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Long-Time Asymptotics for the Navier-Stokes
Equation in a Two-Dimensional Exterior Domain

Thierry Gallay

Comportement asymptotique en temps des solutions de
l’équation

de Navier-Stokes dans un domaine extérieur du plan
Résumé

Nous étudions le comportement asymptotique en temps des solutions
de l’équation de Navier-Stokes incompressible dans un domaine extérieur du
plan, avec condition de non-glissement à la frontière. Les données initiales que
nous considérons sont des perturbations d’énergie finie d’un tourbillon régulier
dont la circulation à l’infini est petite, mais nous n’imposons aucune autre
restriction à leur taille. En utilisant une estimation d’énergie logarithmique et
des arguments d’interpolation, nous montrons que la solution converge lorsque
t → ∞ vers un tourbillon d’Oseen autosimilaire. Ce résultat a été obtenu en
collaboration avec Y. Maekawa (Université de Kobe).

Abstract
We study the long-time behavior of infinite-energy solutions to the incom-

pressible Navier-Stokes equations in a two-dimensional exterior domain, with
no-slip boundary conditions. The initial data we consider are finite-energy per-
turbations of a smooth vortex with small circulation at infinity, but are other-
wise arbitrarily large. Using a logarithmic energy estimate and some interpo-
lation arguments, we prove that the solution approaches a self-similar Oseen
vortex as t→∞. This result was obtained in collaboration with Y. Maekawa
(Kobe University).
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1. Introduction

We consider the free motion of an incompressible viscous fluid in a two-dimensional
exterior domain Ω = R2 \K, where K ⊂ R2 is a compact obstacle with a smooth
boundary. We do not assume that K is connected, hence we include the case where
the fluid moves around a finite collection of obstacles. As for the boundary condi-
tions, we suppose that the velocity of the fluid vanishes on ∂Ω and decays to zero at
infinity. The evolution of our system is thus governed by the Navier-Stokes equations

∂tu+ (u · ∇)u = ∆u−∇p , div u = 0 , for x ∈ Ω , t > 0 ,
u(x, t) = 0 , for x ∈ ∂Ω , t > 0 ,
u(x, 0) = u0(x) , for x ∈ Ω ,

(1.1)

where u(x, t) ∈ R2 and p(x, t) ∈ R denote, respectively, the velocity and the pres-
sure of the fluid at a space-time point (x, t) ∈ Ω × R+. As can be seen from the
first equation in (1.1), we assume that the fluid density is constant and that the
kinematic viscosity is equal to 1. Since (1.1) includes no forcing, the motion of the
fluid originates entirely from the initial data u0 : Ω → R2, which we assume to be
divergence-free and tangent to the boundary on ∂Ω.

The behavior of the solutions of (1.1) depends in a crucial way on the decay rate
of the velocity field u(x, t) as |x| → ∞. If the initial velocity u0 belongs to the energy
space

L2
σ(Ω) =

{
u ∈ L2(Ω)2

∣∣∣∣ div u = 0 in Ω , u · n = 0 on ∂Ω
}
,

where n denotes the interior unit normal on ∂Ω, we have the following classical
result :

Theorem 1. For all initial data u0 ∈ L2
σ(Ω), Eq. (1.1) has a unique global solution

u ∈ C0([0,∞), L2
σ(Ω)) ∩ C1((0,∞), L2

σ(Ω)) ∩ C0((0,∞), H1
0 (Ω)2 ∩H2(Ω)2) ,

which satisfies for all t ≥ 0 the energy equality :
1
2‖u(·, t)‖2

L2(Ω) +
∫ t

0
‖∇u(·, s)‖2

L2(Ω) ds = 1
2‖u0‖2

L2(Ω) . (1.2)

Global well-posedness for the Navier-Stokes equations was first established by
Leray [25] in the particular case where Ω = R2. When Ω ⊂ R2 is bounded, the first
results also go back to Leray [26], but global existence of large solutions was shown
only later by Ladyzhenskaia [24], see also [27, 19, 9]. To prove Theorem 1, one can
use a regularization or a discretization procedure to construct global weak solutions
of (1.1) which satisfy the energy inequality, and then prove that these solutions are
unique and have the desired regularity. Alternatively, one can construct local mild
solutions by transforming (1.1) into an integral equation and solving it by a fixed
point argument, and then use the energy equality (1.2) to show that all solutions
can be extended to the whole time interval [0,∞). Although most of the literature
is devoted to the situation where Ω is either a bounded domain or the whole plane
R2, the case of an exterior domain can be treated without essential modifications,
see e.g. [22].

It follows from (1.2) that the kinetic energy E(t) = 1
2‖u(·, t)‖2

L2(Ω) is nonincreasing
in time, and a result of Masuda [28] shows that E(t) converges to zero as t → ∞.
Moreover, under additional assumptions on the initial data, it is possible to specify
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a decay rate in time. For instance, if u0 ∈ L2
σ(Ω) ∩ Lq(Ω)2 for some q ∈ (1, 2), the

solution of (1.1) lies in the same space for all t > 0 and

‖u(·, t)‖L2(Ω) = o
(
t

1
2−

1
q

)
as t→∞ , (1.3)

see [4, 21, 1]. It is interesting to notice that (1.3) fails in the limiting case q = 1.
Indeed, if u0 ∈ L2

σ(Ω) ∩ L1(Ω)2, then in general the velocity field u(x, t) decays like
|x|−2 as |x| → ∞, so that u(·, t) /∈ L1(Ω)2 for t > 0.

As an aside, we mention that this loss of spatial decay is related to the net force
F exerted by the fluid on the obstacle K. To see this, we first observe that any
velocity field u ∈ L2

σ(Ω) ∩ L1(Ω)2 satisfies
∫

Ω u dx = 0. Indeed, if u is smooth and
compactly supported, then using Gauss’ theorem and the fact that u · n = 0 on ∂Ω
we find∫

Ω
uj dx =

∫
Ω

(u · ∇)xj dx =
∫

Ω
div(uxj) dx = 0 , for j = 1, 2 .

The general easily case follows by a density argument [20]. Now, if u ∈ C1([0, T ], L1(Ω)2)
is a solution of the Navier-Stokes equation (1.1), then

0 = d
dt

∫
Ω
u dx =

∫
Ω

(
∆u−∇p− (u · ∇)u

)
dx = −

∫
∂Ω

(Tn) dσ = −F ,

because ∆ui−∂ip = ∂jTij where Tij = ∂iuj+∂jui−pδij is the stress tensor (we recall
that all physical parameters have been normalized to 1). The formal calculation
above can be made rigorous [20] and shows that, no matter how localized the initial
data may be, the velocity field u(·, t) does not stay integrable for positive times,
unless the net force F vanishes identically. Of course this is not the case in general,
but in highly symmetric situations it is possible to construct solutions of (1.1) for
which F ≡ 0, and which decay faster as t→∞ than what is indicated in (1.3), see
[15, 16].

Much less is known about the solutions of (1.1) if the initial data u0 are not
square integrable. Although the physical relevance of infinite-energy solutions can
be questioned, we believe that such solutions naturally occur when studying the
dynamics of (1.1) in a two-dimensional exterior domain Ω. One way to realize that
is to consider the relation between the velocity field u and the associated vorticity
ω = ∂1u2 − ∂2u1. Given p ∈ [1, 2), we denote

Ẇ 1,p
0,σ (Ω) =

{
u ∈ L

2p
2−p (Ω)2

∣∣∣∣ ∇u ∈ Lp(Ω)4 , div u = 0 in Ω , u = 0 on ∂Ω
}
.

In other words Ẇ 1,p
0,σ (Ω) is the completion with respect to the norm u 7→ ‖∇u‖Lp of

the space of all smooth, divergence-free vector fields with compact support in Ω, see
[10]. We then have the following result :

Lemma 2. If u ∈ Ẇ 1,p
0,σ (Ω) for some p ∈ [1, 2), and if ω = ∂1u2 − ∂2u1, then

u(x) = 1
2π

∫
Ω

(x− y)⊥
|x− y|2

ω(y) dy , (1.4)

for almost every x ∈ Ω. Here x⊥ = (−x2, x1) and |x|2 = x2
1 +x2

2 if x = (x1, x2) ∈ R2.

The proof of Lemma 2 is very simple : if ū : R2 → R2 denotes the extension of u
by zero outside Ω, then ū ∈ L2p/(2−p)(R2)2, ∇ū ∈ Lp(R2)4, and div ū = 0. Moreover
ω̄ = ∂1ū2 − ∂2ū1 is the extension of ω by zero outside Ω. Thus ū can be expressed
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in terms of ω̄ using the classical Biot-Savart law in R2, and restricting that relation
to Ω we obtain (1.4). We emphasize that the representation (1.4) is only valid if ω
is the curl of a divergence-free velocity field u which vanishes on ∂Ω. In contrast, if
ω : Ω→ R is an arbitrary smooth function with compact support, the velocity field
defined by (1.4) does not even satisfy u · n = 0 on ∂Ω !

We now assume that the vorticity distribution ω is sufficiently localized so that
ω ∈ L1(Ω), and we define the total circulation

α =
∫

Ω
ω(x) dx = lim

R→∞

∮
|x|=R

u1 dx1 + u2 dx2 ,

where the second equality follows from Green’s theorem, since ω = ∂1u2− ∂2u1 and
u vanishes on ∂Ω. Using the vorticity formulation of the Navier-Stokes equation
(1.1), it is not difficult to verify that the total circulation is a conserved quantity.
But it follows from (1.4) that

u(x) ∼ α

2π
x⊥

|x|2
, as |x| → ∞ , (1.5)

hence u /∈ L2(Ω)2 as soon as α 6= 0. This shows that finite-energy solutions of
(1.1) necessarily have zero total circulation. On the other hand, in many important
examples of two-dimensional flows such as vortex patches, vortex sheets, or point
vortices, the vorticity distribution typically has a constant sign, hence the total
circulation is necessarily nonzero. In our opinion, it is thus important to enlarge the
class of admissible solutions of (1.1), so as to allow for velocity fields which decay
like |x|−1 as |x| → ∞.

A possible framework for the study of infinite-energy solutions of the Navier-
Stokes equation (1.1) is the weak energy space

L2,∞
σ (Ω) =

{
u ∈ L2,∞(Ω)2

∣∣∣∣ div u = 0 in Ω , u · n = 0 on ∂Ω
}
,

where L2,∞(Ω) is the weak L2 space on Ω, see [3]. We recall that

‖u‖L2,∞(Ω) ≈ sup
λ>0

λ
(

meas{x ∈ Ω | |u(x)| > λ}
)1/2

, (1.6)

in the sense that the norm ‖u‖L2,∞ is equivalent to the quantity in the right-hand
side of (1.6). Clearly L2

σ(Ω) ↪→ L2,∞
σ (Ω), but the weak energy space is large enough

to include velocity fields which decay slowly at infinity, as in (1.5). Concerning the
solvability of (1.1) in L2,∞

σ (Ω), the following general result was obtained by Kozono
and Yamazaki :

Theorem 3. [23] There exists ε > 0 such that, for all initial data u0 ∈ L2,∞
σ (Ω)

satisfying

lim sup
λ→+∞

λ
(

meas{x ∈ Ω | |u0(x)| > λ}
)1/2

≤ ε , (1.7)

Eq. (1.1) has a unique global solution such that, for all T > 0,

sup
0<t<T

‖u(·, t)‖L2,∞(Ω) + sup
0<t<T

t1/4‖u(·, t)‖L4(Ω) < ∞ ,

and such that u(·, t)→ u0 as t→ 0 in the weak-∗ topology of L2,∞
σ (Ω).
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Theorem 3 shows that the Cauchy problem for the Navier-Stokes equations (1.1)
is globally well-posed in the weak energy space L2,∞

σ (Ω), provided that the local
singularity of the initial data u0 is sufficiently small, in the sense of (1.7). To illustrate
the meaning of this smallness condition, we consider the simple situation where the
initial flow is just a point vortex of circulation α ∈ R located at x0 ∈ Ω. The initial
vorticity is thus given by ω0(x) = αδ(x−x0), and using the classical Biot-Savart law
in the exterior domain Ω (see e.g. [17]) it is easy to verify that the corresponding
velocity field u0 lies in L2,∞

σ (Ω), is smooth in Ω \ {x0}, and satisfies

u0(x) ≈ α

2π
(x− x0)⊥
|x− x0|2

as x→ x0 ,

so that (1.7) is fulfilled if and only if |α| ≤
√

4πε. This example shows that, if the
initial vorticity ω0 is a finite measure, condition (1.7) implies a restriction on the
size of the atomic part of ω0. Such a restriction also arises in the analysis of the two-
dimensional vorticity equation in the whole space R2, see [14], but in that particular
case the uniqueness of the solution can be established when the initial vorticity is
an arbitrary finite measure [11, 2].

Although Theorem 3 provides the existence of a large class of infinite-energy
solutions, very little is known about the asymptotic behavior of these solutions as
t→∞. In fact, we do not even know whether they stay bounded in the weak energy
space L2,∞

σ (Ω), because we are lacking a priori estimates. Indeed, if u0 /∈ L2
σ(Ω)

the energy equality (1.2) does not make sense, and because of the no-slip boundary
condition on ∂Ω it is quite difficult to obtain estimates on the vorticity distribution if
Ω 6= R2. In the rest of this paper, however, we consider a particular class of infinite-
energy solutions of the Navier-Stokes equations (1.1), for which the asymptotic
behavior in time can be accurately described.

2. Main Results

In the particular case where Ω = R2, the Navier-Stokes equations (1.1) have a family
of self-similar solutions of the form u(x, t) = αΘ(x, t), p(x, t) = α2Π(x, t), where
α ∈ R is a free parameter (the total circulation) and

Θ(x, t) = 1
2π

x⊥

|x|2
(

1− e−
|x|2

4(1+t)

)
, ∇Π(x, t) = x

|x|2
|Θ(x, t)|2 . (2.1)

These solutions are usually called the Lamb-Oseen vortices. If u(x, t) = αΘ(x, t),
the corresponding vorticity distribution is ω(x, t) = αΞ(x, t), where

Ξ(x, t) = ∂1Θ2(x, t)− ∂2Θ1(x, t) = 1
4π(1 + t) e

− |x|2
4(1+t) . (2.2)

Note that Ξ(x, t) > 0 and
∫
R2 Ξ(x, t) dx = 1 for all t ≥ 0. Oseen vortices play an

important role in the dynamics of the Navier-Stokes equations in R2. In particular,
we have the following result :

Theorem 4. [13]. For all initial data u0 ∈ L2,∞
σ (R2) such that the vorticity distri-

bution ω0 is integrable, the solution of the Navier-Stokes equation in R2 satisfies∫
R2
|ω(x, t)− αΞ(x, t)| dx −−−→

t→∞
0 , where α =

∫
R2
ω0 dx .
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In other words, Oseen vortices describe the leading order asymptotics of all solu-
tions of the Navier-Stokes equations in R2 with integrable vorticity distribution and
nonzero total circulation.

In the case of an exterior domain Ω = R2 \K, approximate Oseen vortices can be
constructed in the following way. Let χ : R2 → [0, 1] be a smooth, radially symmetric
cut-off function such that χ is nondecreasing along rays, χ = 0 on a neighborhood
of K, and χ(x) = 1 when |x| is sufficiently large. The truncated Oseen vortex with
unit circulation is defined as follows :

uχ(x, t) = χ(x)Θ(x, t) = 1
2π

x⊥

|x|2
(

1− e−
|x|2

4(1+t)

)
χ(x) . (2.3)

For any t ≥ 0, it is clear that uχ(·, t) is a smooth divergence-free vector field which
vanishes in a neighborhood of K. The corresponding vorticity distribution ωχ =
∂1u

χ
2 − ∂2u

χ
1 has the explicit expression

ωχ(x, t) = χ(x)Ξ(x, t) + 1
2π

1
|x|2

(
1− e−

|x|2
4(1+t)

)
x · ∇χ(x) , (2.4)

where Ξ(x, t) is defined in (2.2). In particular ωχ(x, t) ≥ 0 and
∫
R2 ωχ(x, t) dx = 1

for all t ≥ 0. Moreover, a direct calculation shows that

(uχ · ∇)uχ = 1
2∇|u

χ|2 + (uχ)⊥ωχ = − x

|x|2
|uχ|2 , (2.5)

hence there exists a radially symmetric function pχ(x, t) such that −∇pχ = (uχ ·
∇)uχ.

Now, given α ∈ R, we consider solutions of (1.1) of the particular form

u(x, t) = αuχ(x, t) + v(x, t) , p(x, t) = α2pχ(x, t) + q(x, t) , (2.6)

where uχ(x, t) is the truncated Oseen vortex defined in (2.3), and v(x, t) is a finite-
energy perturbation. In this situation, we expect that v(·, t) converges to zero in
energy norm as t → ∞, so that the long-time behavior of u(·, t) is described, to
leading order, by the Oseen vortex αΘ(·, t). Our main result, which was obtained
in collaboration with Y. Maekawa, shows that this is indeed the case, provided the
total circulation α is sufficiently small.

Theorem 5. [12] Fix q ∈ (1, 2), and let µ = 1/q − 1/2. There exists a constant
ε = ε(q) > 0 such that, for any smooth exterior domain Ω ⊂ R2 and for all initial
data of the form u0 = αuχ(·, 0) + v0 with |α| ≤ ε and v0 ∈ L2

σ(Ω) ∩ Lq(Ω)2, the
solution of the Navier-Stokes equations (1.1) satisfies

‖u(·, t)− αΘ(·, t)‖L2(Ω) + t1/2‖∇u(·, t)− α∇Θ(·, t)‖L2(Ω) = O(t−µ) , (2.7)

as t→∞.

To understand the scope and the limitations of this statement, a few comments
are in order. First of all, Theorem 5 is a global stability result for Oseen vortices with
small circulation at infinity, because we do not impose any restriction on the size of
the perturbation v0 ∈ L2

σ(Ω) ∩ Lq(Ω)2. In the particular case where α = 0, there is
no vortex at all and we just recover the asymptotics (1.3) with O(t−µ) instead of
o(t−µ) in the right-hand side. Also, in the simple situation where Ω = R2, our result
is comparable to that of Carpio [5], although the proof is very different.
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The main limitation of Theorem 5 is of course the restriction on the size of the
circulation α, which we believe is purely technical. In this respect, the fact that ε(q)
can be taken independent of the domain Ω is quite significant, because we know
that there is no restriction on the circulation in the particular case where Ω = R2,
see Theorem 4. Obviously ε(q) is a decreasing function of q, and the proof shows
that ε(q) = O(

√
2− q) as q → 2. Thus the limiting case q = 2 is not included, which

means that we are not able to control arbitrary finite-energy perturbations of the
Oseen vortex (see however [18] for a partial result in that direction). On the other
hand the limit of ε(q) as q → 1 can be estimated and is found to be approximately
ε∗ = 5.306, see [12].

We also mention that the decomposition u0 = αuχ(·, 0) + v0 of the initial data is
automatically satisfied if we assume that the initial vorticity is sufficiently localized.
More precisely, we have the following auxiliary result, which follows quite easily
from Lemma 2.

Proposition 6. [12] Given q ∈ (1, 2), assume that u0 ∈ Ẇ 1,p
0,σ (Ω) for some p ∈ [1, 2)

and that the associated vorticity ω0 = curl u0 satisfies∫
Ω

(1 + |x|2)m|ω0(x)|2 dx < ∞ , (2.8)

for some m > 2/q. If we denote α =
∫

Ω ω0(x) dx, then u0 = αuχ(·, 0) + v0 for some
v0 ∈ L2

σ(Ω) ∩ Lq(Ω)2. In particular, if |α| ≤ ε, the conclusion of Theorem 5 holds.

In view of Proposition 6, it would be nice to extend the conclusion Theorem 5
so as to include a convergence result for the vorticity distribution in the critical
space L1(Ω). This is not immediately obvious, because the classical Lp–Lq estimates
for the Stokes semigroup in an exterior domain do not include the limiting case
p = 1, see [7, 8]. However, combining Theorem 5 with a relatively standard estimate,
which shows that the L1 norm of the vorticity cannot leak to infinity, we obtain the
following result which is the main original contribution of the present paper :

Proposition 7. Under the assumptions of Theorem 5, if we suppose in addition
that (2.8) holds for some m ≥ 2/q, then the vorticity ω = curl u satisfies∫

Ω
|ω(x, t)− αΞ(x, t)| dx = O(t−µ log t) , as t→∞ , (2.9)

where Ξ(x, t) is defined in (2.2).

In the rest of this paper, we give a simplified proof of Theorem 5, which does not
yield the optimal conclusion. In particular, we shall find a suboptimal convergence
rate in (2.7), and our limitation on the size of the circulation will (a priori) depend on
the domain Ω. We refer the reader to [12] for a complete proof, including all details.
In the last section, we briefly show how Proposition 7 follows from Theorem 5, using
some additional information on the vorticity near infinity.

3. Energy estimates

Given α ∈ R we consider solutions of (1.1) of the form (2.6). The perturbation
v(x, t) vanishes on the boundary ∂Ω and satisfies the equation
∂tv+α(uχ · ∇)v+α(v · ∇)uχ + (v · ∇)v = ∆v+αRχ−∇q , div v = 0 , (3.1)
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where Rχ is the remainder term given by (6.5) below. It is not difficult to verify
that the Cauchy problem for equation (3.1) is globally well-posed in the energy
space L2

σ(Ω). The goal of this section is to control the long-time evolution of the
perturbation v(t) ≡ v(·, t) using energy estimates.

First of all, we multiply both sides of (3.1) by v and integrate by parts over Ω.
Taking into account the no-slip boundary condition, we find

1
2

d
dt‖v(t)‖2

L2 + ‖∇v(t)‖2
L2 = α〈v(t), Rχ(t)〉 − α〈v(t), (v(t) · ∇)uχ(t)〉 , (3.2)

where 〈·, ·〉 denotes the usual scalar product in L2
σ(Ω), so that ‖ · ‖L2 = 〈· , ·〉1/2. To

estimate the right-hand side of (3.2), we use the results of Section 6 below. First,
in view of (6.7), we have

|α〈v(t), Rχ(t)〉| ≤ κ3 |α|
1 + t

‖∇v(t)‖L2 ≤ 1
2‖∇v(t)‖2

L2 + κ2
3 α

2

2(1 + t)2 .

Moreover, applying (6.2) with p =∞, we see that

|〈v(t), (v(t) · ∇)uχ(t)〉| ≤ b∞
1 + t

‖v(t)‖2
L2 .

We thus obtain the energy inequality
d
dt‖v(t)‖2

L2 + ‖∇v(t)‖2
L2 ≤

2b∞|α|
1 + t

‖v(t)‖2
L2 + κ2

3 α
2

(1 + t)2 , t > 0 .

Using Gronwall’s lemma, we deduce that

‖v(t)‖2
L2 +

∫ t

t0
‖∇v(s)‖2

L2 ds ≤
( 1 + t

1 + t0

)2b∞|α|(
‖v(t0)‖2

L2 + κ2
3 α

2

1 + t0

t− t0
1 + t

)
, (3.3)

for t ≥ t0 ≥ 0. This simple estimate shows that the energy of the perturbation
v(x, t) grows at most polynomially in time as t → ∞. Such a conclusion is rather
pessimistic, however, because by a relatively simple modification of the previous
argument it is possible to establish a logarithmic bound, which is clearly superior
for large times.

Proposition 8. There exists a constant K1 > 0 such that, for any circulation α ∈ R
and any v0 ∈ L2

σ(Ω), the solution of (3.1) with initial data v0 satisfies

‖v(t)‖2
L2 +

∫ t

0
‖∇v(s)‖2

L2 ds ≤ 2c|α|K1

(
‖v0‖2

L2 + α2 log(1 + t)
)
, (3.4)

for all t ≥ 0, where c = 2b∞ > 0.

Proof. If t ≤ 1 then (3.4) follows from (3.3) with t0 = 0, hence we can assume that
t ≥ 1. Given any τ ≥ 0, we denote

ṽ(x, t) = u(x, t)− αuχ(x, t+ τ) = v(x, t) + α
(
uχ(x, t)− uχ(x, t+ τ)

)
, (3.5)

for all x ∈ Ω and all t ≥ 0. Then ṽ satisfies (3.1) where uχ(x, t) and Rχ(x, t) are
replaced by uχ(x, t+ τ) and Rχ(x, t+ τ), respectively. Proceeding exactly as above,
we thus obtain the energy estimate

‖ṽ(t)‖2
L2 +

∫ t

0
‖∇ṽ(s)‖2

L2 ds ≤
(1 + t+ τ

1 + τ

)c|α|(
‖ṽ(0)‖2

L2 +Cα2
)
, t ≥ 0 . (3.6)
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Now, we fix t ≥ 1 and choose τ = t− 1. From (6.3), (3.5), we have

‖v(t)‖2
L2 ≤ 2‖ṽ(t)‖2

L2 + 2α2‖uχ(t)− uχ(2t− 1)‖2
L2 ≤ 2‖ṽ(t)‖2

L2 + 2κ1α
2 log 2 .

Similarly, using (6.4), we find∫ t

0
‖∇v(s)‖2

L2 ds ≤ 2
∫ t

0
‖∇ṽ(s)‖2

L2 ds+ 2α2
∫ t

0
‖∇uχ(s)−∇uχ(s+ t− 1)‖2

L2 ds

≤ 2
∫ t

0
‖∇ṽ(s)‖2

L2 ds+ 2κ2α
2 log 1 + t

2 .

Thus it follows from (3.6) (with τ = t− 1) that

‖v(t)‖2
L2 +

∫ t

0
‖∇v(s)‖2

L2 ds ≤ 2c|α|+1
(
‖ṽ(0)‖2

L2 + Cα2
)

+ κα2 log(1 + t) , (3.7)

for all t > 0, where κ = 2 max(κ1, κ2). Finally, we have by (6.3)

‖ṽ(0)‖2
L2 ≤ 2‖v0‖2

L2 + 2α2‖uχ(0)− uχ(t− 1)‖2
L2 ≤ 2‖v0‖2

L2 + 2κ1α
2 log t ,

hence (3.4) easily follows from (3.7). �

Remark 9. The logarithmic energy estimate (3.4) is the main new ingredient in
the proof of Theorem 5. To a certain extent, we use it as a substitute for the energy
equality (1.2), which does not make sense for the solutions we consider. As is clear
from the proof, the logarithmic energy estimate relies on the fact that Oseen’s vortex
(2.1) has “nearly finite energy”, in the sense that the integral defining ‖Θ(·, t)‖2

L2

diverges only logarithmically at infinity.

4. Fractional interpolation

Let P be the Leray-Hopf projection in Ω, and A = −P∆ be the Stokes operator,
see e.g. [6]. We recall that A is self-adjoint and nonnegative in L2

σ(Ω), so that the
fractional power Aβ can be defined for all β > 0. The following result shows that
the range of Aµ contains the (dense) subspace L2

σ(Ω) ∩ Lq(Ω)2.

Lemma 10. [4, 21] Let q ∈ (1, 2) and µ = 1
q
− 1

2 . For all v ∈ L
2
σ(Ω)∩Lq(Ω)2, there

exists a unique w ∈ D(Aµ) ⊂ L2
σ(Ω) such that v = Aµw. Moreover, there exists a

constant C > 0 (independent of v) such that ‖w‖L2(Ω) ≤ C‖v‖Lq(Ω).

Remark 11. If v, w are as in the above statement, we denote w = A−µv. Roughly
speaking, the proof of Lemma 10 argues as follows. By classical Sobolev embedding,
we know that the domain of Aµ is contained in L2

σ(Ω)∩Lq′(Ω)2, where 1
q′

= 1
2 −µ =

1− 1
q
, and by duality we deduce that the range of A−µ contains L2

σ(Ω) ∩ Lq(Ω)2.

We go back to the study of the perturbation equation (3.1), which can be written
in the equivalent form

∂tv + Av + αP
(

(uχ · ∇)v + (v · ∇)uχ
)

+ P (v · ∇)v = αRχ . (4.1)

So far we only considered solutions in the energy space L2
σ(Ω), but now we assume in

addition that v0 ∈ Lq(Ω)2, for some fixed q ∈ (1, 2), and we denote µ = 1
q
− 1

2 ∈ (0, 1
2).

Then it is not difficult to verify that the solution v(t) of (4.1) lies in L2
σ(Ω)∩Lq(Ω)2
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for all t ≥ 0. In particular, invoking Lemma 10, we can define w(t) = A−µv(t) for
all t ≥ 0. This quantity solves the modified equation

∂tw + Aw + αFµ(uχ, v) + αFµ(v, uχ) + Fµ(v, v) = αA−µRχ , (4.2)

where Fµ(u, v) is the bilinear term formally defined by

Fµ(u, v) = A−µP (u · ∇)v . (4.3)

We refer to [21, Section 2] for a rigorous definition and a list of properties of the
bilinear map Fµ. Our goal here is to establish the following estimate :

Proposition 12. There exists K3 > 0 and, for all α ∈ R, there exist positive
constants K2(α) and k(α) such that, if v is any solution of (4.1) with initial data
v0 ∈ L2

σ(Ω) ∩ Lq(Ω)2, the function w(t) = A−µv(t) satisfies

‖w(t)‖2
L2 +

∫ t

0
‖∇w(s)‖2

L2 ds ≤ (1 + t)α2k(α) exp
(
K2(α)‖v0‖2

L2 +K3

)
(‖v0‖2

Lq + α2) ,
(4.4)

for all t ≥ 0. Moreover K2(α) and k(α) are O(1) as α→ 0.

Proof. Taking the scalar product of both sides of (4.2) by w, we obtain

1
2

d
dt‖w(t)‖2

L2 + ‖A1/2w(t)‖2
L2 + α〈Fµ(uχ(t), v(t)), w(t)〉+ α〈Fµ(v(t), uχ(t)), w(t)〉

+ 〈Fµ(v(t), v(t)), w(t)〉 = α〈A−µRχ(t), w(t)〉 . (4.5)

It is well known that ‖A1/2w‖L2 = ‖∇w‖L2 for all w ∈ D(A1/2) = L2
σ(Ω) ∩H1

0 (Ω)2.
To bound the other terms, we observe that

|〈Fµ(uχ, v), w〉| = |〈(uχ · ∇)v, A−µw〉| = |〈(uχ · ∇)A−µw, v〉|

≤ ‖uχ‖L∞‖A
1
2−µw‖L2‖v‖L2 = ‖uχ‖L∞‖A

1
2−µw‖L2‖Aµw‖L2

≤ ‖uχ‖L∞‖A1/2w‖L2‖w‖L2 ,

where in the last inequality we used the interpolation inequality for fractional powers
of A. The same argument shows that |〈Fµ(v, uχ), w〉| ≤ ‖uχ‖L∞‖A1/2w‖L2‖w‖L2 . In
a similar way,

|〈Fµ(v, v), w〉| = |〈(v · ∇)v, A−µw〉| = |〈(v · ∇)A−µw, v〉|

≤ ‖v‖2
L4‖A

1
2−µw‖L2 ≤ C‖∇v‖L2‖v‖L2‖A

1
2−µw‖L2

≤ C‖∇v‖L2‖A1/2w‖L2‖w‖L2 .

Finally, since |〈A−µRχ, w〉| = |〈Rχ, A−µw〉| ≤ κ3(1 + t)−1‖A 1
2−µw‖L2 by (6.7), we

can use interpolation and Young’s inequality to obtain

|α〈A−µRχ, w〉| ≤ κ3|α|
1 + t

‖A1/2w‖1−2µ
L2 ‖w‖2µ

L2 ≤
1
4‖A

1/2w‖2
L2 + ‖w‖2

L2

(1 + t)γ1
+ Cα2

(1 + t)γ2
,
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for some γ1, γ2 > 1 satisfying γ2 + 2µγ1 = 2. Thus (4.5) implies
d
dt‖w‖

2
L2 + ‖∇w‖2

L2 ≤ −‖∇w‖2
L2 + C‖∇w‖L2‖w‖L2(|α|‖uχ‖L∞ + ‖∇v‖L2)

+ 1
2‖∇w‖

2
L2 + 2‖w‖2

L2

(1 + t)γ1
+ 2Cα2

(1 + t)γ2
(4.6)

≤ C1‖w‖2
L2

(
α2‖uχ‖2

L∞ + ‖∇v‖2
L2 + 1

(1 + t)γ1

)
+ C2α

2

(1 + t)γ2
,

for some positive constants C1, C2.
Now, using (6.1) with p =∞ and the logarithmic energy estimate (3.4), we obtain

C1

∫ t

0

(
α2‖uχ(s)‖2

L∞ + ‖∇v(s)‖2
L2 + 1

(1 + s)γ1

)
ds

≤ α2k(α) log(1 + t) +K2(α)‖v0‖2
L2 + C3 ,

where K2(α) = 2c|α|C1K1, k(α) = C1a
2
∞ +K2(α), and C3 = C1(γ1 − 1)−1. Applying

Gronwall’s lemma to (4.6), we thus find

‖w(t)‖2
L2 +

∫ t

0
‖∇w(s)‖2

L2 ds ≤ (1+t)α2k(α) exp
(
K2(α)‖v0‖2

L2 +C3

)
(‖w0‖2

L2 +C4α
2) ,

where C4 = C2(γ2 − 1)−1, and (4.4) follows since ‖w0‖L2 ≤ C‖v0‖Lq by Lemma 10.
�

Corollary 13. Under the assumptions of Proposition 12, there exists a positive
constant K4 depending on |α| and ‖v0‖L2∩Lq such that, for any t ≥ 2, there exists a
time t0 ∈ [t/2, t] for which

‖v(t0)‖2
L2 ≤ K4(1 + t0)α2k(α)−2µ . (4.7)

Proof. Fix t ≥ 2. In view of (4.4), there exists a time t0 ∈ [t/2, t] such that

‖∇w(t0)‖2
L2 ≤

2
t

∫ t

t/2
‖∇w(s)‖2

L2 ds ≤ 2
t
K0(1+t)α2k(α) ≤ 2α2k(α)+2K0(1+t0)α2k(α)−1 ,

whereK0 = exp(K2‖v0‖2
L2+K3)(‖v0‖2

Lq +α2). Moreover, ‖w(t0)‖2
L2 ≤ K0(1+t0)α2k(α)

by (4.4). Thus, we obtain (4.7) using the interpolation inequality ‖v(t0)‖L2 =
‖Aµw(t0)‖L2 ≤ ‖∇w(t0)‖2µ

L2 ‖w(t0)‖1−2µ
L2 . �

We are now able to conclude our sketch of the proof of Theorem 5. Given α ∈ R
and v0 ∈ L2

σ(Ω) ∩ Lq(Ω)2, let v(x, t) be the solution of the perturbation equation
(4.1). For any t ≥ 2, we choose t0 ∈ [t/2, t] as in Corollary 13, and we apply estimate
(3.3). We thus obtain

‖v(t)‖2
L2 ≤ 22b∞|α|

(
‖v(t0)‖2

L2 + κ2
3 α

2

1 + t0

)
≤ Cα(1 + t)α2k(α)−2µ , (4.8)

where Cα > 0 is O(1) as α → 0. Now, if |α| is small enough to that α2k(α) < 2µ,
the right-hand side of (4.8) converges to zero (at a suboptimal rate) as t → ∞.
In particular, the perturbation v(·, t) becomes very small in energy norm for large
times. In that regime, the perturbation equation (4.1) can be solved by a global
fixed point argument, which allows to show that

‖v(·, t)‖L2(Ω) + t1/2‖∇v(·, t)‖L2(Ω) = O(t−µ) , (4.9)

III–11



as t → ∞, see [12, Section 3]. Finally (2.7) follows from (4.9), because v(x, t) =
u(x, t)− αuχ(x, t) and ‖uχ(·, t)−Θ(·, t)‖L2 + ‖∇uχ(·, t)−∇Θ(·, t)‖L2 ≤ C(1 + t)−1

for all t ≥ 0. �

5. Convergence of the vorticity

This final section is devoted to the proof of Proposition 7. We first show that,
under the assumptions of Theorem 5, one can control the L1 norm of the vorticity
sufficiently far away from the obstacle K.

Proposition 14. Under the assumptions of Proposition 7, the vorticity ω = curl u
satisfies ∫

|x|≥t1/2 log t
|ω(x, t)| dx = O(t−µ) , as t→∞ . (5.1)

Proof. Since by (2.8) the initial vorticity is assumed to be square integrable, the
solution u(x, t) of (1.1) given by Theorem 5 satisfies

‖u(·, t)− αΘ(·, t)‖L2(Ω) + (1 + t)1/2‖∇u(·, t)− α∇Θ(·, t)‖L2(Ω) ≤
C0

(1 + t)µ , (5.2)

for all t ≥ 0, where C0 > 0 depends only on the initial data. The associated vorticity
ω = curl u is a solution of the advection-diffusion equation

∂tω + u · ∇ω = ∆ω , x ∈ Ω , t > 0 , (5.3)

but the no-slip boundary condition becomes very complicated when expressed in
terms of ω. It is thus difficult to use (5.3) to obtain estimates in the whole domain
Ω, and in particular near the boundary ∂Ω. Here, however, our goal is to bound
ω near infinity, so we can avoid that problem using localized energy estimates and
invoking (5.2) to control the flux terms in the regions where the localization function
is not constant.

Given T ≥ 4 and R ≥ 1, we define the cut-off function

ψ(x, t) = φ
( |x|
r(t+ T )

)(
1− φ

( |x|
R

))
, x ∈ R2 , t ≥ 0 , (5.4)

where r(t) = 2−3/2t1/2 log(t/2), and φ : [0,∞) → [0, 1] is a smooth, nondecreasing
function satisfying φ(r) = 0 for r ≤ 1 and φ(r) = 1 for r ≥ 2. We always assume
that T ≥ 4 is large enough so that the support of ψ(·, t) is contained in Ω, and that
R ≥ 1 is large enough (depending on t and T ) so that ψ(·, t) is not identically zero.
Given λ > 0, we also denote

Φλ(ω) = (λ2 + ω2)1/2 − λ ,

and we observe that 0 ≤ Φλ(ω) ≤ |ω| and Φ′′λ(ω) ≥ 0 for all ω ∈ R.
Now, using (5.3), we obtain by a direct calculation

d
dt

∫
Ω
ψΦλ(ω) dx =

∫
Ω

(
ψt + ∆ψ + (u · ∇)ψ

)
Φλ(ω) dx−

∫
Ω
ψΦ′′λ(ω)|∇ω|2 dx

≤
∫

Ω

(
∆ψ + (u · ∇)ψ

)
Φλ(ω) dx ,
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because ψt ≤ 0 and Φ′′λ(ω) ≥ 0. If we integrate this inequality over t ∈ [0, T ], we
find∫

Ω
ψ(x, T )Φλ(ω(x, T )) dx ≤

∫
Ω
ψ(x, 0)Φλ(ω0(x)) dx+

∫ T

0

∫
Ω
Qψ,u(x, t)Φλ(ω(x, t)) dx dt ,

where Qψ,u = |∆ψ + (u · ∇)ψ|. Using Lebesgue’s monotone convergence theorem,
we can take the limit λ→ 0 in both sides, and we arrive at the simpler estimate∫

Ω
ψ(x, T )|ω(x, T )| dx ≤

∫
Ω
ψ(x, 0)|ω0(x)| dx+

∫ T

0

∫
Ω
Qψ,u(x, t)|ω(x, t)| dx dt .

(5.5)
Our next task is to take the limit R → ∞ in (5.5). Again, we use the monotone

convergence theorem, except in the last integral where it does not apply. To treat
that term, we observe that Qψ,u(·, t) vanishes identically except in the region DR ∪
Dr(t+T ), where for any ρ > 0 we denote Dρ = {x ∈ R2 | ρ ≤ |x| ≤ 2ρ}. Taking
R > 0 sufficiently large and using (5.2), we easily obtain∫

DR

Qψ,u|ω| dx ≤
∫
DR

(
|∆ψ|+ |u||∇ψ|

)
|ω| dx ≤ C1

R
,

for some C1 > 0 independent of t ∈ [0, T ]. The contribution of the annulus DR is
therefore negligible for large R, hence taking the limit R→∞ in (5.5) we arrive at∫

Ω
ψ1(x, T )|ω(x, T )| dx ≤

∫
Ω
ψ1(x, 0)|ω0(x)| dx+

∫ T

0

∫
Ω
Qψ1,u(x, t)|ω(x, t)| dx dt ,

where ψ1(x, t) = φ(|x|/r(t+ T )). In particular ψ1(x, T ) = 1 for |x| ≥ T 1/2 log T and
ψ1(x, 0) = 0 for |x| ≤ r(T ), hence the last inequality implies∫

|x|≥T 1/2 log T
|ω(x, T )| dx ≤

∫
|x|≥r(T )

|ω0(x)| dx+
∫ T

0

∫
Ω
Qψ1,u(x, t)|ω(x, t)| dx dt .

(5.6)
To conclude the proof of Proposition 14, it remains to estimate both terms in the

right-hand side of (5.6). First, using (2.8) and Hölder’s inequality, we easily find

∫
|x|≥r(T )

|ω0(x)| dx ≤
(∫

Ω
(1+|x|2)m|ω0(x)|2 dx

)1/2
(∫
|x|≥r(T )

1
(1+|x|2)m dx

)1/2

≤ Cr(T )−(m−1) ≤ C2T
−µ , (5.7)

for some C2 > 0 independent of T . In the last inequality, we used the hypothesis
m ≥ 2/q = 1+2µ and the fact that r(T ) ≥ CT 1/2. On the other hand, since ψ1(x, t)
is given by (5.4) with R =∞, there exists C3 > 0 such that

|∇ψ1(x, t)| ≤ C3

r(t+ T )1D′t , |∆ψ1(x, t)| ≤ C3

r(t+ T )2 1D′t ,

where D′t = Dr(t+T ) = {x ∈ R2 | r(t+ T ) ≤ |x| ≤ 2r(t+ T )}. It follows that
∫

Ω
Qψ1,u(x, t)|ω(x, t)| dx ≤ C3

∫
D′t

(
1

r(t+ T )2 + |u(x, t)|
r(t+ T )

)
|ω(x, t)| dx . (5.8)
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But using (5.8) and (5.2) we easily find,∫
D′t

|ω(x, t)| dx ≤
∫
D′t

∣∣∣∣ω(x, t)− αΞ(x, t)
∣∣∣∣ dx+ |α|

∫
D′t

Ξ(x, t) dx

≤ meas(D′t)1/2‖ω(·, t)− αΞ(·, t)‖L2(Ω) + |α|‖Ξ(·, t)‖L1(D′t)

≤ C
r(t+ T )

(1 + t)µ+1/2 + C exp
(
−r(t+ T )2

4(1 + t)

)
≤ C

r(t+ T )
(1 + t)µ+1/2 ,

where in the last inequality we used the fact that r(t+ T ) ≥ C(t+ T )1/2 log(t+ T ).
In a similar way,∫
D′t

|u(x, t)||ω(x, t)| dx ≤
∫
D′t

|u(x, t)||ω(x, t)− αΞ(x, t)| dx+ |α|
∫
D′t

|u(x, t)||Ξ(x, t)| dx

≤ ‖u‖L2(D′t)

(
‖ω(·, t)− αΞ(·, t)‖L2(Ω) + ‖Ξ(·, t)‖L2(D′t)

)
≤ C

(1 + t)µ+1/2 .

Inserting these estimates in the right-hand side of (5.8), we obtain∫ T

0

∫
Ω
Qψ1,u(x, t)|ω(x, t)| dx dt ≤

∫ T

0

C

r(t+ T ) (1 + t)µ+1/2 dt ≤ C4

T µ
, (5.9)

for some C4 > 0 independent of T . Thus, if we combine (5.6), (5.7), and (5.9), we
conclude that ∫

|x|≥T 1/2 log T
|ω(x, T )| dx ≤ C2 + C4

T µ
,

for all sufficiently large T > 0, which is the desired result. �

It is now easy to conclude the proof of Proposition 7. For t > 0 sufficiently large,
we denote Ωt = {x ∈ Ω | |x| ≤ t1/2 log t} and we decompose∫

Ω
|ω(x, t)−αΞ(x, t)| dx ≤

∫
Ωt

|ω(x, t)−αΞ(x, t)| dx+
∫

Ω\Ωt

(
|ω(x, t)|+|α|Ξ(x, t)

)
dx .

The last integral in the right-hand side is controlled using Proposition 14 and the
explicit expression (2.2) of Ξ(x, t). To estimate the first integral, we use (5.2) and
Hölder’s inequality :∫

Ωt

|ω(x, t)− αΞ(x, t)| dx ≤
√
π t1/2 log t ‖ω(·, t)− αΞ(·, t)‖L2(Ω) ≤ C

log t
(1 + t)µ .

Summarizing, we find∫
Ω
|ω(x, t)− αΞ(x, t)| dx ≤ C

log t
(1 + t)µ ,

for all sufficiently large t > 0. This concludes the proof. �

6. Appendix : estimates for truncated Oseen vortices

In this appendix, we collect a few estimates on the truncated Oseen vortices (2.3)
which are used throughout the paper. We first list a few bounds which follow from
(2.3) and (2.4) by rather straightforward calculations, see [12, Lemma 2.1].
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Lemma 15.
1. For any p ∈ (2,∞], there exists a constant ap > 0 such that

‖uχ(·, t)‖Lp(R2) ≤
ap

(1 + t)
1
2−

1
p

, t ≥ 0 . (6.1)

2. For any p ∈ (1,∞], there exists a constant bp > 0 such that

‖∇uχ(·, t)‖Lp(R2) ≤
bp

(1 + t)1− 1
p

, t ≥ 0 . (6.2)

3. There exists a constant κ1 > 0 such that, for all t, s ≥ 0,

‖uχ(·, t)− uχ(·, s)‖2
L2(R2) ≤ κ1

∣∣∣∣ log 1 + t

1 + s

∣∣∣∣ . (6.3)

4. There exists a constant κ2 > 0 such that, for all t, s ≥ 0,

‖∇uχ(·, t)−∇uχ(·, s)‖2
L2(R2) ≤ κ2

∣∣∣∣ 1
1 + t

− 1
1 + s

∣∣∣∣ . (6.4)

Since the truncated Oseen vortex is not a solution of the Navier-Stokes equation,
we also need a control on the remainder term Rχ = ∆uχ − ∂tuχ = (∆χ)Θ + 2(∇χ ·
∇)Θ, which has the explicit expression

Rχ(x, t) = Θ(x, t)∆χ(x) + 2x · ∇χ(x)
|x|2

(
x⊥Ξ(x, t)−Θ(x, t)

)
. (6.5)

Lemma 16. There exists a constant κ3 > 0 such that, for any p ∈ [1,∞],

‖Rχ(·, t)‖Lp(R2) ≤
κ3

1 + t
, t ≥ 0 . (6.6)

Moreover, for any vector field u ∈ H1
loc(R2)2, we have∣∣∣∣∫

R2
Rχ(x, t) · u(x) dx

∣∣∣∣ ≤ κ3

1 + t
‖∇u‖L2(D) , t ≥ 0 , (6.7)

where D ⊂ Ω is a compact annulus containing the support of ∇χ.

Proof. It is clear from (6.5) that |Rχ(x, t)| ≤ C(1 + t)−11D(x) for all x ∈ R2 and all
t ≥ 0, and (6.6) follows immediately. Moreover, we have Rχ(x, t) = x⊥Qχ(x, t) for
some radially symmetric scalar function Q(x, t), hence Rχ(·, t) has zero mean over
the annulus D. If u ∈ H1

loc(R2)2 and if we denote by ū the average of u over D, the
Poincaré-Wirtinger inequality implies∣∣∣∣∫

R2
Rχ(x, t) ·u(x) dx

∣∣∣∣ =
∣∣∣∣∫
D
Rχ(x, t) ·(u(x)− ū) dx

∣∣∣∣ ≤ C‖Rχ(·, t)‖L2(R2)‖∇u‖L2(D) ,

and using (6.6) with p = 2 we obtain (6.7). �
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