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Evolution by the vortex filament equation
of curves with a corner

Valeria Banica

Évolution par l’équation du tourbillon filamentaire
de courbes à un coin

Résumé
Dans cet article de comptes rendus on présente une série de résultats sur la

stabilité des solutions auto-similaires de l’équation du tourbillon filamentaire.
Cette équation décrit un flot de courbes de R3 et est utilisée comme modèle
pour l’évolution d’un tourbillon filamentaire dans un fluide. Le théorème prin-
cipal donne, sous des hypothèses appropriées, l’existence et la description des
solution engendrées par des courbes à un coin, sur temps positifs et négatifs. Le
théorème compagnon décrit l’évolution des perturbations des solutions auto-
similaires jusque’à formation d’une singularité en temps fini, et au-delà de ce
temps. On va donner une esquisse des preuves. Ces résultats on été obtenus
en collaboration avec Luis Vega.

Abstract
In this proceedings article we shall survey a series of results on the sta-

bility of self-similar solutions of the vortex filament equation. This equation
is a geometric flow for curves in R3 and it is used as a model for the evolu-
tion of a vortex filament in fluid mechanics. The main theorem give, under
suitable assumptions, the existence and description of solutions generated by
curves with a corner, for positive and negative times. Its companion theorem
describes the evolution of perturbations of self-similar solutions up to a sin-
gularity formation in finite time, and beyond this time. We shall give a sketch
of the proof. These results were obtained in collaboration with Luis Vega.

In the first section we shall present the vortex filament equation. Then in the
second section we shall give the topics we are interested in, and state our results.
The sketch of the proofs will be given in the last section.

The author is partially supported by the French ANR project SchEq ANR-12-JS-0005-01.
MSC 2000: 76B47, 35Q35, 35Q55, 35B35, 35P25.
Keywords: Vortex filaments, selfsimilar solutions, Schrödinger equations, scattering.
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1. The Vortex Filament Equation

The vortex filament equation (VFE) is the geometric flow of curves χ(t) in R3

governed by
χt = χx ∧ χxx. (1.1)

Here x stands for the arclength parameter of the curve χ(t). If one uses the Frenets
system that characterize the tangent, normal and binormal vectors of a R3 curve in
terms of the curvature and torsion, T

n
b


x

=

 0 c 0
−c 0 τ
0 −τ 0


 T
n
b

 , (1.2)

one gets that the equation (VFE) can be written as

χt = c b. (1.3)

This emphasize that the curve evolve in the direction of the binormal vector, with
speed proportional to the curvature. The equation is also known as the binormal
flow. It was derived by Da Rios in 1906 and rediscovered by Arms and Hama in 1965
as a model for the dynamics in a 3D inhomogeneous inviscid Newtonian fluid of a
vortex filament located at time t on a R3 curve χ(t, x) ([12, 1], see also [32, 37, 38]).
The approximation uses a truncation of Biot-Savart’s law, which is also known as
the Local Induction Approximation (LIA). Although part of the complexity of the
fluid equations are lost through this approximation, this model is a simple and very
rich one. For instance, it is a completely integrable equation, and this feature has
been exploited to understand the topological properties of knotted vortex filaments
(see [8, 26, 31] and the references therein). It is worth pointing out also that the
S2 tangent vector T (t, x) satisfies the Schrödinger map arising in ferromagnetism
theory. Moreover, a link with the 1D cubic nonlinear Schrödinger equation (NLSE)
is made at the second order of derivative in space as follows.

If one considers the filament function

ψ(t, x) = c(t, x)ei
∫ x

0 τ(t,s)ds,

it is easy to check that it satisfies the (NLSE)

iψt + ψxx +
(
|ψ|2 − A(t)

)
ψ = 0, (1.4)

wihere A(t) is in terms of the curvature and torsion (c, τ)(t, 0). This fundamental
remark has been made by Hasimoto in 1972 and it has allowed the transfer of
informations from (NLSE) to (VFE) ([18]). This Hasimoto transform can be seen as
an inverse of the Madelung transform that connects the Gross-Pitaevskii equation
to Euler equation with quantum pressure. Actually also here, the system satisfied
by the curvature and torsion is a Euler-Korteweg one.

The fact that the curvature is not allowed to vanish in order to define the fila-
ment function is just a technical obstruction. This was proved by Koiso in [25] by
considering another frame (T, e1, e2) than the Frenet frame (T, n, b), governed by T

e1
e2


x

=

 0 α β
−α 0 0
−β 0 0


 T
e1
e2

 . (1.5)
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If we denote N = e1 + ie2 and if T (t) is the tangent vector of a curve χ(t) solution
of (1.1), then one can compute

Tx = <(ψN), Nx = −ψT, Tt = =ψxN, Nt = −iψxT + i(|ψ|2 − A(t))N, (1.6)
and verify that

ψ(t, x) = α(t, x) + iβ(t, x)
is a solution to (1.4) with A(t) = α2(t, 0) + β2(t, 0). Such a frame can be obtained
by a rotation of the Frenet frame, N(t, x) = (n+ ib)(t, x)ei

∫ x
0 τ(t,s)ds.

Conversely, given ψ a solution of (1.4), (e0, e1, e2) an orthonormal basis of R3 and
P a point of R3, one might construct a solution of (1.1) in the following way. First,
(T,N)(t, x) can be constructed by imposing (T,N)(t0, x0) = (e0, e1 + ie2) and the
evolutions laws (1.6). Then χ(t, x) defined as

χ(t, x) = P +
∫ t0

t
(T ∧ Txx)(τ, x0)dτ +

∫ x0

x
T (t, s)ds, (1.7)

is a solution of (1.1). Summarizing, this recipe can be used to construct solutions
of (VFE) starting from solutions of (NLSE). However, recovering the geometric
properties of the solution of (VFE) is not obvious at all. It has been possible doing
so starting from explicit solutions of (NLSE) as

• ψ(t, x) = 0, A(t) = 0.

• ψ(t, x) = 1, A(t) = −1.

• ψ(t, x) = e−itN
2
eiNx, A(t) = −1.

• ψ(t, x) = e−itN
2
eiNx 1

2
√

2
1

cosh(x−2Nt) , A(t) = −1.

These cases give solutions to (VFE) that are still lines, circles traveling in the binor-
mal direction, evolving helices and traveling waves respectively. It is important to
note that the first three families of solutions are known dynamics of vortex filaments
in fluids. However, the forth one was not known until Hasimoto’s work in 1972 on
(VFE). This was the starting point for the physicists Hopfinger and Browand that
succeed to display such dynamics in a fluids experiment ([20]).

Well-posedness results for (VFE) for regular curves have been obtained by various
methods [12, 29, 18, 34, 41]. One way is by using the link with (NLSE), having in
mind that this equation is well posed in Hs, s ≥ 0 on the line and on the circle
[10, 6]. Recently the less regular case of currents has been considered in a weak
formulation of the equation [22, 23].

We shall focus now on the self similar solutions of (VFE), that is solutions of the
type

χ(t, x) =
√
tG

(
x√
t

)
.

We recall that since the 70’s the (VFE) and its self-similar solutions were considered
in works on vortex dynamics in superfluids [39, 7, 30], in ferromagnetism [28, 27],
in aortic heart valve leaflet miocardic modeling [36, 43],.

In [28] it was shown that self-similar solutions form a family {χa}a∈R+∗ carac-
terized by the explicit curvature and torsion (ca, τa)(t, x) =

(
a√
t
, x2t

)
. Numerical
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computations on this formation of a singularity in finite time were given in [7]. In
[17] this was proved rigorously. More precisely, it was shown that a corner appear
at time t = 0: ∣∣∣χa(t, x)− x(A+

a I[0,∞)(x) + A−a I(−∞,0](x))
∣∣∣ ≤ 2a

√
t,

with A±a ∈ S2 distincts, non-opposite and sin ( ̂A+
a ,−A−a )

2 = e−
a2
2 . In particular, any

corner can be obtained in finite time from a rotated and translated self-similar
solution.

At the level of vortex filament dynamics in fluids, an analogy can be done between
the evolution of χa and the “delta wing" vortex. More precisely, in [21] numerical
simulations for selfsimilar solutions of the binormal flow are in correlation with the
physical experiment.

On the left the numerical simulations of χa from [21]; on the right the “delta wing"
vortex formed by fluid flowing over a triangular obstacle.

2. Statements of the results

The question that motivated our series of papers [2, 3, 4, 5] is whether the formation
of singularity in finite time for self-similar solutions is stable or not. For instance, if
one consider a small perturbation of χa(1) and let it evolve through (VFE), does it
generate also a singularity in finite time, and if it is the case, which is the geometrical
description of the singularity. In [2, 3, 4] we have answered these questions and this
allowed us to treat in [5] the issue of considering as initial data for (VFE) curves
having a corner.

The first obstacle in studying perturbations of χa is that this particular solu-
tion does not enter the framework of local well-posedness results for the binormal
flow. Moreover, it is related to the delicate issue of rough data for the 1D cubic
Schrödinger equation, as follows. Via Hasimoto’s transform the behaviour at t = 0
of perturbations of χa, solutions of the binormal flow, can be understood from the
behaviour at t = 0 of perturbations of its filament function

ψa(t, x) = a√
t
ei
x2
4t ,

solutions of

iψt + ψxx + 1
2

(
|ψ|2 − a2

t

)
ψ = 0. (2.1)

The corner χa(0, x) corresponds to ψa(0, x) = a δx=0.
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This calls for a review on the Cauchy problem for the 1D cubic Schrödinger
equation:

iψt + ψxx ± |ψ|2ψ = 0.
This equation is well-posed in Hs, s ≥ 0 [14, 10]. If s < 0 it is ill-posed [24, 11].
Well-posedness holds for data with summable Fourier transform [42, 15]. For initial
data precisely aδx=0, the equation is ill-posed: if there is uniqueness, the solution is
eia

2 log tψa(t, x), which does not have a limit at t = 0 [24]. A natural change to avoid
the logarithmic phase is to consider the perturbed equation (2.1) together with its
solution ψa(t, x). Note that for the free equation, ψa(t, x) is a solution with initial
data aδx=0, and smooth perturbations of it at time t = 1 evolve to smooth perturba-
tions of aδx=0 at time t = 0. In [3] we have proved that small smooth perturbations
of the solution ψa(t, x) at time t = 1, evolving through (2.1) still do not have a
limit at t = 0. This should be seen as a "blow-up" result for 1D cubic Schrödinger
equation with rough data.

In order to understand the behavior at time t = 0 of perturbations ψ of ψa,
solutions of (2.1), we shall use the pseudo-conformal transformation. More precisely,
defining

ψ(t, x) = 1√
t
ei
x2
4t v

(1
t
,
x

t

)
the problem reduces to large time behavior of perturbations of va(t, x) = a, solutions
of:

ivt + vxx + 1
2t
(
|v|2 − a2

)
v = 0.

Setting u = v− a we are now interested in the large time behavior of small data for
the equation

iut + uxx + 1
2t
(
|u+ a|2 − a2

)
(u+ a) = 0. (2.2)

We shall prove scattering results for this problem, in the sense of linking the behavior
at large times of nonlinear solutions to the one of linear evolutions. As usual, the
worse terms to control when trying to prove scattering results are the lowest order
terms. In the case of (2.2) these are two linear terms: a2

2tu + a2

2t u. The potential a2

2t
is not integrable, so we shall discard the non-oscillant term a2

2tu. For small data, we
shall get a long-range asymptotic profile for u(t):

eia
2 log

√
t eit∂

2
x u+(x). (2.3)

Having in mind that linear evolutions in Rn decay in time like t−n2 , the present situa-
tion could be linked to the scattering results obtained for the 1D cubic Schrödinger
equation [35, 9, 19], the 2D Gross-Pitaevskii equation [16], or the 2D quadratic
Schrödinger equation [33, 40, 13]. However, the proof will require a specific analysis
of the linear equation and the introduction of new appropriate spaces.

Let us point out that if xu+ ∈ L2, by getting back through the pseudo-conformal
transform to the filament function, we obtain that it behaves like:

a√
t
ei
x2
4t + eia

2 log
√
t

√
4πi

û+

(
−x2

)
.

This shows that indeed small smooth perturbations of ψa at time t = 1, evolving
through (2.1) still do not have a limit at t = 0. Nevertheless, this will not be an
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obstruction to have a limit at t = 0 for the corresponding perturbations of χa, so-
lutions of (VFE). This is not contradictory since the filament function is defined in
terms of quantities appearing at the second order derivative in space of the curve.

Now we shall review the previous results on singularity formation obtained in
[2, 3, 4]. Each article contains a result at the (NLSE) level and informations on the
formation of singularities at the (VFE). The passage from (NLSE) to (VFE) in [2, 4]
is particularly lengthy. We summarize these results as follows:
• ([2]): if s ∈ N there exist modified wave operators in Hs for u+ small in
Ḣ−2∩Hs∩W s,1 (i.e. there exists a nonlinear solution u of (2.2) that behaves
at large times in Hs like (2.3)).
If moreover u+ is small in weighted spaces, and s ≥ 3, there exists solutions
χ of (VFE) with corner-type singularity (i.e. the formation of singularities for
self-similar solution is not an isolated phenomena).

• ([3]): if s ∈ N asymptotic completeness holds (with weaker decay than in [2])
in Hs for ∂kxu(1) small in

Xγ = {f ∈ L2, |ξ|γ f̂(ξ) ∈ L∞(|ξ| ≤ 1)},
0 ≤ k ≤ s, γ < 1

2 , with final state u+ ∈ Xγ+ (i.e. all initial data u(1) will have
a global evolution through (2.2) and will behave like (2.3) for some u+ ∈ Xγ+).
Moreover there exists modified wave operators for final data in Xγ+ , so the
scattering operator can be defined.
If s ≥ 3 all small perturbations of χa at time t = 1 generate a singularity at
time t = 0 (i.e. stronger stability of the singularity formation as in [2], but
with weaker geometric description of the singularity formation).

• ([4]): If moreover u(1) small in weighted spaces, u(t) is in weighted spaces with
a good control in time and we get strong stability results on the singularity
(same corner for instance).

In view of these results, the natural question is to understand the extension after
singularity time of the perturbations of χa at time t = 1. Unfortunately the weighted
spaces do not fit for a scattering functional setting at the (NLSE) level. This issue
has been avoided in [5], by using the scattering operator in Xγ+ from [3] and by
removing the weights hypothesis in [4]. One of the two companion results in [5] is
the following.
Theorem 2.1. (Continuation of solutions after singularity time, [5]) Let χ(1) be a
small perturbation of a self-similar solution χa at time t = 1 in the sense that the
filament function of χ(1) is (a + u(1, x))eix

2
4 , with ∂kxu(1) small in Xγ with respect

to a for all 0 ≤ k ≤ 4, for some γ < 1
2 .

We construct a solution χ ∈ C([−1, 1], Lip) ∩ C([−1, 1]\{0}, C4) for the binormal
flow on t ∈ [−1, 1]\{0}, which is a weak solution on the whole interval [−1, 1]. The
solution χ is unique in the subset of C([−1, 1], Lip)∩C([−1, 1]\{0}, C4) such that the
associated filament functions at times ±1 can be written as (a+ u(±1, x))eix

2
4 with

∂kxu(±1) small in Xγ with respect to a for all 0 ≤ k ≤ 4.
Moreover,the solution χ enjoys the following properties:
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• there exists a limit of χ(t, x) and of its tangent vector T (t, x) at time zero,
and
sup
s
|χ(t, x)− χ(0, x)| ≤ C

√
|t|, sup

|x|≥ε>0
|T (t, x)− T (0, x)| ≤ Cε|t|

1
6
−
,

• ∀t1, t2 ∈ [−1, 1]\{0} the following asymptotic properties hold

χ(t1, x)− χ(t2, x) = O
(1
x

)
, T (t1, x)− T (t2, x) = O

(1
x

)
,

• ∃T∞ ∈ S2, N∞ ∈ C3 such that uniformly in −1 ≤ t ≤ 1,

T (t, x)− T∞ = O
(

1√
x

)
, (n+ ib)(t, x)−N∞ eia2 log

√
t
x
−ix

2
4t = O

(
1√
x

)
,

• modulo a rotation and a translation, we recover at the singularity point (0, 0)
the same structure as for χa:

lim
x→0±

T (0, x) = A±a , lim
x→0±

lim
t→0

(n+ ib)(t, x)e−ia2 log
√
t
x

+ix
2

4t = B±a .

We insert here the picture of continuation through time t = 0 in the very particular
symmetric case of self-similar solutions χa:

-4
-2
0

2

4

x

0 2 4 6 8 10

y

-4

-2

0

2

4

z

-4

-2

0

2

4

z

This is obtained simply by using the time-reversibility of (VFE). It yields that the
extension on negative times must be a solution for positive time with initial data
χa(0,−x). Such a solution is given precisely by a π−rotation of χa with respect
to the bisector of the corner. In the general case considered in the theorem, the
extension through time t = 0 is very involved.

We end with the main theorem in [5] (its proof is a main step for Theorem 2.1,
that we have preferred to state first for presentation reasons).
Theorem 2.2. (The binormal flow with initial values with a corner, [5]) Let χ0 be
a smooth C4 curve, except at χ0(0) = 0 where a corner is located, i.e. that there exist
A+ and A− two distinct non-colinear unitary vectors in R3 such that

χ′0(0+) = A+, χ′0(0−) = A−.

We set a to be the real number given by the unique self-similar solution of the binor-
mal flow with the same corner as χ0 at time t = 0. We suppose that the curvature
of χ0(x) (for x 6= 0) satisfies (1 + |x|4)c(x) ∈ L2 and |x|γc(x) ∈ L∞(|x|≤1), small with
respect to a.
Then there exists χ(t, x) ∈ C([−1, 1], Lip)∩C([−1, 1]\{0}, C4), regular solution of the
binormal flow for t ∈ [−1, 1]\{0}, having χ0 as value at time t = 0, and enjoying
all properties from the previous theorem.
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The ordered main steps of the proof of Theorem 2.1 (including the proof of The-
orem 2.2) are the following:

• Asymptotic completeness for the solution u of (2.2) with initial data u(1)
small in Xγ.

• Asymptotics in space and in time for the tangent and normal vectors of the
curve χ constructed from u as explained in the first section.

• Existence of a trace of the tangent and modulated normal vectors at time
t = 0.

• Recovering of the self-similar singularity structure at t = 0, x = 0 for χ (for
instance same angle as χa).

• Recipe for the IVP for curves with data χ0 with a corner (involves the exis-
tence of modified wave operator for the same equation (2.2) with final data g,
a function defined from a system of the traces of tangent and normal vectors
of χ0). This ends the proof of the main part of Theorem 2.2.

• Construction of χ for negative times.

3. Sketch of the proof

In the first subsection we shall present the scattering results for (2.2). From a long-
range solution of (2.2) we construct a solution χ of (1.1) as explained in the first
section. In §3.2 we shall derive asymptotics for its tangent and normal vectors in
time and space and we shall obtain their traces at time t = 0. Finally, in the last
subsection we shall start by describing the structure of the singularity, which will
allow to obtain the recipe of the IVP, and then to extend the solution χ through
time t = 0.

3.1. Scattering for cubic 1DNLS
As mentioned in the previous section, we make a phase change in (2.2) to get rid
of the non-oscillant term a2

2tu. By changing u(t) into u(t)e−ia2 log t the new equation
writes

iut + uxx ±
a2

t1±2ia2 u = u2,3

t
. (3.1)

We shall first treat the linear equation

iut + uxx ±
a2

t1±2ia2 u = 0, (3.2)

and eventually deal with the nonlinear one by a perturbative argument.
We start with a paragraph on a-priori bounds at the linear level and by pointing

out that there is a growth of the low Fourier modes. This will give us a hint for finding
the appropriate space for global existence and scattering, that we shall present in
the following paragraph.
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3.1.1. Growth of the Fourier modes for the linear equation

For the linear equation (3.2) we have

∂t
‖u(t)‖2

L2

2 ≤ a2

t
‖u(t)‖L2 ,

so we get a polynomial control

‖u(t)‖L2 ≤ ta
2‖u(1)‖L2 .

In particular we obtain the existence of an unique solution u ∈ C([1,∞[, L2). For
our scattering purposes we would like to have u ∈ L∞([1,∞[, L2). So we start an
analysis in Fourier variables. As a first a-priori bound we get, as for the L2 norm,

|û(t, ξ)| ≤ ta
2 (|û(1, ξ)|+ |û(1,−ξ)|) .

However, by a precise lengthy study of the equations on <̂u, =̂u we improve to (see
§2.1 in [3], and §6.1 in [4]):

|û(t, ξ)| ≤ C(δ) tδ (|û(1, ξ)|+ |û(1,−ξ)|) , (3.3)

|û(t, ξ)| ≤
(

1 + C(δ)
ξδ

)
(|û(1, ξ)|+ |û(1,−ξ)|) , ∀δ > 0. (3.4)

In particular, this means that for |ξ| ≥ 1 the Fourier mode has bounded variation in
time, while for |ξ| < 1 there might be a growth. Actually time logarithmic growth
for ξ = 0 is observed for well-chosen data, and this also happens at nonlinear level
for equation (3.1) (see Appendix B of [3]).

3.1.2. Global existence and scattering

In view of estimates (3.1)-(3.2) we introduce for γ, γ̃ < 1
2 the spaces

‖f‖X = ‖f‖L2 + ‖|ξ|γ f̂(ξ)‖L∞(|ξ|≤1),

‖g‖Y = sup
t≥1

(
‖g(t)‖L2 + 1

tγ̃
‖|ξ|γ ĝ(t, ξ)‖L∞(|ξ|≤1)

)
.

Global existence for the linear equation (3.2) in Y follows easily for data in X since
on the one hand

1
tγ̃
‖|ξ|γû(t, ξ)‖L∞(|ξ|≤1) ≤ C(γ̃)‖|ξ|γû(1, ξ)‖L∞(|ξ|≤1) ≤ C(γ̃)‖u(1)‖X .

and on the other hand

‖u(t)‖L2 = ‖û(t)‖L2(|ξ|≤1) + ‖û(t)‖L2(1≤|ξ|)

≤ C(δ)‖|ξ|−δ‖L2(|ξ|≤1) ‖û(1)‖L∞(|ξ|≤1) + ‖û(1)‖L2(1≤|ξ|) ≤ C̃(δ)‖u(1)‖X .
Therefore we have that u is a global solution in Y ⊂ L∞([1,∞[, L2).

Asymptotic completeness for the linear equation (3.2) holds if and only if e−it∆u(t)
has a limit in L2 as t goes to ∞. Therefore we need

‖e−it1∆u(t1)− e−it2∆u(t2)‖L2
t1,t2→∞−→ 0,
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which is equivalent, using the Duhamel formulation, to∥∥∥∥∥
∫ t2

t1
e−is∆u(s, x) ds

s1±2ia2

∥∥∥∥∥
L2

t1,t2→∞−→ 0.

We estimate the Fourier modes of this Duhamel term by integrations by parts:

At1,t2(ξ) =
∫ t2

t1
eisξ

2
û(s,−ξ) ds

s1±2ia2

= eisξ
2

iξ2
û(s,−ξ)
s1±2ia2

∣∣∣∣∣
t2

t1

−
∫ t2

t1

eisξ
2

iξ2

(
∂sû(s,−ξ)
s1±2ia2 − (1± 2ia2) û(s,−ξ)

s2±2ia2

)
ds.

The term involving ∂sû(s,−ξ) has a non-integrable factor; we use the equation to
express it as

∂sû(s,−ξ) = iξ2û(s,−ξ)± i a2

s1∓2ia2 û(s, ξ).

Notice that the second term will give an 1/s2 integrable factor, while the first one
recovers −At1,t2(ξ). This is due to the fact that the linear term is conjugated. We
obtain

2|At1,t2(ξ)| ≤ |û(s, ξ)|
s ξ2

∣∣∣∣∣
t2

t1

+
∫ t2

t1

|û(s, ξ)|+ |û(s,−ξ)|
s2 ξ2 ds.

Now we use (3.4) to get

2|At1,t2(ξ)| ≤
(

1 + C(δ)
ξδ

)
|û(1, ξ)|+ |û(1,−ξ)|

t1 ξ2 , ∀δ > 0. (3.5)

This immediately gives the estimate of the L2 norm in two regions in Fourier vari-
ables :

‖At1,t2‖L2(1≤|ξ|) ≤
C

t1
‖u(1)‖L2 ,

and

‖At1,t2‖L2( 1
t1
≤ξ2≤1) ≤

‖|ξ|γû(1)‖L∞(|ξ|≤1)

t1
‖|ξ|−2−(γ+δ)‖L2( 1

t1
≤|ξ|≤1) ≤

C

t
1
4−

γ+δ
2

1

‖|ξ|γû(1)‖L∞(|ξ|≤1).

On the region 1
t2
≤ ξ2 ≤ 1

t2
we split the Duhamel integral into two parts and estimate

them using (3.4) and (3.5) as follows:

|At1,t2(ξ)| ≤
∫ 1/ξ2

t1
|û(s,−ξ)| ds

s
+|A1/ξ2,t2(ξ)| ≤ ‖û(1)‖L∞(|ξ|≤1)

|ξ|δ
| log ξ2|+‖û(1)‖L∞(|ξ|≤1)

|ξ|δ
.

Therefore

‖At1,t2‖L2( 1
t2
≤ξ2≤ 1

t1
) ≤ ‖|ξ|γû(1)‖L∞(|ξ|≤1)‖ log ξ2|ξ|−(γ+δ)‖L2( 1

t2
≤ξ2≤ 1

t1
) ≤

C

t
1
4−

γ+δ
2

1

‖|ξ|γû(1)‖L∞(|ξ|≤1).

Finally, on ξ2 ≤ 1
t2

we use (3.4)

|At1,t2(ξ)| ≤ ‖û(1)‖L∞(|ξ|≤1)

|ξ|δ
| log t2| ≤

‖û(1)‖L∞(|ξ|≤1)

|ξ|δ
| log ξ2|

and integrate
‖At1,t2‖L2(ξ2≤ 1

t2
) ≤

C

t
1
4−

γ+δ
2

2

‖|ξ|γû(1)‖L∞(|ξ|≤1).
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Summarizing, we have indeed

‖At1,t2‖L2
t1,t2→∞−→ 0,

so asymptotic completeness follows for (3.2):

∃u+ ∈ L2, ‖u(t)− e±ia2 log t eit∂
2
xu+‖L2 = O(t− 1

4 + γ+
2 ).

Moreover, a posteriori estimates show that the linear solution u belongs to L4((1,∞), L∞).
For proving this the worse term to estimate is

ia2
∫ t

1
ei(t−s)∆eit∆u+

ds

s1±2ia2 ,

and it is treated by splitting it in the Fourier variable into the regions ξ2 ≤ 1
t
,

1
t
≤ ξ2 ≤ 1 and 1 ≤ ξ2 (see §2.4 in [3] for details).

The nonlinear equation (3.1) is treated as a perturbation of the linear one (3.2),
by a fixed point argument in Y ∩L4((1,∞), L∞), and global existence and scattering
in L2 follow. Moreover, the final state belongs to Xγ− . The analysis works the same
for higher Sobolev spaces (see §3 in [3]).

3.2. Existence and properties of T (0, x)
As stated in Theorem 2.1, we start with u(1) small in X together with its first four
derivatives in space. From the previous subsection we obtain that there exists u
solution of (2.2) that has the long-range asymptotic

eia
2 log

√
t eit∂

2
x u+(x),

for some u+ ∈ Xγ− . Now we define ψ by the pseudo-conformal transform,

ψ(t, x) = ei
x2
4t
√
t

(a+ u)
(1
t
,
x

t

)
,

and we define vectors (T,N)(t, x) by imposing their derivatives to satisfy (1.6) and
(T,N)(1, 0) to be the canonical basis of R3. Then we define χ by (1.7) and P =
(0, 0, 0), for t > 0. In the next two paragraphs we shall prove that there is a trace at
time t = 0 for the tangent vector T (t, x) of χ(t, x). The extension of χ for negative
times, together with the initial value problem result will be reviewed in §3.3.

3.2.1. Asymptotics in space and in time for the tangent and normal vec-
tors

For fixed t ∈]0, 1] we look for the asymptotic in space of T (t, x). Using (1.6) we have

T (t, x2)− T (t, x1) = <
∫ x2

x1

e−i
s2
4t
√
t

(a+ u)
(1
t
,
s

t

)
N(t, s) ds.

We integrate by parts from the oscillatory phase, and by using again (1.6),∣∣∣∣∣T (t, x2)− T (t, x1) + =
∫ x2

x1
e−i

s2
4t

2
√
t

s
us

(1
t
,
s

t

)
N(t, s)ds

∣∣∣∣∣ ≤ C(u(1))
√
t

x1
.
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Therefore we obtain the existence of a limit in space:
∃T∞(t) = lim

x→∞
T (t, x).

Now, by integrations by parts in time using (1.6) (see §3 in [4]) we get that the
T∞(t) is independent in time:

T∞(t) = T∞, ∀0 < t ≤ 1,
so we have obtained∣∣∣∣∣T (t, x)− T∞ −=

∫ ∞
x

e−i
s2
4t

2
√
t

s
us

(1
t
,
s

t

)
N(t, s)ds

∣∣∣∣∣ ≤ C(u(1))
√
t

x
. (3.6)

In view of this formula, to understand better the tangent vector we need informations
on the complex normal vector N(t, x). The later is very oscillating, and we modulate
it as follows:

Ñ(t, x) = N(t, x)eiΦ , Φ(t, x) = −a2 log
√
t+ a2 log x.

Again by integrations by parts in space and in time (see §3 in [4]), and a compactness
argument (see §3.1 in [5]) we obtain the existence of N∞ ∈ C such that∣∣∣∣Ñ(t, x)−N∞ − i

∫ ∞
x

h(t, s)T (t, s) ds
∣∣∣∣ ≤ C(u(1))

(√
t

x
+ t

x2 +
√
t

)
. (3.7)

with

h(t, s) = 2
√
t

s
us

(1
t
,
s

t

)
e−i

s2
4t e−iΦ.

Moreover, starting from (3.6) and (3.7) we obtain self-similar estimate involving
only T , T∞, N∞ and u:

T (t, x)− T∞ −=N∞
∫ ∞
x

h(t, s)ds−<
∫ ∞
x

h(t, s)
∫ ∞
s

h(t, s′)T (t, s′)ds′ds,

and this process is iterated by handling the multiple integrals of h to get again
self-similar estimates:

|T (t, x)−
2n∑
j=1

aj(t, x)| ≤ C(u(1))
(√

t+
√
t

x
+ t
√
t

x3

)
,

with aj(t, x) explicit multiple integrals involving h (see Lemma 3.3 in [5]).

3.2.2. The limit in time for T (t, x) at fixed x 6= 0

By denoting h̃(s) = iû+( s2)
sia2 we prove that for 0 < t ≤ 1 and 0 < x (see Lemma 3.5

in [5]): ∣∣∣∣∣
∫ ∞
x

h(t, s1)
∫ ∞
s1

h(t, s2)...
∫ ∞
sn−1

h(t, sn) dsn...ds1

−
∫ ∞
x

h̃(s1)
∫ ∞
s1

h̃(s2)...
∫ ∞
sn−1

h̃(sn) dsn...ds1

∣∣∣∣∣
≤ C(u(1))n

(
1 + t

x2

)n−1 (
1 + 1

x

)(√
t

x
+ t

1
6
−
)
,
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So we define aj(x) to be aj(t, x) with the functions h(t, s) replaced by h̃(s) and we
get for x 6= 0:

T (t, x)−
∞∑
j=1

aj(x) = O
(
t

1
6
−
)
.

In particular T (t, x) has a limit at t = 0,

T (0, x) =
∞∑
j=1

aj(x).

The integral equation that T (0, x) satisfies allows us to get a a self-similar estimate
on t ≤ x2 (see Proposition 3.6 in [5]):

|T (t, x)− T (0, x)| ≤ C(u(1))
√
t

x
.

3.3. IVP and continuation after singularity time
We start by finding some extra informations about the singularity formation for χ
at time t = 0, that will also indicate us how to construct solutions with initial data
curves with a corner. Eventually we shall extend the solution χ to negative times.

3.3.1. Formation of the angle

The full details concerning this subsection can be found in §5 in [4]. We denote
Tn(x) = T (tn,

√
tnx) , Nn(x) = N(tn,

√
tnx),

for a sequence tn of times that tend to zero. From (1.6) we have

T ′n(x) =
√
tn< (ψ(tn,

√
tnx)Nn(x)) = < (aeix

2
4 Nn(x)) + o(tn)Nn(x),

N ′n(x) = −
√
tn ψ(tn,

√
tnx)Tn(x) = −aeix

2
4 Tn(x) + o(tn)Tn(x).

It follows that A = {Tn, n ∈ N} is a collection of pointwise bounded and equicon-
tinuous functions. Then Arzela-Ascoli theorem allows us to obtain a subsequence,
re-called Tn, that converges uniformly on any compact subset of R. We can do the
same for B = {Nn, n ∈ N} and conclude that

lim
n→∞

(Tn(x), Nn(x)) = (To(x), No(x)).

and the system satisfied by (To(x), No(x)) is T ′o(x) = < (aeix
2

4 No(x)),
N ′o(x) = aei

x2
4 To(x).

Therefore (To(x),< (e−ix
2

4 No(x)),= (e−ix
2

4 No(x))) is the Frenet frame of a curve with
curvature and torsion (a, x2 ), exactly as the profile of the self-similar solution χa.

Hence on the one hand, modulo a rotation R, from [17]) we have

To(x) = A+
a +O

(1
x

)
, No(x) = B+

a +O
(1
x

)
.

On the other hand using the self-similar convergence of T (t) to T (0),
To(x) = lim

n→∞
Tn(x)
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= lim
n→∞

(T (tn,
√
tnx)− T (0,

√
tnx) + T (0,

√
tnx)) = O

(1
x

)
+ lim

n→∞
T (0,

√
tnx).

Therefore we obtain the existence and the value of T (0, 0±), modulo the rotation R:
T (0, 0±) = A±a ,

so a corner with the same angle as the one of the self-similar solution χa is generated
at t = 0, x = 0.

3.3.2. The initial value problem

In a similar way we prove that, modulo the rotation R, there exists a limit Ñ(0, x)
of Ñ(t, x) and Ñ(0, 0±) = B±a . Moreover, Tx(0, x) = −<( û+(x2 )

|x|ia2 Ñ(0, x)), Ñx(0, x) = − û+(x2 )
|x|ia2 T (0, x),

(T, Ñ)(0, 0±) = (A±, B±).

In particular, the recipe for constructing a solution χ(t, x) with initial data χ0(x)
displaying a corner as χa(0, x) and curvature in weighted spaces as stated in Theorem
2.2 is the following:

• we define g(x) and Ñ0(x) ⊥ T0(x) for x > 0 (similarly for x < 0) by
T0x(x) = −<(g(x)Ñ0(x)), Ñ0x(x) = −g(x)T0(x), (T0, Ñ0)(0) = (A+, B+),

• |g(x)| is the curvature of χ0, and we define the Xγ-type function

u+(x) = F−1
(
g(2·)|2 · |ia2)

,

• from the existence of wave operator with final data u+ we obtain a solution
u(t, x) of (2.2),

• from u(t, x) we obtain, as explained in the first section, a solution χ of the
binormal flow.

Now, modulo a rotation, χ has initial data χ0. Indeed, by doing the analysis in §3.2
and above in the current subsection §3.3, it follows that the tangent of χ(t, x) has a
trace (T, Ñ)(0, x) at t = 0, that satisfies, modulo a rotation R, the same system as
(T0, Ñ0), so T0 = RT (0). By translating Rχ by χ0(0)−Rχ(0, 0) we obtain a solution
of (1.1) with initial data χ0. In §3.5 in [5] we show by a Gronwall argument that
the uniqueness result holds.

3.3.3. Continuation after singularity time

From the reversibility of (1.1) (χ(t, x) solution implies χ(−t,−x) solution also),
continuing the solution χ(t, x) for negative times means solving the initial value
problem for positive times with initial data χ?0(x) = χ(0,−x), oriented curve with
the χa(0,−x) corner. Now, the unique self-similar solution with initial data χa(0,−x)
is the π−rotation Rχa(t, x) around the bisector of the angle. Then the corresponding
asymptotic vectors are RA±, RB±, that can be written as R∓(−A∓, B∓) for some
particular rotations R∓ (see Proposition 2.2 in [5]).
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So the IVP recipe starts with initial data (T ∗0 , Ñ∗0 )(0) = R̃∓(−A∓, B∓) and in
particular we have as solutions

N?
0 (x) = R̃∓Ñ(0,−x), g?(x) = −iû+

(
−x2

)
|x|ia2

.

Therefeore the IVP result gives us a solution χ?(t, x) for positive times with initial
data χ?0. Then χ(t, x) = χ?(−t,−x) is the extension for negative times of χ(t, x).
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