Journées

EQUATIONS AUX DERIVEES PARTIELLES

Biarritz, 6 juin—10 juin 2011

Camille Laurent

On stabilization and control for the critical Klein-Gordon equation on a
3-D compact manifold

J. E. D. P. (2011), Exposé n° VI, 17 p.
<http://jedp.cedram.org/item?id=JEDP_2011____A6_0>

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

GROUPEMENT DE RECHERCHE 2434 DU CNRS



http://jedp.cedram.org/item?id=JEDP_2011____A6_0
http://www.cedram.org/
http://www.cedram.org/

Journées Equations auz dérivées partielles
Biarritz, 6 juin-10 juin 2011
GDR 2434 (CNRS)

On stabilization and control for the critical
Klein-Gordon equation on a 3-D compact manifold

Camille Laurent

Résumé

On étudie la stabilisation et le controle interne de 1’équation de Klein-
Gordon critique sur des variétés de dimension 3. Sous des conditions géomé-
triques légerement plus fortes que la condition de controle géométrique clas-
sique, on prouve la décroissance exponentielle de solutions bornées dans l’es-
pace d’énergie mais petites dans des normes plus faibles. La preuve combine la
décomposition en profils et des arguments microlocaux. Cette décomposition,
analogue & celle de Bahouri-Gérard [2] sur R3, nécessite 1’analyse de certains
effets dus a la géométrie. Elle utilise des résultats de S. Ibrahim [16] sur le
comportement d’ondes de concentration sur les variétés.

Abstract

We study the internal stabilization and control of the critical nonlinear
Klein-Gordon equation on 3-D compact manifolds. Under a geometric assump-
tion slightly stronger than the classical geometric control condition, we prove
exponential decay for some solutions bounded in the energy space but small in
a lower norm. The proof combines profile decomposition and microlocal argu-
ments. This profile decomposition, analogous to the one of Bahouri-Gérard [2]
on R3, is performed by taking care of possible geometric effects. It uses some
results of S. Ibrahim [16] on the behavior of concentrating waves on manifolds.

1. Introduction

The controllability property is the possibility of modifying one system to drive the
solution from an initial state to a final state fixed in advance. Here we will be
interested in the internal control, that is by adding a forcing term g which will be
asked to be supported in a certain open set w.
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For the stabilization, the equation is modified by a feedback term only depending
on the solution itself. The question here is whether the solution will converge to
a certain state and eventually at which rate. Here, we will study the exponential
decay to zero of the Klein-Gordon equation modified by an internal damping of the
form Xfﬁtu where y,, is a function supported in an open set w.

In these both situations, one of the main question is to find the optimal geometric
conditions on w that ensures the controllability or the stabilization.

In this note, we study the internal stabilization and exact controllability for the
defocusing critical nonlinear Klein-Gordon equation on some 3D compact manifold
M. The free equation reads as

Ou=0—Au = —u—u’ on [0,+oo[xM
{ (u(0), Oyu(0)) = (ug,ur) € E. (1.1)

where A is the Laplace-Beltrami operator on M and £ is the energy space H'(M) x
L?*(M) of real valued functions. The solution displays a conserved energy

Bt) = ; ([ 1o+ [ ful+ [ vul) + é/M ul® (1.2)

Since this equation is defocusing (sign + in front of the nonlinear term in the energy)
the energy is nonegative. Note that due to the local nature of the blowup process,
the controllability for the focusing equation is certainly false for large data. The
exponent u® is critical with respect to the energy space. Indeed, the L% norm in the
nonlinear energy corresponds to the greater exponent for the Sobolev embedding
H' < LS. In some sense, it is the exponent for which the linear part of the energy
and the nonlinear part have the same weight. Moreover, the closely related equation
Ou+u® = 0 considered on R admits the following family of solution parametrized
by A >0

uy = \/1Xu (/t\, f\) (1.3)

which all have the same energy norm. We will see that this familly of solutions
will be of great importance since they represent the main phenomenon for which
the solutions differ from the linear solutions at high frequency. It is also worth
noticing that the critical exponent is the greatest one for which the flow map is
uniformly continuous (see [24][6]). The local existence theory is proved by Strichartz
estimates for variable coefficients of Kapitanski [19]. Since the exponent is critical,
the global existence requires adapted Morawetz estimates which were proved by
Ibrahim and Majdoub [17] (some additional arguments are also necessary for the
damped equation).

We will be interested in both the controllability and stabilization for this equation.

Let us begin by the existing linear results. The situation is quite well understood
thanks to the works of Rauch and Taylor [27] and Bardos-Lebeau-Rauch [3]. The
necessary and sufficient condition to get controllability and uniform stabilization in
the energy space is the very natural Geometric Control Condition.

Assumption 1.1 (Geometric Control Condition). There exists Ty > 0 such that
every geodesic travelling at speed 1 meets w in a time t < Tj.
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In the presence of boundaries, we have to replace the geodesics by the rays of the
geometric optics bouncing on the boundaries (see also the role of diffractive points
for boundary control [5]).

Yet, some results remain if Assumption 1.1 is not fulfilled, but necessarily with
some loss. For instance, if w is arbitrary non empty, there is a logarithmic type decay
of the energy for data in some smoother space (see [23] [25]). Some recent progress
have also been made to understand the intermediate decay rate when the missed
trajectories are hyperbolics (see for instance [7] [29]).

For the nonlinear equation, since the nonlinear energy plays a crucial role, it
seems reasonable to consider first some situation where geometric control condition
is fulfilled. There are many results in that direction. The more advanced in the sub-
critical case is certainly the work of Dehman-Lebeau-Zuazua [11]. We will describe
its proof in section 2 below. The main idea is to try as much as possible to compare
the nonlinear equation to its linear counterpart, with for instance the concept of
linearizability of P. Gérard [15] and with some propagation results. Yet, as we will
describe below, some important arguments of the proof do not extend to the critical
case, as the lack of linearizability and the propagation of regularity.

In this paper, we employ a strategy to avoid the lack of linearizability at the cost
of an additional condition for the subset w. It was already performed by B. Dehman
and P. Gérard [9] in the case of R® with a flat metric. In fact, in that case, this
defect of linearizability is described by the profile decomposition of H. Bahouri and
P. Gérard [2]. The purpose of this paper is to extend a part of this proof to the
case of a manifold. This more complicated geometry leads to extra difficulties, in
the profile decomposition and the stabilization argument.

We also mention the recent result of Aloui, Ibrahim and Nakanishi [1] for R¢. Their
method of proof is very different and uses Morawetz-type estimates. They obtain
uniform exponential decay for a damping outside of a ball, for any nonlinearity,
provided the solution exists globally. This result is stronger than ours, but their
method does not seem to apply to the more complicated geometries we deal with.
We can also notice that if the nonlinearity is of the type f(u;) with some appropriate
f, it is possible to link the decay of the linear equation to the nonlinear one by energy
estimates for the difference of the two solutions, see [§].

1.1. Main results

We will need some additional geometrical condition to prove controllability. It re-
quires first the notion of focus, which also appeared in [16].

Definition 1.1. We say that (z1,22,t) € M x M x R* is a couple of focus at
distance t if the set

Fxl,xz,t = {5 € S::lM‘ E.prltg = 372}

of directions of geodesics stemming from xy and reaching xo in a time t, has a
positive surface measure.

We denote Ttocus the infimum of the t € R such that there exists a couple of
focus at distance t.

If M is compact, we have necessarily Tocus > 0.
Our main assumption will be the following.
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Assumption 1.2 (Geometric control before refocusing). The open set w satisfies
the Geometric Control Condition in a time Ty < Tfocys-

For example, for T2, there is no refocusing and the assumption is the classical
Geometric Control Condition. Yet, for the sphere S?, our assumption is stronger.
For example, it is fulfilled if w is a neighborhood of {z4 = 0}. However, there are some
geometric situations where the Geometric Control Condition is fulfilled while our
condition is not, for example if we take only a a neighborhood of {4 = 0,23 > 0}.
The exponential decay might be true in this specific case but requires additional
arguments (see subsection 4.1 for more comments).

The main result of this article is the following theorem.

Theorem 1.1. Let Ry > 0 and w satisfying Assumption 1.2. Then, there exist
T >0 and § > 0 such that for any (ug,u1) and (tg, 4y) in H' x L?, with

|

|
there exists g € L>([0,T], L?) supported in [0,T] X w such that the unique strong
solution of

(ﬁ()? al)HHle? S RO

(ﬂ()? a1)||L2><H*1 < 0

||(U07 ul)HHle2 < RO§

||(u0’ UI)HLQXH*1 < 5;

(u(0), 9u(0)) = (uo, ).
satisfies (u(T), Oyu(T")) = (o, U1).

{ Ou+u+u® = g on [0,T] xM

By reversibility of the equation, the result is equivalent to the control to zero. We
obtain it in two steps. The first one is obtained by taking as control the damping
term of a stabilized equation. This allows to bring the solution close to zero in some
large time. Once it is done, a theorem of local control for small data allows to bring
the solution to zero by a perturbation argument of the linear controllability.

Let us discuss the assumptions on the size in Theorem 1.1. In some sense, it is
a high frequency controllability result and expresses in a rough physical way that
we can control some "small noisy data'. In the subcritical case, two similar kind of
results were proved : in Dehman-Lebeau-Zuazua [11] similar results were proved for
the nonlinear wave equation but without the smallness assumption in L? x H~! while
in Dehman-Lebeau [10], they obtain similar high frequency controllability results for
the subcritical equation but in a uniform time which is actually the time of linear
controllability (see also the work of the author [21] for the Schrédinger equation).
Actually, this smallness assumption is made necessary in our proof because we are
not able to prove in general the following unique continuation result.

Unique continuation property u = 0 is the unique strong solution in the energy
space of

Ou+u+u® = 0 on [0,T]x M
Ou = 0 on [0,7] X w.

This kind of theorem can be proved with Carleman estimates under some ad-
ditional geometrical conditions and once the solution is known to be smooth. We
refer to subsection 2.2 for further discussion about this. In the case of R? with flat
metric and w the complementary of a ball, B. Dehman and P. Gérard [9] prove this
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theorem using the existence of the scattering operator, which is not available on a
manifold.

Moreover, as in the subcritical case, we do not know if the time of controllability
does depend on the size of the data. This is actually still an open problem for several
nonlinear evolution equations such as nonlinear wave or Schrodinger equation (even
in the subcritical case). Note that for certain nonlinear parabolic equations, it has
been proved that we can not have controllability in arbitrary short time while it is
the case for the linear equation, see [12] for instance.

The most difficult part of the proof of Theorem 1.1 is in the first part where we
have to prove exponential decay for a damped equation.

Theorem 1.2. Let Ry > 0, w satisfying Assumption 1.2 and x,, € C*°(M) satisfying
Xw(z) >1n >0 for all x € w. Then, there exist C,y > 0 and 6 > 0 such that for any
(ug,uy) in HY x L2, with

| (w0, wr)[| g1y 2 < Ro; | (w0, w2 <65

the unique strong solution of

(u(0), Gu(0)) = (uo,u1). (1.4)

satisfies E(u)(t) < Ce " E(u)(0).

{Du+u+u5+xi8tu 0 on [0,T]x M

This theorem has to be combined with the following local controllability theorem
whose proof is done by a perturbation argument.

Theorem 1.3. Let w satisfying Assumption 1.1 and T > Ty. Then, there exists
§ > 0 such that for any (ug,uy) and (tg, ;) in H' x L?, with

| (wo, w)|le <95 [[(To, @) <6

there exists g € L*([0,2T], L*) supported in [0,2T] x w such that the unique strong
solution of

(u(0), u(0)) = (ug,u1).
satisfies (u(2T), Oyu(2T)) = (o, Uy)

{ Ou+u+u®> = g on [0,2T] x M

Section 2 is devoted to a description of the proof of Dehman-Lebeau-Zuazua [11]
of the exponential decay in the subcritical case, stressing the new difficulties that will
appear in the critical case. Section 3 is devoted to a sketch of the proof of Theorem
1.2 and of the profile decomposition that it requires. We refer to the article [22] for
more details. Section 4 discusses some possible extensions of the presented results.

Remark 1.1. Some other type of control could be considered like boundary control.
It has appeared that the results about linear boundary control were often close, in
the spirit, to the one of internal control but with additional (difficult) technicalities.
Therefore, it seems likely that the result we present could be extended to control
or stabilization from the boundary. Yet, it would require some more precise under-
standing of the link between the nonlinearity and some nonhomogeneous boundary
conditions.
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2. The compactness-uniqueness argument in the subcritical
case (after Dehman-Lebeau-Zuazua)

2.1. Arguments of the proof

In this section, we describe the general method employed to prove the effective
decay in nonlinear wave-type equation. It mainly describes the proof contained in
Dehman-Lebeau-Zuazua [11]. We also emphasize which points fail in the critical
case, that we will describe in the next section.

The aim is to prove exponential decay of the energy for the equation

Ou + x20su + f(u) =0

where f(u) is a regular subcritical defocusing nonlinearity. Their result is stated for
M = R3 and w the exterior of a ball, but their method of proof could easily be
extended to a compact manifold and w satisfying

e Geometric control condition

e Unique Continuation property (see subsection 2.2 for a discussion of situations
where this condition is known to be fulfilled).

First, we notice that the energy is well decreasing and we have:

B@)(®) = B@O) = [ [ a@)af

Then, to get an exponential decay, it is sufficient to prove an observability estimate
for a certain time T

B@O) <C [ [ @l (2.1)

This gives E(u)(T) < (1 —C)E(u)(0) and it means that at each step [nT', (n+1)T],
a certain amount of the energy is dissipated, which easily yields exponential decay.
But regarding the localisation of the support of x,,(x), this is a way of measuring the
amount of energy that passes through w during a time 7. The proof of such estimate
will therefore involve some results of propagation of the information (compactness,
regularity, nullity) from the open set w to the whole manifold M.

The classical method to prove some observability estimates like (2.1) is the so
called compactness-uniqueness method.

The argument is by contradiction. Let u, be a bounded sequence of solutions
contradicting (2.1) :

T , 1

L] @0l < —B(n)0). (22)
Up to extraction, we can assume E(u,)(0) — a > 0. Then, we have two cases: a > 0
(large solutions) and a = 0 (small solutions). We will only sketch the proof for the
first case because the second one is similar but easier because the solution is small
and therefore closer to a linear solution.

So assume « > 0. We prove u,(0) — 0 in energy which is a contradiction.

Up to extraction we can assume u,, — u for the weak-* convergence in L>([0, 77, &)
where u is solution of the same equation. So, to finish the proof, it is enough to prove
that u = 0 (uniqueness) and that the convergence is actually for the strong topology
(compactness).
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e By passing to the limit in (2.2), we easily get that d,u = 0 on w. So on w, u
is solution of a nonlinear subcritical elliptic equation and is indeed smooth, if
for instance f is smooth. Then, since the nonlinearity is subcritical, they also
prove that f(u) is actually in a space L'([0,T], H®) with ¢ > 0. This allows
to prove that the microlocal regularity at the level H'*¢ propagates along the
bicaracteristics as in the linear case. This gives (u, Q;u);—o € H'™ x H€ since
u is regular on w that satisfies geometric control condition. By iteration, u is
.

Some unique continuation arguments can then be applied to get u = 0 (see
subsection 2.2 below for more details). That is u,, — 0.
e By linearizability property, |[u, — vnllpo(o.1,e) —2 0 where v, is solution of
4 he) n—oo
Uv,, = 0 with same initial data as u,. This property introduced by P. Gérard
[15] essentially says that in a subcritical situation and at high frequency, the
nonlinearity can be seen as a compact, and indeed is a small term.

e Jiu, 5 ([0_T>] : 0 by (2.2) and so the same holds for v,. This gives p = 0
2([0, T xw

on |0, T[xw where p is the microlocal defect measure associated to v, (see
[14][4]). Since, p propagates along the Hamiltonian flow for a solution of the
linear equation, this allows to propagate the compactness from the open set w
to M thanks to the geometric control condition. This gives v,, — 0 in energy
and the same holds for wu,,.

This gives a contradiction to a > 0.

In that proof, several argument fail when the nonlinearity becomes critical. Mainly
two can be noticed

e the propagation of regularity does not work any more (at least with the same
techniques). One way to avoid the proof of unique continuation is to prove a
weaker observability estimate of the form

B0 <[] heloou ds ol B0

When || (ug, u1)]] 2, -1 is small, this gives the classical observability estimates.
So, it allows to avoid the unique continuation property at the cost of a high
frequency assumption.

Another solution would have been to use directly a unique continuation with
rough potential as in Koch and Tataru [20]. The price to pay would have
been some more restrictive geometrical assumption, since they are proved by
Carleman estimates (see subsection 2.2 below).

e the linearizability is false. For R? for instance, a sequence as (1.3) with A — 0
is a dilation of a nonlinear solution and is indeed not linearizable since the
corresponding linear solution is a dilation of the corresponding linear solution.
Therefore, this defect is local and is also an obstacle on a manifold. Then, the
microlocal defect measure does not propagate as in the linear case. The remedy
for this problem will be to describe very precisely the defect of linearizability.
This is the aim of the profile decomposition described in subsection 3.1.
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2.2. A few comments about unique continuation

The first part of the compactness-uniqueness argument is based on a unique contin-
uation property as stated in the Introduction.

Our assumption of high frequency allows us to avoid the proof of such theorem.
Yet, in this subsection, we discuss some known techniques to get similar results in
linear or nonlinear situations.

There are two types of results in that direction. The first one is the Holmgren
theorem and requires some analyticity of the coefficients of a linear equation. This
result is very powerful in the sense that the geometrical assumption on the domain
w are very weak: you can propagate nullity along any noncaracteristic hypersurface.
For the wave equation you essentially only have to wait for a time large enough
not to contradict the finite speed of propagation. Yet, to apply such theorem in a
nonlinear setting, we have to write the nonlinearity as u® = u*u = Vu where V will
be considered as a potential term. Therefore, the assumption of analyticity is very
demanding concerning solutions of nonlinear equations.

Without that assumption, the available results to prove some unique continuation
properties are based on Carleman estimates. Yet, the geometrical assumptions on
the domain are very strong and not so natural.

First take a function ¢(t, x) strongly pseudoconvex for the wave operator. Then,
you can propagate the nullity across the hypersurface S = {p = 0}. That is, if a
solution of Ou + Vu = 0 satisfies u = 0 on 4 = {¢ > 0}, then it is also zero in
a small neighborhood of each point of S. Yet, this requires some strong geometric
conditions. Typically, for a function (¢, z) = At? — |z|* on the euclidian space, this
allows to extend the nullity from the exterior of a sphere to the interior for a time
large enough. For a general manifold, we have to replace |x|?> by a function d(z)
which must have a positive Hessian (with respect to the metric). We are often led
to consider specific examples where we have to build locally the function ¢ “by
hands” (see for some examples [21] in the similar context of nonlinear Schrodinger
equation).

There are also some intermediate results (as [28]) which assume some analyticity
only in certain variables (for instance the variable t). This also allows to obtain
the uniqueness with some very weak geometrical assumptions. Yet, to use it for
our purpose it would require to prove that the solution of the nonlinear equation
is analytic in time. This seems hard to prove for finite times, since the propagation
of analytic microlocal regularity is often more complicated to obtain for nonlinear
equations. To overcome this, in a forthcoming article with R. Joly [18], we prove
such analyticity in time for a solution satisfying 0,u = 0 on R x w with a subcrit-
ical analytic nonlinearity. This would then give some unique continuation result in
infinite time, which is sufficient for stabilization. The extension of such result to a
critical exponent is not clear for the moment.

Note also that the idea of proving unique continuation in infinite time also ap-
peared in the work [9] of Dehman-Gérard in R3. In this case, they use the existence
of the scattering operator which allows to approximate the solution by a linear one
for some large times. Then, the unique continuation for the nonlinear solution is
obtained thanks to an observability estimate for the linear equation.
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3. Sketch of proof in the critical case

3.1. The profile decomposition

The proof of the observability estimate in the subcritical case has used very strongly
the linearizability property of the subcritical equation. As, we have noticed, some
sequences of the type of (1.3) with A — 0 are not linearizable. The interesting
fact stressed by Bahouri-Gérard [2] is that this is almost the only obstacle. This
is the object of the profile decomposition. The aim of this subsection is to precise
this in the case of a manifold. Note that some similar result were also obained by
Gallagher-Gérard [13] outside of a convex obstacle on R?.

Since we are on a compact manifold where there is no scaling, we have to define
what will be a profile. This was also introduced in [16].

Definition 3.1. Let zoc € M and (f,g) € & = (H' x L*)(T,_M). Given
[(f,9),h,z] € &, x (REL x M) such that limy,(hy, 2,) = (0,20) We call the asso-
ciated concentrating data the class of equivalence, modulo sequences convergent to 0

in &, of sequence in £ that take the form
T — Ty

ht v (£m0) () + ol (3.1)

n

in some coordinate patch Uy ~ U C R? containing 1o and for some Wy € C°(U)
such that Uy (x) = 1 in a neighborhood of x.. (Here, we have identified x,,, T with
its image in U ).

We can prove that this definition does not depend on the coordinate charts and
on Uy two sequences defined by (3.1) in different coordinate charts are in the same
class. In what follows, we will often call concentrating data associated to [(f, g), h, z]
an arbitrary sequence in this class.

Definition 3.2. Let t = (t,) a sequence in R converging to to and (fn,gn) a
concentrating data associated to [(f,g), h,z]. A damped linear concentrating wave is
a sequence vy, solution of

Ov, + v, +a(x)0v, = 0 on Rx M
(Un(tn), Orvn(tn)) = (fa, gn)-
The associated damped nonlinear concentrating wave is the sequence u, solution of

{ Oy, + up + a(2)0u, +u3 = 0 on Rx M
(un(0), Oyun(0)) = (va(0), 9, (0)).

If a =0, we will only write linear or nonlinear concentrating wave.

(3.2)

(3.3)

Energy estimates yields that two representants of the same concentrating data
have the same associated concentrating wave modulo strong convergence in L5 (R, £).
This is not obvious for the nonlinear evolution but will be a consequence of the study
of nonlinear concentrating waves.

It can be easily seen that this kind of nonlinear solutions are not linearizable.
Actually, it can be shown that this concentration phenomenon is the only obstacle

to linearizability. We begin with the linear decomposition.

Theorem 3.1. Let (v,) be a sequence of solutions to the damped Klein-Gordon
equation (8.2) with initial data at time t = 0, (¢n,1,) bounded in E. Then, up to
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extraction, there exist a sequence of damped linear concentrating waves (Q(j)), as
defined in Definition 3.2, associated to concentrating data [(p"), w(j)),ﬁ(j),g(j),ﬂj)],
such that for any | € N*,
I
valt, ) = v(t, ) + 3 pY(t, ) + wl(t,2),
j=1

vT'>0,  lim Hw Z)HLOO (T LS )AL (- T.1],L10) (o

||<vn,atvn>||§=iu<p£5>,atp )+ ), D)2 + o(1), as n = oo,
j=1

where o(1) is uniform fort € [=T,T).

The nonlinear flow map follows this decomposition up to an error term in the
strong following norm

wlll; = llull ooz ary + 106wl oo r2anyy + 1l sz procar) -

Theorem 3.2. Let T' < Ttoeus/2. Let u,, be the sequence of solutions to damped non
linear Klein- Gordon equation (3.3) with initial data, at time 0, (p,,Y,) bounded in
E. Denote p) (resp v the weak limit) the linear damped concentrating waves given
by Theorem 3.1 and ¢V the associated nonlinear damped concentrating wave (resp
u the associated solution of the nonlinear equation with (u,0u)i—o = (v, 0sv)i=o).
Then, up to extraction, we have

un(t, 1) —u—l—ZqJ) (t,z) +w(t,z) +r®
7j=1
5 1], 2
n—00 [-T,T] I—o00
where w() is given by Theorem 3.1.
The same theorem remains true if M is the sphere S® and a(x) = 0 (undamped
equation) without any assumption on the time T.

3.2. Description of a profile (after S. Ibrahim)

An important fact for completing the decomposition is the knowledge of the behavior
of a single nonlinear profile. This has been described by S. Ibrahim [16].

To begin with, let us consider a profile on the euclidian space R? (with ¢, = z,, = 0

to simplify), that is a sequence of solutions w,, = \/%w ( ht e ) where Ugsw 4w

0. According to the theory of scattering, there are two linear solutions v+ and v~
such that ||(v= — w)(?)|, o 0 The scattering operator S sends v~ (0) into v™(0).
—+oo

Denote v; = ——v* (i i).

hn? hn
In that case, by invariance of the energy space by the scaling, it is worth noticing
that if we take for instance ¢t = —¢e, w,(—¢) is asymptotically close to v,(—¢),

as n tends to infinity. The same reasoning for ¢ = ¢ yields that, before and after
concentration, the nonlinear solution w, is close to a linear solution (it is linearizable
during that time) but this linear solution is not the same and is modified according
to the scattering operator S (since S is not the identity, this is a proof of non
linearizability).
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On the manifold, we have to be a little more precautious because the comparison
with a concentrating function is only true for small times [t,, — Ah,,, t,,—Ah,] but with
A arbitrary large. This is enough to conclude that during the time of concentration,
the profile is changed by the euclidian scattering. But, after that time, the lower
order terms are no more negligeable and the geometry of the manifold has to be
taken into account.

Roughly speaking, for a nonlinear concentrating wave, there are mainly two dif-
ferent times that need to be considered

e For times close to the concentration, that is in [t, — Ah,,, t,, — Ah,], the solution

is close to a concentrating profile on the tangent plane w,, = \/}Tw (t;t" , ‘”;m“)

where Cgsw +w® = 0 as described above. So, the profile is changed according
to a euclidian scattering operator.

e Away from a concentrating point, the behavior is linear. Therefore, the prop-
agation of the energy (seen through the microlocal defect measure) is well
described by the geometric optic. It means that the energy propagates at
high frequency along the bicaracteristic flow of the Hamiltonian.

Actually, the concentration-compactness principle of P.-L. Lions [26] combined with
Strichartz estimates allows to say that, as long as the defect measure associated
to the sequence does not charge any point, the nonlinearity is compact and the
behavior remains linear (these ideas comes from the paper of P. Gérard [15] about
linearizability). So, since we know that when the behavior is linear, the microlocal
defect measure propagates along the Hamiltonian flow, it is possible to get that the
nonlinear solution remains close to the linear one as long as there is no refocusing.

The exact description of this phenomenon of refocusing is quite hard to obtain.
Yet, in the specific case of the sphere S? and without damping, the explicit knowledge
of the linear solution allows to obtain a more precise description. Indeed, the linear
concentrating wave concentrating on a North pole refocus on the South pole with a
new profile applied with a reflection.

This allows to describe the nonlinear concentrating wave as follows. After a con-
centration on the North pole, the solution propagates linearly on the sphere, that
means remains concentrated on a circle propagating to the South. When it reaches
the South, it reconcentrates with a profile which is the reflection of the one on the
North pole. Yet, during the concentration, the nonlinearity transforms the profile
into a new one obtained by the euclidian scattering operator. Then, the solution
propagates linearly to the North pole until it reconcentrates with a reflection of
the one obtained on the South after scattering. And so on... So, there is a kind of
ping-pong between the North and the South pole with at each time a modification
of the profile according to the Euclidian scattering operator.

3.3. Sketch of proof of the profile decomposition

We follow the proof of Bahouri-Gérard [2] and Gallagher-Gérard [13] and adapt it
to the case of a manifold and the presence of damping.

For the linear decomposition, the idea is to extract one after the other the different
elements of the decomposition and to prove that, in some sense, the Strichartz norm
of the new remainder term is decreasing.
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The main steps are the following:

e decomposition in scales of oscillation: the point is to extract the scale of oscil-
lation h{). In our case, it was enough to prove that if a sequence is oscillating
at scale h7) on M (that means roughly that it is almost spectrally localized on
some interval [Ch,;t, Dh.]) it is the same for any local coordinate chart of the
manifold (when the oscillation is considered with respect to Euclidian Fourier
transform). The proof that the remaining term is small in L>([0, T, L%) is
done by using the similar result in each coordinate chart.

e extraction of times and cores of concentration by exhaustion. We "track" the
possible points of concentration of the energy according to a specific scale.
We go on the process as long as there are some points where the energy
concentrates.

e prove that the rest is small in Strichartz norm by some refined estimates (that
is involving a compact term).

We also have to prove that the scales, times and cores of concentration are "orthog-
onal" in some sense that will allow to get that the non linear interactions are small.
More precisely, two profiles are said orthogonal if either

hY
W — +00

n—o0

e log

o ol # 0

o h) = BV = h and 2(1) = 2 = 2, and in some coordinate chart around
Too, We have

-
h

=)
h

— +00.
h—0

For the nonlinear decomposition, we mainly have to establish that each element
of the linear decomposition "behaves independently" in the nonlinear equation.

To illustrate the problem, let us take the examples of a sequence with two linear
profiles p{1) and p and denote ¢!, ¢'? the associated nonlinear profiles, solutions
of the nonlinear equation with same initial data. We want to prove that the solution
of Ou, +u,, = u> with initial data p{") 4+ p(?) at time 0 can be approximately written
u, =~ ¢V + ¢? in energy. Because both of them have the same initial data, a boot

strap argument allows to conclude if we prove that (qﬁll) + qf))s ~ (¢V)° + (¢?)°
in L'([0,T], L?). Such a result can be obtained because these profiles are orthogonal
according to the previous definition. That means that they have different scales,
points and times of concentration and indeed, the locus where the Strichartz norm
is large are distincts.

The general result with an infinite number of profiles uses similar ideas. This
proof is quite technical and we refer to [22] for more details. The main difficulties
that appear are:

e to find equivalent on manifolds of the tools developed on R® by Bahouri-
Gérard: to extract scales of oscillation and to track the points of concentration
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e the equation is damped : we lose the conservation of energy, of orthogonal-
ity and of spectral localization. Then, we only have almost conservation of
orthogonality by propagation of joint microlocal defect measures and almost
conservation of spectral localization.

e to take care of geometric effects: we have to prove that each non linear profile
do not interact with the others. We use the description of the non linear
profiles by S. Ibrahim described in subsection 3.2.

Remark 3.1. The restriction on the time T < Ttoeus/2 in Theorem 3.2 comes
from our lack of precise understanding of the phenomenon of refocusing for a linear
concentrating wave. More precisely, let (x1,x2,t) be a couple of focus at distance t.
Take two orthogonal concentrating waves concentrating at x, with the same freguency
hy but with orthogonal sequence x,, tending to x with different rates: ===t —
+00. By using microlocal defect measure, we are able to prove that the associated
linear concentrating waves v, and v, will reconcentrate at xo after a time t still at
frequence h,,. Yet, we are not able to get that the new way of local concentration
at xo will still be with orthogonal x,9 and T, o converging to xo. It could happen
(even if very unlikely) that the new way of convergence is the same. Then, the
nonlinear analysis would be different because the resulting nonlinear solutions would
not keep an independant behavior. When describing the solution after concentration,
it would become necessary to study the scattering operator applied to the sum of the
concentrating profiles at xs.

Yet, this scenario is certainly not possible, but to prove it, we would need to get
good informations on the new way of refocusing for a concentrating wave associated
to a couple of focus. This would require some more precise techniques as 2-microlocal
defect measures or Fourier Integral Operator.

3.4. End of the argument for stabilization

To obtain the exponential decay at high frequency, we need to prove the following
weak observability estimate:

B0 = ff - heloou dd o)l B@O)

The proof by contradiction is similar to the one described in the subcritical case
except that the linearizability is false in general. The idea is to compute the profile
decomposition to describe the defect. The additional geometrical assumption will
then help us to kill the profiles.

More precisely, by contradiction, suppose

//M,]XM X (2) Dt |” 4 || (0, w10 | o g1 B (1) (0) < iE(un)(O) (3.4)

and E(u,)(0) — a > 0 (otherwise, as before, we have a linear behavior which is
easier).

In that case, the second term of (3.4) allows to skip the unique continuation and we
obtain directly, u,, — 0.

We want to prove the linearizability property. After completing the profile decom-
position according to Theorem 3.2, it is equivalent to proving ¢) = 0 for all j € N*.
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e Estimate (3.4) gives a strong convergence of dyu on w. This gives u = 0 on
S*(]0, T[xw) where p is the microlocal defect measure associated to u,. This
implies e = 0 on |0, T[xw where e is the energy density limit of u, (that is
the measure weak-* limit of the local energy of u)

e Using the fact that each nonlinear profile "behaves independently', e can be
decomposed as

+oo
e(t,z) =Y eW(t,z) + es(t,z)

j=1
where e is associated to each profile and ey is the energy density limit of
a sequence of linear solutions. This is actually the profile decomposition seen
from the point of view of the density of energy. The positivity of all the
measures in the decomposition and the fact that e = 0 on |0, T[xw allow to
conclude that ) = 0 on |0, T[xw. This also gives u¥) = 0 on S*(]0, T[xw)
where 17 is the microlocal defect measure associated to ¢\,

e Let Ty be the time in the assumption Geometric Control Condition before
refocusing. Since Ty < T'ocys, for each j € N*, we can find a subinterval I,
of lenght greater Ty on which ¢$/) does not focus. Therefore, on that interval
I;, ¢ has a linear behavior and p9) propagates along the Hamiltonian flow.
Since the geometric control condition is satisfied on (w, I;) and ) = 0 on
S*(]0, T[xw), we obtain 9 =0 on S*(I; x M) and so ¢¥) = 0.

This proves the linearizability and allows to finish the proof as in the subcritical
case.

Remark 3.2. We have a little simplified the proof since, in fact, we are only able to
prove the "independant behavior" of the profiles for some time less than Ttocys while
we need a time larger than 21q to kill all the profiles. In practice, we apply a process
that kills the profiles according to their first time of concentration.

4. Further problems

4.1. Suppressing the assumption about focusing?

In order to go beyond the Geometric Control before refocusing, it is necessary to
have a better understanding of the behavior at the focus and use some specific
properties of the euclidian scattering operator. One additional argument that could
be used is the conservation of the momentum of the nonlinear scattering operator.

For instance, in some specific case for S®, it may be possible to avoid the strong
assumption of Geometric Control before refocusing with w a neighborhood of half
the equator:

w is a neighborhood of {x = (21,29, 23,24) € S |24 =0 and 2, > O}

We briefly explain how to kill a profile concentrating on the North pole at time 0.
Shortly after the time 0, the profile is linear. Then, the energy microlocal defect
measure at time ¢ propagates along some transport equation related to the Hamil-
tonian flow. Yet, since there is strong convergence to zero of the energy on |0, T'[xw,
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the specific geometry allows to obtain that the momentum of the initial concen-
trating profile has a negative component on the axis x;. We easily obtain that the
linear profile refocuses at time 7 in the South Pole with a new reflected profile,
therefore with a momentum concentrated in the direction x; > 0. So after time 7,
the nonlinear solution is close to a linear solution obtained by a reflection and the
scattering operator applied to the previous one. By conservation of the momentum
by the scattering operator, its momentum projected on the axis x; is also positive.
The same reasonning as before on a time |, 27r[ and the specific geometry gives that
this profile is an integral in Fourier with negative projection on the axis x;. This
combined with the sign of the momentum gives that the profile is zero.

As explained before, if we want to avoid our additional assumption of geometric
control before refocusing, it becomes necessary to have a better understanding of the
behavior of the scattering operator S on R? with respect to Fourier direction. If a set
of initial data (ug, u1) is supported in Fourier in a certain cone V' (or more precisely,
uy £1iv—Aug in direction £V'), is that still true for S(ug, u1)? We have seen that it
can remain true in some convex cone by using the conservation of momentum, but
the general case is open (and might be false?). It is likely that this could be useful
in other situations.

4.2. Suppressing the high frequency assumption?

As we have seen in section 2.2, the unique continuation is very problematic and
imposes some additionnal conditions.

Concerning Carleman estimates, the results of H. Koch and D. Tataru [20] prove
some unique continuation result in the critical case. This should allow to suppress
the high frequency assumption for some specific geometries.

It would be also interesting to obtain the unique continuation, with some more
general geometric assumption on w as the geometric control condition.
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