depending on time, whose bottom is fixed at z = −h (h may be ∞) and
that has a free surface η(t), that is

Ωt = {(x, y, z) ∈ R3 | − h ≤ z ≤ η(t)} .

The velocity field v of the fluid is supposed to be irrotational, incompressible and
with constant density. Hence, v is the gradient of a potential φ that satisfies inside
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Ωt

4φ = 0 .
The conservation of matter on the free surface gives the following kinematic equation
on η :

∂tη(x, y) = (∂zφ)(x, y, η(x, y))− (∂xφ)(x, y, η(x, y))∂xη(x, y)
− (∂yφ)(x, y, η(x, y))∂yη(x, y) .

On the free surface, they assume that the fluid is only submitted to surface tension
(they neglect gravity and viscosity), which gives

(∂tφ)(x, y, η(x, y))− 1
2(5φ)2(x, y, η(x, y)) = 5. 5η(x, y)√

1 + |η(x, y)|2
.

What is more, they assume that the velocity is null at the bottom, that is
5φ(x, y,−h) = 0.

This system of equation can be written as a 2D Hamiltonian equation on the
variable η and ϕ(x, y) = φ(x, y, η(x, y)). With a change of unknown in the Fourier
variable :

ηn = |n|−1/4(βn + β−n) , ϕn = −i|n|−1/4(βn − βn)
and approaching the non-linearity by a quadratic one, they get a complex Hamil-
tonian equation whose non linearity takes the form of a three waves interaction
k, l→ k + l, or k → k − l, l, or 0→ k, l,−(k + l) :

β̇n − iωnβn =
∫ (

V k,l
n δ(k + l − n)βkβl

+ 2W k,l
n δ(k − l − n)βkbetal +Xk,l

n δ(n+ k + l)βkβl
)
dkdl ,

where ωn is the dispersion relation of their equation.

1.2. Statistical equilibrium
They consider the solution of this equation when initially, the βn are independent
random variables whose laws are invariant under multiplication by eiθ. They com-
pute statistical equilibrium of the system, that is a solution for the βn such that the
expectations E(|βn|2) do not depend in time. For that, they derive what is called a
kinetic equation, which means that they compute the time derivative ∂tE(|βn|2) in
function of the map k 7→ E(|βk|2) admitting some approximations.

Calling nk = E(|βk|2), they find that it behaves according to
∂tnk = St(n, n)− 2νk2nk , (1.1)

where n is the map k 7→ nk and St is bilinear (and depends on k). The second term
−2νk2nk is a damping term added a posteriori to ensure the convergence of the
energy and which they forget to compute the statistical equilibrium. The first one
is written
St(n, n) = 4π

∫
|V k1,k2
k |2(nk1nk2 − nknk1 − nknk2δ(k − k1 − k2)δωk−ωk1−ωk2

dk1dk2 +

8π
∫
|V k,k2
k1 |

2(nk1nk2 + nknk1 − nknk2δ(k − k1 + k2)δωk−ωk1+ωk2
dk1dk2 .
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The first δ is a Dirac δ, the second one means that they keep only the resonant three
waves interaction, that is the ones whose frequencies ωk−ωk1−ωk2 and ωk−ωk1 +ωk2

are equal to 0.
They then compute particular solutions of St(n, n) = 0 and find nk = C|k|−1/2,

which corresponds to an invariant measure that uses the conservation of the matter.
Another solution is nk = C|k|−18/4 which is interpreted as an exchange of energy that
is not seen when the expectation is taken. These solutions are called Kolmogorov-
Zakharov (or KZ) spectra.

1.3. Approximations
In order to compute the kinetic equation (1.1), they do several approximations.

The major one is that they assume that not only initially the βn(t = 0) are
independent, but also that the βn(t) are at all times t independent. They justify
this approximation in the same way as they justify the fact that they keep only the
quadratic terms in the non linearity : they assume that the initial datum is small.
Hence if the solution is of size ε, the non linearity should be of size ε2, and E(|βn|2)−
|E(βn)|2 should be of the same size as its initial value, that is ε2 whereas when n 6= m,
as the initial value of E(βnβm)−E(βn)E(βm) is 0, E(βnβm)−E(βn)E(βm) should
be of size at most ε3 because of the non linearity. Indeed, in first approximation, it
can be considered as behaving as

E(βnβm) ∼
∫ ∫ (

V k,l
n δ(k + l − n)E(βkβlβm)+

2W k,l
n δ(k − l − n)E(βkβlβm) +Xk,l

n δ(n+ k + l)E(βkβlβm)
)
dkdl .

As we will see in the sequel, thanks to the assumptions on the initial datum and
cancellations in the computations, it is actually of size at most ε5 or ε6 depending
on the properties of the initial datum.

Another approximation is that they keep only resonant three waves interaction,
i.e. the ones such that the frequency of this interaction ωk+l − ωk − ωl is null.

We now propose to understand these approximations by doing the same compu-
tations (though on another framework) but without assuming the independence at
all times and without forgetting the non-resonant terms. This will provide a "kinetic
equation" of the form :

∂tnk = St(n(t = 0), n(t = 0)) + remainder

where the default in independence appears in the remainder and the role of resonance
appears in the bilinear form St. Notice that the bilinear form St is taken on the initial
datum, but it did not seem such a restriction considering that we are looking for
solutions of ∂tnk = 0.

To make sure we do the difference between resonant and non-resonant cases,
we treat two close asymptotic models of water waves, the Kadomstev-Petviashvili
equations, one presenting resonances within the three waves interaction and the
other not.
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2. Description of the problem and framework

2.1. The KP-equations
The KP-equations models water waves (in which both gravity and surface tension
are considered) in the approximation of small amplitudes and long wavelengths.
They have been built by Kadomstev and Petviashvili in [4] as an extension of the
Korteweg de Vries equation in dimension 2, in the case of transverse perturbation,
and they are given by

∂x(∂tu+ α∂3
xu+ ε

2∂xu
2) + κ∂2

yu = 0 . (2.1)

We consider them on the torus of dimension 2 and with real-valued solutions.
First, if the mean value of u along x∫

T
u(x, y)dx

is initially equal to 0, then it remains so as u evolves in time. Hence we consider the
equation in the space

Hs =
{ ∑
nx,ny

unx,nye
i(nxx+nyy) | ∀nx, ny ∈ Z× Z ,

(
u0,ny = 0

and u−nx,−ny = unx,ny

)
and

∑
nx 6=0
|n|2s|unx,ny |2 <∞

}
normed by

‖u‖Hs =
√∑
nx 6=0
|n|2s|unx,ny |2 .

Thus, we can rewrite the equation as

∂tu+ α∂3
xu+ ε

2∂xu
2 + κ∂−1

x ∂2
yu = 0 .

The parameter α is positive due to Physics considerations. The parameter ε is small
compared to 1 and represents the former smallness of the initial datum. Indeed, be-
cause of its quadratic non linearity, it is equivalent to consider KP, with no constant
in front of the non linearity and an initial datum of size ε or with an ε in front of
the non linearity and an initial datum of size 1. Remark that with this formulation,
the fact that E(βnβm) is as small as ε5 in the context of Zakharov and Filonenko’s
paper corresponds to E(unum) being as small as ε3 in our context. Both conventions
have been used in the Physics literature. Depending on whether the surface tension
predominates over gravity (KP-I) or not (KP-II), κ is equal to −1 or +1.

2.2. Dispersion and resonance within the three waves inter-
action

The dispersion relation of KP equation is given by, with n = (nx, ny) ∈ Z∗ × Z

ωn = αn3
x − κ

n2
y

nx

indeed, −iωn is the eigenvalue of α∂3
x + κ∂−1

x ∂2
y associated to ei(nxx+nyy).
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In terms of Fourier coefficients, the equation is written :

u̇n − iωnun = −ε2inx
∑

k+l=n
ukul .

Its non-linearity is thus of the form of a three waves interaction.
The frequency of the three waves interaction k, l→ k + l is

∆k,l
n := ωk + ωl − ωn = 3αnxkxlx + κ

(kylx − kxly)2

nxlxkx

when n = k + l.
In the case of KP-I, we have κ = −1, the two terms of ∆k,l

n are of opposite signs,
hence ∆k,l

n can be zero, the three waves interaction is resonant. In the case of KP-II,
κ = +1, hence the two terms are of the same sign and we have |∆k,l

n | ≥ 3|nxkxlx| > 0,
the three waves interaction is not resonant.

2.3. Initial datum
We want to inquire about the statistical properties of a solution of KP equations
thus we have to describe the random initial datum.

Let (gn)n∈N∗×Z a sequence of independent identically distributed random variables.
We assume that the law of the gn is invariant under the multiplications by eiθ, θ ∈ R.
These gn contain the statistical information of the initial datum.

Let (λn)n∈N∗×Z a sequence of complex number. The λn represent the size of the
Fourier coefficients of the initial datum.

As we consider real-valued solutions of KP, we define what is left of the sequences
by

λ−n = λn , g−n = gn .

The immediate consequence of these independence and invariance assumptions is
that the expectation of a product of an odd number of g is always 0, that is, for all
p ∈ N, (n1, . . . , n2p+1) ∈ (Z∗ × Z)2p+1, we have

E
( 2p+1∏

i=1
gni

)
= 0 .

Besides, for the product of even numbers of g, we have the formula :

E
( 2p∏
i=1

gni

)
=
∏
n∈A

δ
m2(n)
m1(n)E(|gn|2m1(n))

where A = {|ni| | i = 1, . . . , 2p}, m1(n) is the cardinal of the set {i | ni = n}, m2(n)
the cardinal of the set {i | ni = −n}, and δ is the Kronecker symbol. In particular,
this yields, for p = 2,

E
( 4∏
i=1

gni

)
=


E(|gn|4) if ∃σ ∈ S4 such that nσ(1) = nσ(2) = −nσ(3) = −nσ(4)
E(|gn|2)2 if ∃σ ∈ S4 such that nσ(1) = −nσ(3)

and nσ(2) = −nσ(4) and |nσ(2)| 6= |nσ(1)|
0 otherwise,

where S4 is the set of permutations of {1, 2, 3, 4}.
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The initial datum is given by

u(t = 0) =
∑

n∈Z∗×Z
gnλne

i(nxx+nyy) .

3. Results

In the first subsection, we describe the results of [1]. We assume there usual integra-
tion properties on the sequence (gn)n, that the gn satisfy large Gaussian deviation
estimates, which only allows to expand E(unum) in ε up to the second order.

In the second subsection, we describe the result of [2]. We assume more inte-
grability on gn, that they are L∞, in order to perform the expansion up to order
ε3.

3.1. Expansion to order 2
We present here the results of [1]. We assume that gn satisfies large Gaussian devi-
ation estimates, which means that

E(eγRegn), E(eγImgn) ≤ Cecγ
2

for all γ ∈ R. Remark that as the law of gn is invariant under the multiplication by
e−iπ, the law of Re(gn) is the same as the one of Im(gn) = Re(e−iπgn).

On the λn, we assume that ∑
|n|2s|λn|2

is finite, for some s > 3.
This implies that for some c small enough, the mean value of ec‖u0‖2

Hs is finite,
and thus that u(t = 0) belongs to Hs almost surely.

Theorem 3.1 ([1]). Under these assumptions, and until times of order ε−1, i.e. for
t ∈ [−T, T ] with 1 + T ≤ Cε−1, we have

E(um(t)un(t)) = δmn E(|gn|2)|λn|2 + ε2δmn Gn(t) + ε3Rn,m,ε(t)

with
Gn(t) ∼ t2

and
|Rn,m,ε(t)| ≤ Cn,m|t|3 .

We have a similar result for KP-II. We make the same assumptions on the initial
datum, except that the regularity is restricted to s > 2 instead of s > 3.

Theorem 3.2 ([1]). Under the previous assumptions (but with s > 2) and until
times of order ε−1, we have

E(um(t)un(t)) = δmn E(|gn|2)|λn|2 + ε2δmn Gn(t) + ε3Rn,m,ε(t)

with Gn(t) bounded uniformly in time and

|Rn,m,ε(t)| ≤ Cn,m |t|(1 + |t|) .
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Remark 3.1. We have an explicit formula for Gn(t), the term of second order.

Gn(t) = 2
∑

k+l=n

(∫ t

0

∫ t′

0
cos(∆k,l

n τ)dτdt′
)
×

(
ℵk,ln1|λk|2|λl|2 − ℵl,−nk1|λl|2|λn|2 − ℵ−n,kl1|λn|2|λk|2

)
,

with
ℵk,l =

{
E(|gn|4) if k = l
E(|gn|2)2 otherwise.

The mean value E(umun) is null up to order 2 in ε when n 6= m.
For KP-I, it is an expansion in εt, valid if t = o(ε−1). For KP-II, it is an expansion

for |t| = o(ε−1/2).
The term of order 3 shall be null but we need more assumptions on the initial

datum to prove it.
For KP-I, ∆k,l

n can be null, thus
(∫ t

0
∫ t′

0 cos(∆k,l
n τ)dτdt′

)
can be t2/2. Besides, given

a suitable α, the sum ∑
k+L=n involves enough couples (k, l) for one to be such that

∆k,l
n = 0, which explains the behaviour in time (t2) of Gn(t).
For KP-II, ∆k,l

n can not be null, thus
(∫ t

0
∫ t′

0 cos(∆k,l
n τ)dτdt′

)
= − cos(∆k,l

n t)−1
(∆k,l

n )2 , which
explains the uniform bound in time.

The time scale ε−1 seems quite natural for KP-I but could be improved for KP-II,
using the structure of normal form of the equation. Indeed, using this technique, the
equation can be transformed into an equation with a cubic non linearity, making it
of order ε2 instead of ε. Besides, the computations performed to prove the result
comfort one in the idea that the term of order 3, if it could be computed, would
be null. However, the initial datum is not integrable enough (Gaussian estimates
are not sufficient) to bound the remainder term in the case of an expansion of the
expectation to order 3.

3.2. Expansion to order 3
In [2], we make other assumptions on the initial datum, losing in integrability in the
probability space but gaining in regularity and in time in the result.

On gn, we assume gn ∈ L∞proba, and on λn, we assume that∑
|n|2s|λn|2

is finite, for some s > 1. This implies that the norm ‖u(t = 0)‖L∞,Hs is finite and in
particular that u(t = 0) belongs almost surely to Hs.

Theorem 3.3. Under the previous assumptions and until times of order ε−5/3, we
have

E(um(t)un(t)) = δmn E(|gn|2)|λn|2 + ε2δmn Gn(t) + ε4Rn,m,ε(t)
with Gn(t) bounded uniformly in time and

|Rn,m,ε(t)| ≤ Cn,m |t|(1 + |t|)7/5 .

Remark 3.2. The assumption on gn allows us to do the expansion on ε up to order
3.
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The remainder ε4Rn,m,ε(t) is small compared to 1 if t = o(ε−5/3), but it is small
compared to ε2 only if t = o(ε−5/6).

4. Sketch of the proof
The strategy consists in expanding the solution u in ε and then inputing this expan-
sion in the computation of ∂tE(ei(ωm−ωn)tunum) which gives explicit formulae for the
first terms in ε and a bound depending on the expansion of u of the remainder. We
then bound the remainder of the expansion of u to estimate the one of E(unum).

4.1. Picard interactions
The general idea is to expand the solution u in its first Picard interactions and then
input this expansion in the expression of

∂tE
(
e−iωntune

iωmtum

)
.

Depending on the different techniques we use, we expand the solution u to either
order 2 :

u = a+ εb+ ε2e(ε) ;
or 3 :

u = a+ εb+ ε2c+ ε3d(ε) .
We recall that u satisfies, in terms of Fourier coefficients :

u̇n − iωnun = −εinx
1
2
∑

k+l=n
ukul .

Keeping only the terms of order 0 in ε, we get for an :
ȧn − iωnan = 0 ,

and with the initial datum, we get
an(t) = eiωntλngn .

Keeping only the terms of order 1, we get

ḃn − iωnbn = −inx
1
2
∑

k+l=n
akal ,

which gives, as bn(t = 0) = 0,

bn(t) = −inx
eiωnt

2
∑

k+l=n

∫ t

0
ei∆

k,l
n t′dt′λkλlgkgl .

We recall that ∆k,l
n = ωk + ωl − ωn is the three waves interaction frequency. As it

can be 0 in the case of KP-I, the norm of bn(t) behaves like |t|. In the case of KP-II,
as ∆k,l

n can not be null, bn is uniformly bounded in time.
This leaves the following equation on e :

∂te+ (α∂3
x + κ∂−1

x ∂2
y)e = −1

2∂x
(
u2 − a2

ε

)
,

with initial datum 0 and where u is the short cut for a+ εb+ ε2e.
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Keeping only the terms of order 2 in the equation on u, we get an equation for
c and then an explicit formula for cn which describes the behaviour on time of c.
The norm of c behaves like 1 + |t| in the case of KP-II (the three wave interaction
is resonance free, but this is not the case of the four waves interaction, involved in
c), and like 1 + t2 in the case of KP-I. The second order is given by :

cn(t) = −nxeiωnt
∑

j+k+l=n

[ ∫ t

0

(
ei∆

j+k,l
n t′

∫ t′

0
ei∆

j,k
j+k

τdτ
)
dt′
]
jx + kx

2 λjλkλlgjgkgl .

In the case of KP-II, the behaviour in time is driven by∫ t

0

(
ei∆

j+k,l
n t′

∫ t′

0
ei∆

j,k
j+k

τdτ
)
dt′ =

∫ t

0

ei(ωj+ωk+ωl−ωn)t′ − ei∆
j+k,l
n t′

i∆j,k
j+k

dt′ ,

this term involves the frequency of the four waves interaction j, k, l→ n, ωj + ωk +
ωl − ωn, which can be 0.

This leaves the following equation on d :

∂td+ (α∂3
x + κ∂−1

x ∂2
y)d = −1

2∂x
(
u2 − a2 − 2εab

ε2

)
,

with initial datum 0 and where u is the short cut for a+ εb+ ε2c+ ε3d.
We now want to expand ∂tE

(
e−iωntune

iωmtum

)
. First, we can write it as

∂tE
(
e−iωntune

iωmtum

)
= An,m + Am,n

with
An,m = E

(
∂t(e−iωntun)eiωmtum

)
= −inxei(ωn−ωn)tε

1
2
∑

k+l=n
E(ukulum) .

We then have to input the expansion of u in An,m.

4.2. Probabilistic cancellations
Depending on the order of the expansion of u, we can write An,m either as

An,m = εA(1)
n,m + ε2A(2)

n,m + ε2Bn,m(ε)
or

An,m = εA(1)
n,m + ε2A(2)

n,m + ε3A(3)
n,m + ε4Cn,m(ε)

where the A(j)
n,m do not depend on ε. Indeed, they can be written

A(1)
n,m = −inxei(ωn−ωn)t1

2
∑

k+l=n
E(akalam) ,

A(2)
n,m = −inxei(ωn−ωn)t1

2
∑

k+l=n
E(bkalam + akblam + akalbm) ,

A(3)
n,m = −inxei(ωn−ωn)t1

2
∑

k+l=n
E(ckalam + akclam + akalcm + akblbm + bkalbm + bkblam) .

This is where the importance of the assumptions on the law of gn appears. We
recall that thanks to the independence of gn and gm when |n| 6= |m|, and to the
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invariance of gn under the multiplication by eiθ, we have, for every (n1, . . . , n2p+1) ∈
(Z∗ × Z)2p+1,

E
( 2p+1∏

i=1
gni

)
= 0

and for every (n1, . . . , n4) ∈ (Z∗ × Z)4,

E
( 4∏
i=1

gni

)
=


E(|gn|4) if ∃σ ∈ S4 such that nσ(1) = nσ(2) = −nσ(3) = −nσ(4)
E(|gn|2)2 if ∃σ ∈ S4 such that nσ(1) = −nσ(3)

and nσ(2) = −nσ(4) and |nσ(2)| 6= |nσ(1)|
0 otherwise,

where S4 is the set of permutations of {1, 2, 3, 4}.
Since ak = eiωktλkgk, we have that A(1)

n,m is a sum of mean values of products of 3
g. As the mean value of any product of an odd number of g is null, A(1)

n,m is null.
Then, bn is a sum of products of 2 g, whereas cn is a sum of products of 3 g, which

makes A(3)
n,m a sum of mean values of products of 5 g. Again, thanks to the fact that

the mean value of any product of an odd number of g is null, A(3)
n,m = 0.

Finally, further computations give the structure of A(2)
n,m, which leads to A(2)

n,m = 0
if n 6= m, and

Gn(t) =
∫ t

0
2<(A(2)

n,n(t′))dt′

= 2
∑

k+l=n

(∫ t

0

∫ t′

0
cos(∆k,l

n τ)dτdt′
)

×
(
ℵk,ln1|λk|2|λl|2 − ℵl,−nk1|λl|2|λn|2 − ℵ−n,kl1|λn|2|λk|2

)
with

ℵk,l =
{
E(|gn|4) if k = l
E(|gn|2)2 otherwise. .

To get an idea why A(2)
n,m = 0 when n 6= m, let us input the expression of bk in

function of g and λ in the sum
ei(ωn−ωn)t ∑

k+l=n
E(bkalam) .

We have
bk(t) = i

ikx
2 eiωkt

∑
j+q=k

∫ t

0
ei∆

j,q
k
t′dt′λjλqgjgq

such that the sum can be written

ei(ωn−ωn)t ∑
k+l=n

E(bkalam) = − i2
∑

k+l=n,j+q=k

[
ei∆

k,l
n t
∫ t

0
ei∆

j,q
k
t′dt′

]
× kxλjλqλlλmE(gjgqglgm) .

For the expectation E(gjgqglgm) not to be null, we have to pair the indexes. If we
pair j with q and l with m (i.e. j = −q and l = m), we get k = j + q = (0, 0)
which makes the term under the sum null. We have then to pair j with either
l or m and q with the other one. If the pairing is j = −l and q = m, we get
n = k + l = j + q + l = q = m. Therefore, there are solutions (j, q, l) such that the
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term under the sum is not 0 only if n = m. A similar discussion can be done for the
other sums describing A(2)

n,m.

4.3. Gronwall lemma and probabilistic bounds
In the case of Gaussian large deviation estimates on the initial datum, we are con-
strained to expand the solution only to order 2 if we want to be able to bound the
remainder. Indeed, differentiating the L2 norm of e to the square for a fixed event
of the probability space yields

∂t‖e‖L2 . ‖2ab+ εb2‖+ ‖εa+ ε2b‖ ‖e‖L2 ,

where we do not precise the norms except for e but we assumed enough regularity
on the initial datum. Using Gronwall lemma provides the estimate

‖e(t)‖L2 .
∫ t

0
‖2ab+ εb2‖dt′e

∫ t

0 ‖εa+ε2b‖ .

In order to estimate the remainder in E(unum), we have to estimate the expectation
of the norm of e, and for that, we need to ensure that eε2

∫ t

0 ‖b(t
′)‖dt′ is integrable (in

probability). Since b is the first Picard interaction, and from its explicit formula, we
can bound it for each event ω of the probability space Ω :

‖b(t, ω)‖ . |t| ‖u0(ω)‖2

and with a loss of regularity in the case of KP-I and

‖b(t, ω)‖ . ‖u0(ω)‖2

without loss of regularity in the case of KP-II. Since there exists c such that ec‖u0‖2
Hs

is integrable, we get a bound for e for suitable times, and until time |t| of order ε−1,
it is given by E(‖e(t)‖pL2) . t2 in the case of KP-I, and E(‖e(t)‖pL2) . (1 + |t|) in
the case of KP-II, which correspond to a remainder of size ε3|t|3 in the case of KP-I
and ε3|t|(1 + |t|) in the case of KP-II, once the integration over time is done.

If we look now at the equation on d, in order to inquire on an expansion to order
3 of the solution, we get, thanks to Gronwall lemma, that

‖d‖L2 .
∫ t

0
‖(b2 + 2ac) + ε2bcε2c2‖dt′e

∫ t

0 ‖εa+ε2b+ε3c‖ ,

which is not integrable in probability, as the norm of c behaves like the norm of u0
to the cube and since e‖u0‖3 is not integrable in general with our assumptions on the
initial datum.

To expand the expectation E(unum), we have to use another technique.

4.4. Normal forms
We focus now on KP-II.

The main idea is to perform a contraction argument on d. However, the time
scale for KP-I seems natural, but we could get a better time scale for KP-II, hence,
instead of performing a direct contraction on d, we use normal forms. Indeed, the
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source term in the direct equation on d involves the product ac, which behaves in
time like 1 + |t|, as d solves

∂td+ (α∂3
x + ∂−1

x ∂2
y)d = −1

2∂x
u2 − a2 − 2εab

ε2

and
u2 − a2 − 2εab

ε2 = b2 + 2ac+ 2εbc+ ε2c2 + 2d(εa+ ε2b+ ε3c) + ε4d2 .

Performing the contraction argument directly would lead to bounds on d of size
(1 + |t|)2 until times ε−1. This technique does not provide a gain in time.

In [7], N. Tzvetkov introduces the multi linear maps S and F , which gives the
normal form structure for the KP-II. For earlier references of this type of normal
forms, we can mention [3, 6]. The map S is given, in terms of Fourier coefficients,
by

S(u, v)n = inx
2

∑
k+l=n

ukvl

i∆k,l
n

and F (u, v, w) = −S(w, ∂x(uv)). Both maps are continuous from Hs to itself if
s > 1.

If u is a solution of KP-II, then v = u+ εS(u, u) is the solution of

∂tv + (∂3
x + ∂−1

x ∂2
y)v = ε2F (u, u, u) .

Note that the non linearity is now cubic with ε2 in front of it. This is the reason
why we expect to obtain a better time scale using normal forms.

The expansion of v is given by

v = a+ ε(b+ S(a, a)) + ε2(c+ 2S(a, b)) + ε3
(

2S(a, c) + S(b+ εc, b+ εc)+

d+ 2S(εa+ ε2b+ ε3c, d) + ε4S(d, d)
)
.

We can check that b+ S(a, a) satisfies :

∂t(b+ S(a, a)) + (∂3
x + ∂−1

x ∂2
y)(b+ S(a, a)) = 0

with initial datum S(u0, u0) and that c+ 2S(a, b) satisfies

∂t(c+ 2S(a, b)) + (∂3
x + ∂−1

x ∂2
y)(c+ 2S(a, b)) = F (a, a, a)

with initial datum 0. This yields to the fact that

w = 2S(a, c) + S(b+ εc, b+ εc) + d+ 2S(εa+ ε2b+ ε3c, d) + ε4S(d, d)
)

solves the equation

∂tw + (∂3
x + ∂−1

x ∂2
y)w = F (u, u, u)− F (a, a, a)

ε

with initial datum 0.
As F (u,u,u)−F (a,a,a)

ε
factorizes in

F (u, u, u)− F (a, a, a)
ε

= F (u− a
ε

, u, u, ) + F (a, u− a
ε

, u) + F (a, a, u− a
ε

)
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and since u = a + εb + ε2c + ε3d and u−a
ε

= b + εc + ε2d, each time that c appears
in the equation, it is preceded by ε. Compared to the equation on d, we gain a ε in
front of |t| in the source term, which allows us to get a better time scale.

The map Λ that gives w in function of d is invertible on the ball of L∞proba, L
∞([−T, T ], Hs)

of centre 0 and radius of order ε−4 for T of order ε−3, hence it is not an obstacle to
perform the contraction argument as

d(t) = Λ−1
[ ∫ t

0
e(t−t′)(α∂3

x+∂−1
x ∂2

y)
(
F (u(t′), u(t′), u(t′))− F (a(t′), a(t′), a(t′))

ε

)
dt′
]
.

We get that until times of size ε−β, for β ∈ [1, 2],
‖d(t)‖L∞proba,H

s ≤ C(1 + |t|)2−1/β .

The most relevant β for the expansion of E(unum) is β = 5/3.

Conclusion. Finally, we can say that, in both cases, smooth initial data that
satisfy Gaussian large deviation estimates are enough to use Gronwall lemma on an
expansion of the solution, and then expand E(unum) to order 2 in ε at some fixed
time less than ε−1. In the resonant case, KP-I, it is even an expansion in εt, besides,
the time scale is satisfying. What is more, ignoring the non resonant terms in the
term of second order in ε of E(|un|2), Gn(t), we retrieve the kinetic equation of wave
turbulence.

In the non resonant case, KP-II, we perform a contraction argument on the expan-
sion of the solution using normal forms, which enables us to expand the expectation
to higher orders, and take rougher initial data, but enforces more integrability as-
sumptions (L∞ in probability instead of Gaussian estimates).
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