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H1-stability of mKdV multi-kinks
Claudio Muñoz

Abstract
We describe some recent results concerning the nonlinear L2-stability of

multi-solitons of the Korteweg-de Vries equation [4], and H1-stability of multi-
kinks of the modified Korteweg-de Vries [49]. The proof of both results is
closely linked to stability properties for solitons of the integrable Gardner
equation, which have been considered by Martel, Merle and Tsai [41, 40].

1. Introduction

In this notes we review some recent results concerning the stability of well-known
solutions of some integrable equations [4, 48, 49]. Some of these works have been in
collaboration with M.A. Alejo and L. Vega [4], from Bilbao.

More precisely, we will consider the following two integrable models: the (focusing)
Korteweg-de Vries equation (KdV)

ut + (uxx + u2)x = 0, u(t, x) ∈ R, (t, x) ∈ R2, (1.1)
and the (defocusing) modified KdV equation (mKdV)

ut + (uxx − u3)x = 0, u(t, x) ∈ R, (t, x) ∈ R2. (1.2)

The KdV equation arises in Physics as a model of propagation of dispersive long
waves, as was pointed out by Russel in 1834 [44]. The exact formulation of the KdV
equation comes from Korteweg and de Vries (1895) [30]. This equation was studied
in a numerical work by Fermi, Pasta and Ulam, and by Kruskal and Zabusky [15, 31].

From a mathematical point of view, equations (1.1) and (1.2) are integrable models
[3, 2, 1], with a Lax pair structure and infinitely many conservation laws. Moreover,
since the Cauchy problem associated to (1.1) is locally well posed in L2(R) (cf.
Bourgain [9]), each solution is indeed global in time thanks to the Mass conservation

M [u](t) := 1
2

∫
R
u2(t, x)dx = M [u](0). (1.3)

Keywords: KdV equation, modified KdV equation, Gardner equation, integrability, multi-soliton, multi-kink, sta-
bility, asymptotic stability, Gardner transform.
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On the other hand, equation (1.1) has solitary wave solutions called solitons, namely
solutions of the form

u(t, x) = Qc(x− ct), Qc(s) := cQ(
√
cs), c > 0, (1.4)

and
Q(s) := 3

1 + cosh(s) . (1.5)

Similarly, equation (1.2) has non-localized solitons solutions, called kinks, namely
solutions of the form

u(t, x) = ϕc(x+ ct+ x0), ϕc(s) :=
√
c ϕ(
√
cs), c > 0, x0 ∈ R, (1.6)

and
ϕ(s) := tanh( s√

2
), (1.7)

which solves

ϕ′′ + ϕ− ϕ3 = 0, in R, ϕ(±∞) = ±1, ϕ′ > 0. (1.8)

The Cauchy problem associated to (1.2) is locally well posed in ϕc(·+ct)+H1(R)
(cf. Merle-Vega [42, Prop. 3.1]), then each solution is indeed global in time thanks
to the conservation of Energy:

E[u](t) := 1
2

∫
R
u2
x(t, x)dx+ 1

4

∫
R
(u2 − c)2(t, x)dx = E[u](0). (1.9)

A simple inspection reveals that this is a non-negative quantity.

It is also important to stress that (1.2) has in addition another less regular con-
served quantity, called mass:

M [u](t) := 1
2

∫
R
(c− u2(t, x))dx = M [u](0). (1.10)

Of course this quantity is well-defined for solutions u(t) such that (u2(t) − c) has
enough decay at infinity. In particular, one has M [ϕc] < +∞.

The study of perturbations of solitons and kinks lead to the introduction of the
concepts of orbital and asymptotic stability. In particular, it is natural to expect
that solitons and kinks are stable in the energy space H1(R). Indeed, H1-stability
of KdV solitons has been considered by Benjamin and Bona-Souganidis-Strauss in
[5, 8]. The asymptotic stability has been studied e.g. in Pego-Weinstein and Martel-
Merle [50, 36]. On the other hand, H1-stability of mKdV kinks has been considered
initially by Zhidkov [56], see also Merle-Vega [42] for a complete proof, including an
adapted well-posedness theory. We recall that their proof uses the non-negative
character of the energy (1.9) around a kink solution ϕc, which balances the bad
behavior of the mass (1.3) under general H1-perturbations of a kink solution.

Kinks are also present in other nonlinear models, such as the sine-Gordon (SG)
equation, the φ4-model, and the Gross-Pitaevskii (GP) equation [1, 14]. In each case,
it has been proved that their are stable for small perturbations in a suitable energy
space, cf. [24, 20, 56, 17, 7]. Let us also recall that the SG and GP equations are
integrable models in one dimension [1, 14].
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In [4, 49], we have studied the nonlinear L2-stability, and H1-stability, of the
multi-soliton and multi-kink solutions of KdV and mKdV respectively. The purpose
of the following sections is to briefly describe these two results.

Acknowdlegments. I would like to thank the organizers of the Journées EDP Juin
2011, held in Biarritz, France, and where part of these results were presented. The
author has been partially funded by grants Anillo ACT 125 CAPDE and Fondo
Basal CMM.

2. The KdV case: L2 stability

Using a completely different method, Merle and Vega [42] showed that KdV solitons
are L2-stable. To prove this result, they considered the Miura transform

M [v](t, x) := 3
2c+

[ 3√
2
vx −

3
2v

2
]
(t, x− 3ct). (2.1)

This nonlinear H1−L2 transformation links solutions of (1.2) with solutions of the
KdV equation (1.1). In particular, the image of the family of kink solutions (1.4)
under the transformation (2.1) is the well-known soliton of KdV, with scaling 2c (cf.
[42]):

M [ϕc(x+ ct+ x0)] = Q2c(x− 2ct+ x0).
Therefore, by proving the H1-stability of single kinks –a question previously con-
sidered by Zhidkov [56]–, and (2.1), they obtained a form of L2-stability for the
KdV soliton. Additionally, a simple statement of asymptotic stability for the kink
solution was proved. Related asymptotic results for soliton-like solutions can also
be found e.g. in [13, 51, 50, 29, 35, 36].

Let us describe in more detail the Merle-Vega’s approach. First of all, from the
fact that the image of mKdV kinks are KdV solitons, and using the fact that the
soliton is a minimizer of a well-known functional, one can describe the inverse of
the Miura transform (2.1) in a small L2-vicinity of the soliton Qc, to obtain a small
H1-vicinity of the kink solution. Since the kink solution of (1.2) is H1-stable (see e.g.
Zhidkov, Merle-Vega [56, 42]), by applying once again the Miura transform to the
mKdV solution, and using a well-known unicity argument, the authors concluded the
L2-stability of the KdV soliton. The following figure describes the aforementioned
approach:

KdV
u0 ∼L2 Qc

Miura−−−−−−−→
v0=M−1[u0]

mKdV
v0 ∼H1 ϕc/2

L2-KdV flow
(Bourgain)

y t > 0 H1-mKdV flow
(Merle-Vega)

y H1-stability
(Zhidkov)

u(t) = ū(t)
u(0) = u0

Miura←−−−−−−−
ū(t)=M [v](t)

v(t) stable
v(0) = v0

(2.2)
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Fig. 1: The Merle-Vega’s approach.

The Merle-Vega’s idea has been applied to different models describing several
phenomena. A similar Miura transform is available for the KP II equation, a two-
dimensional generalization of the KdV equation. Mizumachi and Tzvetkov have
showed the stability of solitary waves of KdV, seen as solutions of KP II, under
periodic transversal perturbations [46]. Finally, we recall the L2-stability result for
solitary waves of the cubic NLS proved by Mizumachi and Pelinovsky in [45]. Other
applications of the Miura transform are local well-posedness and ill-posedness results
(cf. [28, 12]). For a more detailed description of this map, see [25].

Concerning the more involved case of the sum of N(≥ 2) decoupled solitons,
stability and asymptotic stability results are very recent. First of all, let us recall
that, as a consequence of the integrability property, KdV has solutions behaving, as
time goes to infinity, as the sum of N decoupled solitons. These solutions are well-
known in the literature and are called N-solitons, or generically multi-solitons [23].
Indeed, any N -soliton solution has the form u(t, x) := U (N)(t, x) = U (N)(x; cj, xj −
cjt), where {

U (N)(x; cj, yj) : cj > 0, yj ∈ R, j = 1, . . . , N
}

(2.3)
is the family of explicit N -soliton profiles (see e.g. Maddocks-Sachs [33], §3.1). In
particular, this solution describes multiple soliton collisions; but since solitons for
KdV equation interact in a linear fashion, there is no residual appearing after the
collisions, even if the equation is nonlinear in nature:

lim
t→±∞

∥∥∥U (N)(t)−
N∑
j=1

Qcj(· − cjt− x±j )
∥∥∥
H1(R)

= 0,

with x±j ∈ R depending on the set (ck). This is also a consequence of the integrability
property.

Qc1

Qc1

c1

Qc2

Qc2

c2

t = 0

t → +∞

t → −∞ (pure)

(pure)

Figure 2.1: The evolution of a KdV 2-soliton solution (courtesy of Y. Martel).

In [33], Maddocks and Sachs considered the HN(R)-stability of the N -soliton
solution of KdV, by using N + 1 conservation laws. Next, in [41, 40], Martel, Merle

VIII–4



and Tsai improved the preceding result by proving stability and asymptotic stability
of the sum of N solitons, well decoupled at the initial time, in the energy space. Their
proof also applies for general nonlinearities and not only for the integrable cases,
provided they have stable solitons, in the sense of Weinstein [53]. Their approach
is based on the construction of N almost conserved quantities, related to the mass
of each solitary wave, plus the total energy of the solution. As a consequence of the
existence of N -soliton solutions for KdV, the above results can be extended to give a
global stability property, improving the Maddock-Sachs results. See also [37, 38, 39]
for global H1-stability results in some non-integrable cases.

A natural question to consider is the generalization of the Merle-Vega’s result
to the case of multi-soliton solutions, namely to understand the L2-stability of the
multi-soliton solution. In [19] (see also [52]), Gesztesy-Schweinger-Simon prove that
the Miura transform sends multi-kink solutions of (1.2) to a well defined family of
multi-soliton solutions of (1.1), provided a criticality condition is satisfied. However,
in order to prove our result, we have followed a different approach.

Indeed, in [4] we considered a Gardner transform [43, 16], well-known in the
mathematical and physical literature since the late sixties, and which links H1-
solutions of the Gardner equation

vt + (vxx + v2 − βv3)x = 0, in Rt × Rx, β > 0, (2.4)

with L2-solutions of the KdV equation (1.1). More specifically, given any β > 0
and v(t) ∈ H1(R), solution of the Gardner equation (2.4), the Gardner transform
[43, 16]

u(t) = Mβ[v](t) := [v − 3
2
√

2βvx −
3
2βv

2](t), (2.5)

is an L2-solution of KdV. Compared with the original Miura transform (2.1), it has
an additional linear term which simplifies the proofs.

In addition, the Gardner equation is also an integrable model [16], with soliton
solutions of the form

v(t, x) := Qc,β(x− ct),

and1

Qc,β(s) := 3c
1 + ρ cosh(

√
cs) , with ρ := (1− 9

2βc)
1/2, 0 < c <

2
9β . (2.6)

In particular, in the formal limit β → 0, we recover the standard KdV soliton
(1.4)-(1.5). On the other hand, the Cauchy problem associated to (2.4) is globally
well-posed under initial data in the energy class H1(R) (cf. Kenig-Ponce-Vega [27]),
thanks to the mass (1.3) and energy conservation laws.

1See e.g. [10, 47] and references therein for a more detailed description of solitons and integra-
bility for the Gardner equation.
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We have been interested in the image of the family of solutions (2.6) under the
aforementioned, Gardner transform. Surprisingly enough, it turns out that the re-
sulting family is nothing but the KdV soliton family (1.4). Indeed, a direct com-
putation shows that for the Gardner soliton solution (2.6), one has

Mβ[Qc,β](t) =
[
Qc,β −

3
2
√

2βQ′c,β −
3
2βQ

2
c,β

]
(x− ct)

= Qc(x− ct− δ), (2.7)
with δ = δ(c, β) > 0 provided β > 0, and Qc the KdV soliton solution (1.4).
In other words, the Gardner transform (2.5) sends the Gardner soliton towards a
slightly translated KdV soliton.

In [4], we profit of this property to improve the H1-stability and asymptotic sta-
bility properties proved by Martel-Merle-Tsai in [41], Martel-Merle [40], and Merle-
Vega [42], now in the case of L2-perturbations of the KdV multi-solitons. See [4] for
the full details.

Theorem 2.1 (L2-stability of the KdV N -soliton, [4]).
Let δ > 0, N ≥ 2, 0 < c0

1 < . . . < c0
N and x0

1, . . . , x
0
N ∈ R. There exists α0 > 0

such that if 0 < α < α0, then the following holds. Let u(t) be a solution of (1.1)
such that

‖u(0)− U (N)(·; c0
j ,−x0

j)‖L2(R) ≤ α,

with UN the N-soliton profile described in (2.3). Then there exist xj(t), j = 1, . . . , N ,
such that

sup
t∈R

∥∥∥u(t)− U (N)(·; c0
j ,−xj(t))

∥∥∥
L2(R)

≤ δ. (2.8)

The above result can be seen as a consequence of the stability of an initial datum
close enough to the sum of N decoupled solitons of the KdV equation, and the
uniform continuity of the KdV flow for L2-data, see e.g. [41], Corollary 1.

In order to prove this result, we construct an inverse of the Gardner transform in
a vicinity of the sum of KdV soliton solutions, using a fixed point argument. First
of all, recall that for β > 0 small,

Mβ[S0] = R0 + l.o.t.,
where S0(x) := ∑N

j=1Qc0
j ,β

(x− x0
j − δj), R0(x) := ∑N

j=1Qc0
j
(x− x0

j), δj = O(β), and
Qc,β being the soliton solution of the Gardner equation (2.4).

Next, we look for a solution v0 ∈ H1(R) of Mβ[v0] = R0 + z0, where z0 is small in
L2(R), v0 = S0 + w0, and w0 is small in H1(R). In other words, w0 has to solve the
nonlinear equation

L[w0] = (R0 −Mβ[S0]) + z0 + 3
2βw

2
0, (2.9)

with
L[w0] := −3

2
√

2βw0,x + (1− 3βS0)w0. (2.10)

We may think L as a unbounded operator in L2(R), with dense domain H1(R).
From standard energy estimates (see [4]), one has that for β > 0 small enough, any
solution w0 ∈ H1(R) of the linear problem

L[w0] = f, f ∈ L2(R), (2.11)

VIII–6



must satisfy, for some fixed constant K0 > 0,

‖w0‖H1(R) ≤
K0√
β
‖f‖L2(R). (2.12)

In order to prove the existence and uniqueness of a solution of (2.11), we use (2.12)
and a fixed point approach, in the spirit of [55, 26]. See [4] for the details.

In what follows, let us denote by T := L−1 : L2(R) → H1(R) the resolvent
operator above mentioned. Now, from (2.9), we want to solve the nonlinear problem

w0 = T [w0] = L−1
[
(R0 −Mβ[S0]) + z0 + 3

2βw
2
0

]
. (2.13)

In order to invoke, once again, a fixed point argument in a suitable closed ball of
H1(R). A direct argument shows that T is a contraction mapping from B into itself,
provided β is small.

Now we invoke the Martel, Merle and Tsai [41, 40] stability results –in the special
case of the Gardner equation– to the solution of the Cauchy problem associated to
the initial data v0 ∈ H1(R), which implies the stability of v(t). After this point, the
proof follows closely the ideas of [42], giving the desired result. We finish with the
following diagram, which describes the approach we have followed.

KdV
u0 ∼L2 R0

Gardner−−−−−−−→
v0=M−1

β
[u0]

Gardner
v0 ∼H1 S0

L2-KdV flow
(Bourgain)

y t > 0 H1-Gardner flow
(K-P-V)

y H1-stability
(Martel-Merle)

u(t) = ū(t) Gardner←−−−−−−−−
ū(t)=Mβ [v](t)

v(t) stable

Fig. 2: The Gardner’s approach.

See [4] for a detailed proof.

3. The mKdV case: multi-kinks stability

Let us come back to the equation (1.2). In addition to the previously mentioned kink
solution (1.4), mKdV has multi-kink solutions, as a consequence of the integrabil-
ity property and the Inverse Scattering theory (Grosse [21, 22]). In addition, these
solution can be recovered by a completely different approach, using the Miura trans-
form (2.1), see Gesztesy-Schweinger-Simon [18, 19], or the monograph by Thaller
[52]. Indeed, according to Gesztesy-Schweinger-Simon [19], there exist at least two
different forms of multi-kink solutions for (1.2), such that its image by the Miura
transform is the same KdV multi-soliton.

Surprisingly, the existence, uniqueness and stability of multi-kinks is closely re-
lated to the solitons of the Gardner equation (cf. Definitions 3.1 and 3.4), and more
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generally, dynamical properties of defocusing gKdV equations are closely related to
those of suitable focusing counterparts.

Indeed, let v = v(t, y) ∈ C(R, H1(R)) be a solution of (2.4). Then

u(t, x) := b−
√
β v
(
t, x+ t

3β
)
, b := 1

3
√
β
, (3.1)

solves the mKdV equation (1.2). In terms of the Miura and Gardner transform, it
reads as follows

mKdV

KdV <
Gardner, [16, 4]

Miura, [43, 42]

< Gardner

(3.1)

>

<

Figure 3.1: Transformation (3.1) in terms of Miura (2.1) and Gardner transforms.

Let us recall that, for t fixed, (3.1) is a diffeomorphism which preserves regu-
larity. Note in addition that u in (3.1) is an L∞-function with nonzero limits at
infinity. This analysis motivates the following alternative approach for the multi-kink
solution:

Definition 3.1 (Even multi-kink solutions, see also [21, 22, 19, 52]).
Let β > 0, scaling parameters 0 < c0

1 < c0
2 < . . . < c0

N < 2
9β and x−1 , . . . , x−N ∈ R

be fixed numbers. We say that a solution Ue(t) of (1.2) is an even multi-kink if it
satisfies

lim
t→−∞

∥∥∥Ue(t)− b+
√
β

N∑
j=1

Qc0
j ,β

(·+ c̃jt+ x−j )
∥∥∥
H1(R)

= 0, (3.2)

lim
t→+∞

∥∥∥Ue(t)− b+
√
β

N∑
j=1

Qc0
j ,β

(·+ c̃jt+ x+
j )
∥∥∥
H1(R)

= 0, (3.3)

with b = 1
3
√
β
, c̃j := 1

3β − c
0
j > 0, x+

j ∈ R depending only on (x−k ) and (c0
k), and Qc,β

being solitons of the Gardner equation (2.4).

Let us emphasize that c̃N < c̃N−1 < . . . < c̃1, which means that bigger Gardner
solitons are actually slower than the smaller ones. Note also that they move from
the right to the left, as time evolves.

The denomination multi-kink above comes from the fact the these solutions
can be seen asymptotically as the sum of several kinks ±ϕc of the form (1.4). For
instance, with our notation, given β > 0 and 0 < c < 2

9β , an expression for the
2-kink solution is given by [19, p. 505] (see also [52, p. 273])

Ue(t, x) = b− [ϕc/2(x+ c̃t+ 2x0)− ϕc/2(x+ c̃t)], (3.4)
with

b := 1
3
√
β
, c̃ := 1

3β − c, x0 := 1
2
√
c

log
(√2 + 3

√
βc√

2− 3
√
βc

)
> 0,
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and ϕc as in (1.4). Note that both kinks ±ϕc/2 have the same velocity c̃. After
a quick computation, one can see that (3.4) can be written, as in (3.2)-(3.3), using
the Gardner soliton (2.6):

Ue(t, x) = b−
√
βQc,β(x+ c̃t+ x0),

which will be helpful for our purposes. From this fact one says that, in general, the
function Ue represents a 2N-kink solution. In terms of our point of view, it will
represent N different Gardner solitons attached to the non-zero constant b.

The existence of a solution Ue satisfying (3.2) is a simple consequence of (3.1)
and the behavior of the N -soliton solution V (N)(t) of the Gardner equation (see
also [21, 22, 19] and [52, pp. 272-273] for the standard deduction). Moreover, this
solution is unique, in the sense considered by Martel [34].

From (3.1) we can define

Ue(t) := b+
√
βV (N)(t, ·+ t

3β ). (3.5)

Therefore, as a conclusion of the preceding analysis, and using (3.1), we get the
uniqueness of the corresponding solution Ue.

Theorem 3.2 (Uniqueness of even multi-kink solutions, [49]).
Let β > 0, 0 < c0

1 < c0
2 < . . . < c0

N < 2
9β and x−1 , . . . , x−N ∈ R be fixed numbers.

Then the associated even multi-kink Ue defined in (3.5) is the unique solution of
(1.2) satisfying (3.2).

The second problem that we considered is the stability of the multi-kink Ue.
From the Martel-Merle-Tsai and Martel-Merle [41, 40] results and Definition 3.1 we
claim the following

Theorem 3.3 (Stability of even multi-kink solutions, [49]).
The family of multi-kink solutions Ue(t) from Definition 3.1 and (3.5) is global-

in-time H1-stable, and asymptotically stable as t→ ±∞.

Theorems 3.2 and 3.3 can be deduced from Martel [34] and Martel-Merle-Tsai
[41, 40]. We recall that, without using transformation 3.1, these results were unable
to be tackled down by using any direct method.

There is a second type of multi-kink solutions for (1.2), which is actually the best
known one. Here, the standard kink ϕc in (1.4) and the Gardner equation play once
again a crucial and surprising rôle. Indeed, let β > 0 be a fixed parameter and
suppose that one has a solution of (1.2) of the form (the reader may compare with
(3.1))

u(t, x) := ϕc(x+ ct) +
√
βũ(t, x+ t

3β ), c := 1
9β , (3.6)

and ũ(t) ∈ H1(R). Then ũ(t, y) satisfies the equation

ũt + (ũyy + ũ2 − βũ3)y = 3((ϕ2
c − c)ũ+

√
β(ϕc +

√
c)ũ2)y, (3.7)

with ϕc = ϕc(y− 2ct). In particular, if the support of ũ(t) is mainly localized in the
region where ϕc ∼ −

√
c, namely y � 2ct, then the right hand side above is a small
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perturbation of the left hand side, a Gardner equation with parameter β > 0. As
an admissible function ũ, we can take e.g. a sum of Gardner solitons:

ũ(t, y) ∼
N−1∑
j=1

Qcj ,β(y − cjt), 0 < c1 < c2 . . . < cN−1 <
2

9β = 2c,

with support localized in the region c1t . y . cN−1t, for t � 1. In particular, one
has cN−1t � 2ct for t � 1, which is a necessary condition for the existence of a
solution of the form (3.6).

Finally, the same argument works in the case of a solution of the form u(t, x) :=
ϕc(x+ ct)−

√
βû(t, x+ t

3β ), and the equation for û(t, y),

ût + (ûyy + û2 − βû3)y = 3((ϕ2
c − c)û+

√
β(
√
c− ϕc)û2)y,

provided û is supported mainly in the region {ϕc ∼
√
c}. These two new ideas allow

us to consider the following definition of a multi-kink solution, from the point of
view of the Gardner equation:

Definition 3.4 (Odd multi-kink solutions, [19, 52]).
Let N ≥ 2, β > 0, scaling parameters 0 < c0

1 < c0
2 < . . . < c0

N−1 < 2
9β and

x0
1, . . . , x

0
N ∈ R be fixed numbers. We say that a solution Uo(t) of (1.2) is an odd

multi-kink solution if it satisfies

lim
t→−∞

∥∥∥Uo(t)− ϕc0
N

(·+ c0
N t+ x−N) +

√
β
N−1∑
j=1

Qc0
j ,β

(·+ c̃jt+ x−j )
∥∥∥
H1(R)

= 0, (3.8)

lim
t→+∞

∥∥∥Uo(t)− ϕc0
N

(·+ c0
N t+ x+

N)−
√
β
N−1∑
j=1

Qc0
j ,β

(·+ c̃jt+ x+
j )
∥∥∥
H1(R)

= 0, (3.9)

with c0
N := 1

9β , c̃j := 1
3β − c

0
j > 0 and x±j ∈ R depending only on (c0

k). Finally, ϕc
is a kink solution (1.4) with scaling c, and Qc,β is a soliton solution of the Gardner
equation (2.4).

One can also say that Uo is composed by (2N − 1) single kinks, in other words, it
is a (2N − 1)-kink solution. From the point of view of the Gardner equation, this
solution represents a big kink, solution of mKdV, with attached (±)Gardner solitons
ordered according their corresponding velocities c̃j. Note finally that solitons move
from the right to the left.

In [49] we present a new proof of existence of Uo(t), which gives in addition a
uniqueness property and uniform estimates in time. The uniqueness is, of course,
modulo the 2N -parameter family (c0

j , x
−
j ). By extending the results of Martel [34]

to the case of multi-kink solutions, we get the following

Theorem 3.5 (Existence and uniqueness of odd multi-kink solutions, [49]).
Let N ≥ 2, β > 0, c0

N = 1
9β , 0 < c0

1 < c0
2 < . . . < c0

N−1 <
2

9β and x−1 , . . . , x−N ∈ R
be fixed numbers. There exists a unique solution Uo(t) of (1.2) satisfying (3.8).

Our final result is a positive answer to the open question of stability of odd multi-
kinks.
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Figure 3.2: A schematic design of the evolution in time of a 5-kink
solution of mKdV, composed of a big kink ϕc0

3
and two Gardner soli-

tons, Qc0
1,β

and Qc0
2,β

, 0 < c0
1 < c0

2 < 2c0
3, and β = 1

9c0
3
. Below, the

behavior as t → −∞; above, the behavior as t → +∞. Each part is
ordered according to their respective velocity −c̃j := c0

j − 3c0
3 < 0,

j = 1, 2. Note that −c̃1 < −c̃2 < −c0
3, which means that the smallest

soliton Qc0
1,β

is actually the fastest one.

Theorem 3.6 (Stability of odd multi-kink solutions, [49]).
The family of multi-kink solutions Uo(t) from Definition 3.4 is global-in-time H1-

stable.
The proof of this result is based in the approach introduced in [41] in order to

describe the stability inH1(R) ofN decoupled solitons. However, in this opportunity
we face several new problems since the kink solution and the Gardner solitons are
in strong interaction through the dynamics. Moreover, the mass (1.10) cannot be
used to control the Gardner solitons, as has been done in [41]. In this sense, the
transformation (3.6) is the first step –and the more important one– to understand
the interaction among kinks as actually localized, soliton-like interactions.

Let us be more precise. Using the energy (see (1.9)) of the solution u(t), one
controls with no additional difficulties the kink solution. This is a consequence of the
non negative character of the linearized operator around the kink solution, see [56,
42] for more details. However, this quantity is not enough to control the behavior of
the Gardner solitons. We overcome this difficulty by using the transformation (3.6),
which introduces a new function ũ(t), almost solution of a Gardner-like equation
(cf. (3.7)). It turns out that the perturbative terms on the right hand side of (3.7)
can be controlled provided the solitons are far from the center of the main kink
solution, which holds true if we assume that the initial configuration is well prepared.
Additionally, we introduce a new, almost conserved mass for the portion on the
left of the solution ũ, which allows to control each Gardner soliton by separated, since
the standard mass (1.10) is bad behaved for H1-perturbations of a kink solution.
This approach is completely general and can be adapted to the gKdV case. No
additional hypotheses are needed, only the single stability of each generalized soliton
component of the multi-kink solution.
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4. Final remarks

We point out that the preceding results, starting from transformations (3.1)-(3.6)
and the theory developed by Zhidkov in [56], can be made even more general and
include a wide range of non-integrable, defocusing gKdV equations.

Indeed, in [49] we have introduced the notion of generalized, even and odd
multi-kink solutions. These new objects have to match with those considered in
Definitions 3.1 and 3.4, for the special case of the integrable mKdVmodel. We proved
the existence, uniqueness and stability of these new solutions in the case of well-
prepared initial data. Next, we have considered some particular collision problems,
in the spirit of [37, 38, 47] (note that the collision problem makes sense since we
consider non-integrable equations). The method used is the same as in the previous
results. We emphasize that the main idea is to exploit the properties contained in
Figure 4.1.

u ∈ defocusing gKdV (even) < (u ∼ b + ũ) > ũ ∈ focusing gKdV

u ∈ defocusing gKdV (odd) < (u ∼ ϕc + ũ) > ũ ∈ focusing gKdV

Figure 4.1: The generalized transformations (3.1)-(3.6) linking a de-
focusing gKdV with a focusing gKdV equation.

We also recall that the collision problem in the case of odd multi-kink solutions
remains an interesting open question. Finally, let us mention that a similar trans-
formation to (3.1)-(3.6) can be introduced in the cases of the φ4 and sine-Gordon
models, with different results [49].
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