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Global well-posedness and scattering for the
mass-critical NLS

Benjamin Dodson

Suppose u(t, x) is a solution to the nonlinear partial differential equation

iut + ∆u = µ|u|4/du,
u(0, x) = u0 ∈ L2(Rd),

(0.1)

µ = ±1, µ = +1 refers to the defocusing case and µ = −1 refers to the focusing
case.

Definition 0.1. (0.1) is said to be globally well - posed if a solution u(t, x) to (0.1)
exists for all time,

u(t, x) ∈ C0
t (R;L2(Rd)) ∩ L

2(d+2)
d

t,loc (R;L
2(d+2)
d (Rd)), (0.2)

and a solution to (0.1) depends continuously on u0 in the L2(Rd) topology.

Definition 0.2. A global solution to (0.1) is said to scatter if there exist u± ∈
L2(Rd) such that

‖u(t, x)− eit∆u+‖L2(Rd) → 0, (0.3)
as t→ +∞ and

‖u(t, x)− eit∆u−‖L2(Rd) → 0 (0.4)
as t → −∞. Additionally we say a solution to (0.1) scatters forward in time if it
satisfies (0.3) and backward in time if it satisfies (0.4).

The first progress toward proving well - posedness of (0.1) was

Theorem 0.1. (0.1) is locally well - posed on [−T, T ] for some T (‖u0‖H1(Rd)) > 0.

Proof: See [6]. �

Furthermore, it is possible to use conserved quantities of (0.1) to upgrade theorem
0.1 to global well - posedness. (0.1) has the conserved quantities mass,

M(u(t)) =
∫
|u(t, x)|2dx = M(u(0)), (0.5)

and energy
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E(u(t)) = 1
2

∫
|∇u(t, x)|2dx+ µd

2(d+ 2)

∫
|u(t, x)|

2(d+2)
d dx. (0.6)

In the defocusing case (0.6) is positively definite, which implies ‖u(t)‖H1(Rd) is uni-
formly bounded by E(u(0)) which is finite by the Sobolev embedding theorem. By
(0.1) (0.1) is globally well - posed for u0 ∈ H1(Rd), µ = +1.

In the focusing case (0.6) is not positive definite. Therefore having E(u(0)) finite is
not enough to prove global well - posedness because ‖u(t)‖H1(Rd) and ‖u(t)‖

L
2(d+2)
d (Rd)

can and do blow up at the same rate, precisely canceling to maintain conservation
of energy.

For ‖u(t)‖L2(Rd) below a certain threshold it is still possible to prove global well -
posedness and scattering in the case when µ = −1 using the Gagliardo - Nirenberg
inequality.
Theorem 0.2. If Q is the positive solution to the elliptic partial differential equation

∆Q+Q1+4/d = Q, (0.7)
the Sobolev embedding theorem has the best constant

‖u‖
2(d+2)
d

L
2(d+2)
d

x (Rd)
≤
‖u‖4/d

L2(Rd)

‖Q‖4/d
L2(Rd)

‖∇u‖2
L2(Rd). (0.8)

Proof: See [30], [43], [44], and [5]. �

Combining theorem 0.2 with (0.5) proves (0.1) when ‖u0‖L2(Rd) < ‖Q‖L2(Rd). Fur-
thermore, by (0.7)

u(t, x) = eitQ(x) (0.9)
is a solution to (0.1) when µ = −1. This is a solution that certainly fails to scatter.
Applying the conformal symmetry
Theorem 0.3. u is a solution to (0.1) if and only if

v(t, x) = 1
|t|d/2

u(−1
t
,
x

t
)ei|x|2/t (0.10)

solves (0.1).
We obtain a solution to (0.1) that fails to be globally well - posed.

Furthermore, consider the variance∫
|x|2|u(t, x)|2dx. (0.11)

d2

dt2

∫
|x|2|u(t, x)|2dx = 16E(u(t)). (0.12)

If u(0) ∈ H1(Rd), 0 > E(u(t)) > −∞, and
∫
|x|2|u(0, x)|2dx <∞, then the variance

is concave down in time, which implies that
∫
|x|2|u(t, x)|2dx will cross the real axis

IV–2



twice. Since (0.11) is positive definite, this implies a solution to (0.1) can only exist
in both directions for finite time. Such solutions are relatively straightforward to
construct when ‖u0‖L2(Rd) > ‖Q‖L2(Rd).

The local well - posedness result in theorem 0.1 was substantially improved to
Theorem 0.4. (0.1) is locally well - posed on [−T, T ] for u0 ∈ L2(Rd), T (u0) > 0,
where T depends on the profile of u0, not just its size.
Proof: See [6] and [7]. �

In this paper we sketch the proof of the natural extension of theorem 0.4,
Theorem 0.5. (0.1) is globally well - posed and scattering for all u0 ∈ L2(Rd), µ =
+1. (0.1) is globally well - posed and scattering for µ = −1, ‖u0‖L2(Rd) < ‖Q‖L2(Rd).
Previous Results:

Theorem 0.6. (0.1) is globally well - posed and scattering for µ = +1, u0 ∈ L2(Rd)
and for µ = −1, ‖u0‖L2(Rd) < ‖Q‖L2(Rd) when u0 is radial, d = 2.
Proof: See [24]. �
Theorem 0.7. (0.1) is globally well - posed and scattering for µ = +1, u0 ∈ L2(Rd)
when u0 is radial, d ≥ 3.
Proof: See [37]. �
Theorem 0.8. (0.1) is globally well - posed and scattering for µ = −1, ‖u0‖L2(Rd) <
‖Q‖L2(Rd) when u0 is radial, d ≥ 3.
Proof: See [26]. �

Conjecture: If (0.1) is not globally well - posed and scattering, and ‖u0‖L2(Rd) =
‖Q‖L2(Rd), then

u(t, x) = G · eitQ(x) (0.13)
where G = S1 × (0,∞)×Rd ×Rd is a group of symmetries acting on solutions to
(0.1), or a conformal symmetry of (0.13).

G is generated by four symmetries which act on solutions of (0.1), multiplication,

u(t, x) 7→ eiθu(t, x), (0.14)
for θ ∈ R, scaling,

u(t, x) 7→ 1
λd/2

u( t
λ2 ,

x

λ
), (0.15)

translation,

u(t, x) 7→ u(t, x− x0), (0.16)
and Galilean invariance

u(t, x) 7→ e−it|ξ0|2eix·ξ0u(t, x− 2tξ0). (0.17)
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Let

Aµ(m) = sup{‖u‖
L

2(d+2)
d

t,x (R×Rd)
: ‖u(t)‖L2

x(Rd) = m, u solves (0.1)}. (0.18)

To prove theorem 0.1 it suffices to prove Aµ(m) < ∞ for all m in the defocusing
case and for m < ‖Q‖L2(Rd) in the focusing case.
Theorem 0.9. Aµ(m) is a continuous function of m.
Proof: See [35].
This already implies a small data result for m < ε(d, µ) because Aµ(0) = 0. More-
over,

{m : Aµ(m) =∞} (0.19)
is a closed set so if (0.19) is nonempty then it possesses a least element m0.
Theorem 0.10. Suppose

‖un(t)‖L2
x(Rd) ↗ m0 (0.20)

‖un‖
L

2(d+2)
d

t,x (t≥0)
↗∞, ‖un‖

L
2(d+2)
d

t,x (t≤0)
↗∞. (0.21)

Then un(t) has a subsequence that converges to u(t) in L2(Rd)/G, u(t) : I ⊂ R → C
is a solution to (0.1), I an open set.

‖u(t)‖
L

2(d+2)
d

t,x (t≥0)
= ‖u(t)‖

L
2(d+2)
d

t,x (t≤0)
=∞. (0.22)

Moreover, {u(t) : t ∈ I} lies in a compact subset of L2(Rd)/G. By the Arzela -
Ascoli theorem there exist

x(t), ξ(t) : I → Rd, (0.23)

N(t) : I → (0,∞), (0.24)
such that for all η > 0 there exists C(η) <∞ such that∫

|x−x(t)|≥C(η)
N(t)

|u(t, x)|2dx+
∫
|ξ−ξ(t)|≥C(η)N(t)

|û(t, ξ)|2dξ < η. (0.25)

Proof: See [36]. �

Because u(t) lies in a precompact set we can take a limit of u(tn), tn ∈ I, in
L2(Rd)/G and obtain an even more special solution to (0.1).
Theorem 0.11. If theorem 0.1 fails then there exists a solution to (0.1) satisfying
N(0) = 1, u(t) exists on [0,∞), N(t) ≤ 1 on [0,∞), x(0) = ξ(0) = 0,

|ξ′(t)|, |N ′(t)| .m0,d N(t)3, (0.26)

‖u‖
L

2(d+2)
d

t,x ([0,∞)×Rd)
= ‖u‖

L
2(d+2)
d

t,x ((inf(I),0]×Rd)
=∞. (0.27)
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Proof: See [25]. �

We consider two cases separately,∫ ∞
0

N(t)3dt <∞, (0.28)

and ∫ ∞
0

N(t)3dt =∞. (0.29)

Theorem 0.12. If
∫∞

0 N(t)3dt = K, then for all 0 ≤ s < 1 + 4
d
,

‖u‖L∞t Ḣs
x([0,∞)×Rd) .m0,d K

s. (0.30)

This is enough to exclude (0.28) in the defocusing case and in the focusing case for
mass below the mass of the ground state. In both cases E(u(0)) ≥ δ > 0. (0.26)
and (0.28) imply N(t)→ 0 as t→∞. So when ξ(t) ≡ 0 it is easy to see N(t)→ 0,
Sobolev embedding, and (0.30) imply

E(u(t))→ 0, (0.31)
which contradicts conservation of energy. In the general case when ξ(t) is free to
move around, (0.26) implies that |ξ(t)| .m0,d K for all t ∈ [0,∞). For T sufficiently
large N(T ) is very small. After making a Galilean transformation sending ξ(T ) to
0, this implies E(u(T )) is very small. Because |ξ(T )| .m0,d K this transformation
preserves (0.30). On the other hand, because Lp is Galilean invariant, after any
Galilean transformation

E(u(0)) ≥ δ > 0. (0.32)
This again contradicts conservation of energy.

Having completely ruled out case (0.28) we turn to case (0.29) when µ = +1. We
use the interaction Morawetz estimate

Theorem 0.13. If µ = +1,

‖|∇|
3−d

2 |u(t, x)|2‖2
L2
t,x([0,T ]×Rd) .m0,d

∫ T

0
∂tM(t)dt, (0.33)

where

M(t) =
∫ (x− y)j
|x− y|

Im[ū(t, x)∂ju(t, x)]|u(t, y)|2dxdy. (0.34)

Because the solution u(t) need not possess any additional regularity, we truncate in
frequency.

Theorem 0.14. Suppose
∫ T

0 N(t)3dt = K, choose C sufficiently large so that∫ T

0
|ξ′(t)|dt << CK, (0.35)

which is always possible by (0.26). Let
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M(t) =
∫ (x− y)j
|x− y|

Im[P≤CK ū(t, x)∂jP≤CKu(t, x)]|P≤CKu(t, y)|2dxdy. (0.36)

Then ∫ T

0
N(t)3dt .m0,d

∫ T

0
∂tM(t)dt, (0.37)

and since N(t) ≤ 1 for t ∈ [0,∞),

|M(t)| .m0,d o(K). (0.38)

This rules out (0.29) in the case when µ = +1 because K can be made arbitrarily
large by taking T sufficiently large, giving the contradiction

K . o(K). (0.39)
We now give a brief discussion of the proof of theorem 0.14. It is perhaps easiest to
see that when d ≥ 4, if u is a minimal mass blowup solution to (0.1),

N(t)3 .m0,d ‖|∇|
3−d

2 |u(t, x)|2‖2
L2
x(Rd). (0.40)

Indeed, when d ≥ 4,

‖|∇|
3−d

2 |u(t, x)|2‖2
L2
x(Rd) ∼m0,d

∫ 1
|x− y|3

|u(t, x)|2|u(t, y)|2dxdy. (0.41)

The spatial concentration in (0.25) implies (0.40). Because most of the mass is
contained in P≤CK , we also have∫ T

0
N(t)3dt .m0,d ‖|∇|

3−d
2 |P≤CKu(t, x)|2‖2

L2
t,x([0,T ]×Rd). (0.42)

(0.38) follows from (0.25), N(t) ≤ 1, and the fact that the interaction Morawetz
estimates are Galilean invariant.

i∂t(P≤CKu)+∆(P≤CKu) = µ|P≤CKu|4/d(P≤CKu)+µ[P≤CK(|u|4/du)−|P≤CKu|4/d(P≤CKu)].
(0.43)

If we were able to drop

µ[P≤CK(|u|4/du)− |P≤CKu|4/d(P≤CKu)] (0.44)
then the proof of (0.42) when µ = +1 would be identical to the proof of (0.33).
Therefore, most of the work in proving theorem 0.14 lies in showing that the error
arising from (0.44) is bounded by o(K). In fact, the error estimates are quite robust.

Theorem 0.15. We can perform the same error estimates with (x−y)j
|x−y| replaced with

a(t, x− y)j as long as

|a(t, x)| .m0,d 1, (0.45)
when d = 2,

|∇a(t, x)| .m0,d
1
|x|
, (0.46)
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and when d = 1,

‖∇a(t, x)‖L1
x(R) .m0,d 1, (0.47)

a(t, x) = −a(t,−x), (0.48)
and when d = 2,

‖∂ta(t, x)‖L1(R2) .m0,d 1. (0.49)

Therefore it remains to construct an interaction Morawetz potential bounded below
by N(t)3 and which satisfies (0.45) - (0.49). We do this only in the case when d = 1
and u is radial. Suppose ψ ∈ C∞(R), ψ = φ′ ≥ 0, and

= x, |x| ≤ 1,

ψ(x) = 3
2 , x > 2,

= −3
2 , x < −2.

(0.50)

Then let

M(t) = R
∫
ψ(xÑ(t)

R
)Im[ū∂xu](t, x)dx, (0.51)

such that for some δ > 0

δN(t) ≤ Ñ(t) ≤ N(t), (0.52)
and ∫ T

0
|Ñ ′(t)|dt ≤ δ1

∫ T

0
Ñ(t)N(t)2dt. (0.53)

Then

∂tM(t) = Ñ(t)
∫
φ(xÑ(t)

R
)[12 |∇u(t, x)|2 − 1

6 |u(t, x)|6]dx (0.54)

+ C
Ñ(t)3

R2

∫
φ′′(xÑ(t)

R
)|u(t, x)|2dx (0.55)

+R
∫
φ(xÑ(t)

R
)xÑ ′(t)Im[ū∂xu](t, x)dx. (0.56)

We choose Ñ(t) to be a sufficiently slowly varying (0.53) envelope for N(t) which
allows us to absorb (0.55) into (0.54) for R(m0) sufficiently large and for δ1(R)
sufficiently small we can absorb (0.56) into (0.54). This completes the proof of the
focusing case.
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