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Journées Équations aux dérivées partielles
Biarritz, 6 juin–10 juin 2011
GDR 2434 (CNRS)

Quasi-periodic solutions of Hamiltonian PDEs
Massimiliano Berti

Abstract
We overview recent existence results and techniques about KAM theory

for PDEs.

1. Introduction

Many partial differential equations arising in physics can be seen as infinite dimen-
sional Hamiltonian systems. Main examples are the nonlinear Schrödinger (NLS)
and wave equations (NLW), the beam, the membrane and the Kirkhoff equations in
elasticity theory, the Euler equations of hydrodynamics, as well as their approximate
models, like KdV, Benjamin-Ono, KP equations, ...

In the last years important mathematical progresses have been achieved in the
study of these evolutionary Partial Differential Equations (PDEs) adopting the “dy-
namical systems philosophy", focusing, in particular, on the search of invariant tori
of the phase space filled by periodic and quasi-periodic solutions.

A natural setting concerns the bifurcation of quasi-periodic solutions close to
linearly stable (elliptic) equilibria of a PDE. The main difficulty for the existence
proof is the presence of arbitrarily “small divisors" in the perturbative expansion
series of the expected solutions. Such small divisors arise by complex resonance
phenomena between the normal mode frequencies of the system.

The main strategies which have been developed to overcome the small divisors
difficulty are:

1. KAM theory,

2. Newton-Nash-Moser implicit function theorems.

The KAM approach consists in generating iteratively a sequence of canonical
changes of variables of the phase space (close to the identity) which bring the
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Hamiltonian into a normal form with an invariant torus at the origin. This iter-
ative procedure requires, at each step, to invert the so called linear “homological
equations". In the usual KAM scheme the normal form has constant coefficients
(reducibility), hence the homological equations have constant coefficients and can
be solved by Fourier series imposing the “second order Melnikov" non-resonance
conditions. The final KAM torus is linearly stable.

Actually, Kuksin [22] and Wayne [27] developed this scheme to prove the exis-
tence of quasi-periodic solutions for one dimensional (1-d) NLW and NLS equations.
These pioneering results were limited to Dirichlet boundary conditions because the
eigenvalues of ∂xx had to be simple. Actually, the required second order Melnikov
non resonance conditions are violated in presence of multiple normal frequencies (be-
cause differences of normal frequencies appear), for example, already for periodic
boundary conditions (two eigenvalues of ∂xx are equals).

Then a more direct bifurcation approach was proposed by Craig and Wayne [17]
for 1-d NLS and NLWwith periodic boundary conditions. After a Lyapunov-Schmidt
decomposition, the search of the embedded torus is reduced to solve a functional
equation in scales of Banach spaces, by some Newton-Nash-Moser implicit function
theorem.

The main advantage of this approach is to require only the so called “first order
Melnikov" non-resonance conditions for solving the linearized equations (homological
equations) at each step of the iteration. These conditions are essentially the mini-
mal assumptions, and, in particular, do not involve differences of normal frequencies.
Translated in the KAM language this corresponds to allow a non-constant coeffi-
cients normal form around the torus. The main difficulty of this strategy is that
the homological equations are PDEs with non-constant coefficients and are small
perturbations of a diagonal operator having arbitrarily small eigenvalues. Hence it
is hard to estimate their inverses in high norms. Craig-Wayne [17] solved this prob-
lem for periodic solutions of 1-d analytic NLS and NLW and Bourgain [10] also for
quasi-periodic solutions.

Clearly, a drawback of this approach is to prove only the existence of the invariant
torus, unlike the usual KAM theory also provides a reducible normal form around
it, which implies, in particular, the stability of the torus, and can be used to study
nearby the dynamics of the PDE, see [4], [20].

At present, the theory for 1-d NLS and NLW has been sufficiently understood
(see e.g. [23]) but much work remains in higher space dimensions, due to the more
complex spectral analysis of −∆ + V (x). The main difficulties are:

1. the eigenvalues of −∆ + V (x) appear in clusters of unbounded sizes,

2. the eigenfunctions are, in general, “not localized with respect to the exponen-
tials".

Roughly speaking, property 2 means that, if we expand the eigenfunctions of
−∆ + V (x) with respect to the exponentials, the Fourier coefficients rapidly con-
verge to zero. This property always holds in 1 space dimension (see [17]) but may
fail for d ≥ 2, see [13]. This problem has been often bypassed considering pseudo-
differential PDEs where the multiplicative potential V (x) is substituted by a “con-
volution potential" V ∗ (eij·x) := mje

ij·x, mj ∈ R, j ∈ Zd (which acts diagonally on
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the exponentials). The scalars mj are called the “Fourier multipliers" and play the
role of “external parameters".

The Newton-Nash-Moser approach is, in principle, very useful to overcome prob-
lem 1, because it requires only the first order Melnikov non-resonance conditions
and therefore does not exclude multiplicity of normal frequencies. Actually, devel-
oping this perspective, Bourgain [11], [13], [14] was able to prove the existence of
quasi-solutions for NLW and NLS with Fourier multipliers on Td, d ≥ 2.

More recently, also the KAM approach has been extended by Eliasson-Kuksin [21]
for NLS on Td with Fourier multipliers. The key issue is to control more accurately
the perturbed frequencies after the KAM iteration and, in this way, the difference
of the normal frequencies, verifying the second order Melnikov non-resonance con-
ditions. We refer also to Procesi-Procesi [25] and Wang [26] for the cubic NLS.

The goal of this note is to present new recent extensions of these theories in the
following directions:

1. Finitely differentiable PDEs. All the previous results are valid for analytic
nonlinearities (actually polynomials in [13], [14]). This simplifies the analysis
because the resonance effects are weaker for analytic nonlinearities than for
finitely differentiable one’s. A natural question concerns the persistence of
quasi-periodic solutions for PDEs in a setting of finitely many derivatives.
The theory developed in [5], [8], [6]-[7], see also [3], answers positively this
question. We refer also to Delort [18] for periodic solutions of C∞-NLS.
Of course we cannot expect quasi-periodic solutions under too weak regular-
ity assumptions on the nonlinearities. Actually, for finite dimensional Hamil-
tonian systems, it has been rigorously proved that, if the vector field is not
sufficiently smooth, then all the invariant tori could be destroyed and only
discontinuous Aubry-Mather invariant sets survive.

2. PDEs defined on more general manifolds. The dynamics of a PDE on a
compact Riemannian manifold strongly depends on its geometry, in particular,
via the properties of the eigenvalues and the eigenfunctions of the Laplace-
Beltrami operator. All the previous results are valid for PDEs on flat tori Td,
d ≥ 1. In [8]-[9] we prove the existence of periodic solutions of NLS and NLW
defined not only on tori, but also on compact Zoll manifolds (i.e. spheres),
Lie groups and homogeneous spaces. In these cases, the eigenvalues are highly
degenerate and only weak properties of localization of the eigenfunctions hold.
Interestingly, many tools in [8]-[9] resemble the Birkhoff normal form tech-
niques developed by Bambusi, Delort, Grebért, Szeftel [2] for PDEs on spheres
and Zoll manifolds, and seem deeply related with the methods of Burq,
Gérard, Tzvetkov [15] for the initial value problem.

3. Multiplicative potential. In [6] we prove the existence of quasi-periodic
solutions of NLS with a multiplicative potential V (x) on Td, d ≥ 2 (see The-
orem 2.1). Actually, the Nash-Moser approach described in section 3 requires
essentially no informations about the eigenfunctions of the Laplacian with a
periodic potential, which, on the contrary, seem to be unavoidable to prove
also reducibility.
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4. Parameter dependence. In KAM theory several “parameters" are usually
available for verifying the required Melnikov non resonance conditions. In [6]
we use only one external parameter -the length of the quasi-periodic frequency
vector (i.e. time-scaling) for NLS in d ≥ 2. For finite dimensional Hamiltonian
systems this kind of result was proved by Eliasson [19] and Bourgain [12].
For 1-d PDEs it was proved in [4], using an explicit caracterization of the
Cantor set of parameters which satisfy the non-resonance conditions at all
the KAM steps, in terms of the final frequencies only. We also refer to [1] for
an application to degenerate KAM theory.

Let us present rigorously the existence result of quasi-periodic solutions for NLS
on Td.

2. Quasi-periodic solutions of NLS on Td

As a model equation we consider a Schrödinger equation
iut −∆u+ V (x)u = εf(ωt, x, |u|2)u+ εg(ωt, x) (2.1)

with periodic boundary conditions
x ∈ Td := (R/(2πZ))d ,

where the multiplicative potential V is in Cq(Td;R) for some q large enough, ε > 0
is small, the nonlinearity is finitely differentiable and quasi-periodic in time, more
precisely

f ∈ Cq(Tν × Td × R;R) , g ∈ Cq(Tν × Td;C) (2.2)
for some q ∈ N large enough, and the frequency vector ω ∈ Rν is colinear with a
fixed diophantine vector ω̄ ∈ Rν , namely

ω = λω̄ , λ ∈ Λ := [1/2, 3/2] ⊂ R , |ω̄ · l| ≥ γ0

|l|τ0
, ∀l ∈ Zν \ {0} , (2.3)

for some γ0 ∈ (0, 1), τ0 > ν − 1 (for definiteness τ0 := ν), |l| := max{|l1|, . . . , |lν |}.
The dynamics of the linear Schrödinger equation

iut −∆u+ V (x)u = 0
is well understood. All its solutions are the linear superpositions of normal mode
oscillations, namely

u =
∑
j

aje
iµjtψj(x) , aj ∈ C , where (−∆ + V (x))ψj(x) = µjψj(x) ,

hence periodic, quasi-periodic or almost periodic in time. The eigenfunctions ψj(x)
of −∆ + V (x) form a Hilbert basis in L2(Td) and the eigenvalues µj → +∞ as
j → +∞.

• Question: for ε 6= 0 small enough, do there exist quasi-periodic solutions of
(2.1)?

Note that, if g(ωt, x) 6≡ 0, then u = 0 is not a solution of (2.1) for ε 6= 0.
Then we look for (2π)ν+d-periodic solutions u(ϕ, x) of

iω · ∂ϕu−∆u+ V (x)u = εf(ϕ, x, |u|2)u+ εg(ϕ, x) (2.4)
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in some Sobolev space

Hs := Hs(Tν × Td;C) with s ∈ [s0, q] , s0 >
d+ ν

2 .

The functions in Hs are characterized in Fourier series
u(ϕ, x) :=

∑
(l,j)∈Zν×Zd

ul,je
i(l·ϕ+j·x)

by the condition
‖u‖2

s := K0
∑

(l,j)∈Zν+d

|ul,j|2〈l, j〉2s < +∞ where 〈l, j〉 := max(1, |l|, |j|) . (2.5)

The constant K0 is fixed (large enough) so that |u|L∞ ≤ ‖u‖s0 and the interpolation
inequality

‖u1u2‖s ≤
1
2‖u1‖s0‖u2‖s + C(s)

2 ‖u1‖s‖u2‖s0 , ∀s ≥ s0 , u1, u2 ∈ Hs ,

holds with C(s) ≥ 1 and C(s) = 1,∀s ∈ [s0, s1] for some s1 := s1(d, ν) (defined
along the proof).

The above question turns into a bifurcation problem for equation (2.4) from the
trivial solution (u, ε) = (0, 0). The main difficulty is that the unperturbed linear
operator iω ·∂ϕ−∆+V (x) possesses arbitrarily small eigenvalues −ω · l+µj , called
“small divisors". As a consequence, its inverse operator, if any, is unbounded and
the standard implicit function theorem can not be applied.

The following theorem is proved in [6]-[7] by a Nash-Moser implicit function ap-
proach.

Theorem 2.1. (NLS) Assume (2.3). Then
Existence: There are s := s(d, ν), q := q(d, ν) ∈ N, such that: ∀V ∈ Cq satisfying

−∆ + V (x) ≥ β0I , β0 > 0 , (2.6)
∀f, g ∈ Cq, there exist ε0 > 0, a map

u ∈ C1([0, ε0]× Λ;Hs) with u(0, λ) = 0 ,
and a Cantor like set C∞ ⊂ [0, ε0]× Λ of asymptotically full Lebesgue measure, i.e.

|C∞|/ε0 → 1 as ε0 → 0 ,
such that, ∀(ε, λ) ∈ C∞, u(ε, λ) is a solution of (2.4) with ω = λω̄.
Regularity: Moreover, if V, f, g are of class C∞ then u(ε, λ) ∈ C∞(Td × Tν ,C).

Remark 2.1. Theorem 2.1 remains true for nonlinearities f(ωt, x, u, ū) which are
Hamiltonian, but not gauge invariant as in (2.1).

An analogous result holds for the NLW equation
utt −∆u+ V (x)u = εf(ωt, x, u) , x ∈ Td ,

assuming that ω̄ ∈ Rν also satisfies∣∣∣∣ ∑
1≤i≤j≤ν

ω̄iω̄jmij

∣∣∣∣ ≥ γ0

1 + |m|τ0

for all the integers mij which are not all naught.
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Remark 2.2. It is also true that ∀ε ∈ (0, ε0) fixed, there is a Cantor set C∞(ε) ⊂
[1/2, 3/2] of λ’s, with asymptotically full Lebesgue measure as ε→ 0, such that the
conclusion of Theorem 2.1 holds.

It is clear that the existence of solutions for just a Cantor like set of parameters is
not a technical restriction! In a complementary region, chaotic motions and Arnold
diffusion phenomena shall occur. In some sense Theorem 2.1 is complementary to
the results in [16].

Remark 2.3. The positivity condition (2.6) is used for the measure estimates, see
section 3. Note that, for autonomous and gauge invariant NLS, it is verified after a
gauge-transformation u 7→ e−iσtu for σ large enough.

The novelties of Theorem 2.1 are that we prove the existence of quasi-periodic
solutions with:

1. finitely differentiable nonlinearities, see (2.2),

2. a multiplicative (finitely differentiable) potential V (x), see (2.6),

3. a pre-assigned (diophantine) direction of the tangential frequencies, see (2.3).

3. Ideas of the proof

Theorem 2.1 is proved by Nash-Moser iteration and a multiscale analysis of the
linearized operators.
Vector NLS. We prove Theorem 2.1 finding solutions of the “vector" NLS equation{

iω · ∂ϕu+ −∆u+ + V (x)u+ = εf(ϕ, x, u−u+)u+ + εg(ϕ, x)
−iω · ∂ϕu− −∆u− + V (x)u− = εf(ϕ, x, u−u+)u− + εḡ(ϕ, x) (3.1)

where
u := (u+, u−) ∈ Hs := Hs ×Hs

(the second equation is obtained by formal complex conjugation of the first one).
In the system (3.1) the variables u+, u− are independent. However (3.1) reduces to
the scalar NLS equation (2.1) in the set

U :=
{

u := (u+, u−) : u+ = u−
}

in which u− is the complex conjugate of u+ (and viceversa). In (3.1) we choose,
for example, the following smooth extension of f(ϕ, x, ·) to C, f(ϕ, x, z) := (1 −
i)f(ϕ, x,Re(z)) + if(ϕ, x,Re(z) + Im(z)), z ∈ C.
Linearized equations. The main step of the Nash-Moser scheme concerns the in-
vertibility of (any finite dimensional restriction of) the family of linearized operators
at any u ∈ Hs ∩ U , namely

L(u) := Lω − εT1 (3.2)
where

Lω :=
(

iω · ∂ϕ −∆ + V (x) 0
0 −iω · ∂ϕ −∆ + V (x)

)
, T1 :=

(
p(ϕ, x) q(ϕ, x)
q̄(ϕ, x) p(ϕ, x)

)
,
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and
p(ϕ, x) := f(ϕ, x, |u+|2)+f ′(ϕ, x, |u+|2)|u+|2 , q(ϕ, x) := f ′(ϕ, x, |u+|2)(u+)2 , (3.3)

with f ′ denoting the derivative with respect to s 7→ f(ϕ, x, s). The functions p, q
depend also on ε, λ through u. Note that p(ϕ, x) is real valued and so the operator
L(u) is symmetric in H0, i.e. (L(u)h, k)0 = (h,L(u)k)0 for all h, k in the domain
of L(u). As a consequence, the eigenvalues of all its finite dimensional restrictions
vary smoothly with respect to one dimensional parameter.

The operator L(u) in (3.2) can also be written as
L(u) = Dω + T , T := T2 − εT1 ,

where Dω is the constant coefficient operator

Dω :=
(

iω · ∂ϕ −∆ +m 0
0 −iω · ∂ϕ −∆ +m

)
, T2 :=

(
V0(x) 0

0 V0(x)

)
,

m is the average of V (x) and V0(x) := V (x)−m has zero mean value.
In the exponential basis L(u) is represented by the infinite dimensional self-adjoint

matrix
A(ε, λ) := Dω + T (3.4)

of 2× 2 complex matrices, where

Dω := diagi∈Zb
(
−ω · l + ‖j‖2 +m 0

0 ω · l + ‖j‖2 +m

)
, i := (l, j) ∈ Zb := Zν×Zd ,

(3.5)
with ‖j‖2 := j2

1 + . . .+ j2
d , and T := (T i′i )i,i′∈Zb , T i

′

i := −ε(T1)i′i + (T2)i′i ,

(T1)i′i =
(

pi−i′ qi−i′
(q)i−i′ pi−i′

)
, (T2)i′i =

(
(V0)j−j′ 0

0 (V0)j−j′

)
, (3.6)

where pi, qi, (V0)j denote the Fourier coefficients of p(ϕ, x), q(ϕ, x), V0(x).
Note that the matrix T is Töplitz, namely T i′i depends only on the difference of

the indices i− i′. Moreover, since the functions p, q in (3.3), as well as the potential
V , are in Hs, then T i′i → 0 as |i− i′| → ∞ at a polynomial rate.

We introduce the one-parameter family of infinite dimensional matrices

A(ε, λ, θ) := A(ε, λ) +θY := Dω +T + θ Y where Y := diagi∈Zb
(
−1 0
0 1

)
.

The reason for adding θY is the crucial covariance property (3.7) below.
The core of the proof of Theorem 2.1 is a polynomial off-diagonal decay for the

inverse of the (2N + 1)b-dimensional sub-matrices of A(ε, λ, θ) centered at (l0, j0)
denoted by

AN,l0,j0(ε, λ, θ) := A|l−l0|≤N,|j−j0|≤N(ε, λ, θ) .
If l0 = 0 we use the simpler notation

AN,j0(ε, λ, θ) := AN,0,j0(ε, λ, θ) .
If also j0 = 0, we write AN(ε, λ, θ) := AN,0(ε, λ, θ), and, for θ = 0, we denote
AN,j0(ε, λ) := AN,j0(ε, λ, 0).

Since the matrix T is Töplitz, the following covariance property holds:
AN,l0,j0(ε, λ, θ) = AN,j0(ε, λ, θ + λω̄ · l0) . (3.7)
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Matrices with off-diagonal decay. In the space of matrices

MB
C :=

{
M = (Mk′

k )k′∈B,k∈C , M
k′

k ∈ C
}
,

where B,C are finite subsets of Zb × {0, 1} (the indices 0, 1 are introduced to dis-
tinguish the ± sign in matrices like (3.5)), we consider the s-norm

||M ||2s := K0
∑
n∈Zb

[M(n)]2〈n〉2s where 〈n〉 := max(1, |n|) ,

[M(n)] :=


max

i−i′=n,i∈C,i′∈B
|M i′

i | if n ∈ C −B

0 if n /∈ C −B

with B := projZbB, C := projZbC, and K0 > 0 is introduced in (2.5).
The s-norm is designed to estimate the off-diagonal decay of matrices like T in (3.6):
if p, q, V ∈ Hs then

||T1||s ≤ K‖(q, p)‖s , ||T2||s ≤ K‖V ‖s .
The set of (square) matrices with finite s-norm form an algebra. Hence products
and powers of matrices with finite s-norm will exhibit the same off-diagonal decay.
We refer to section 3 of [6] for more details.
Improved Nash-Moser iteration. We construct inductively better and better
approximate solutions

un ∈ Hn :=
{

u = (u+, u−) ∈ Hs : u =
∑

|(l,j)|≤Nn
ul,j ei(l·ϕ+j·x) , ul,j ∈ C2

}
of the NLS equation (3.1), solving, by a Nash-Moser iterative scheme, the “trun-
cated" equations

(Pn) Pn

(
Lωu− ε(f(u) + g)

)
= 0 , u ∈ Hn ,

where Pn : Hs → Hn denote the orthogonal projectors onto Hn and Nn := N2n
0 , see

Theorem 7.1 in [6].
The main step is to prove that the finite dimensional matrices Ln := Ln(un−1) :=

PnL(un−1)|Hn are invertible for “most" parameters (ε, λ) ∈ [0, ε0]× Λ and satisfy

||L−1
n ||s = O(N τ ′+δs

n ) , δ ∈ (0, 1) , τ ′ > 0 , ∀s > 0 . (3.8)
The bound (3.8) implies the interpolation estimates

‖L−1
n h‖s ≤ C(s)(N τ ′+δs

n ‖h‖s0 +N τ ′+δs0
n ‖h‖s) , ∀s ≥ s0 ,

which are sufficient for the Nash-Moser convergence, see section 7 in [6]. Note that
the exponent τ ′ + δs in (3.8) grows with s, unlike the usual Nash-Moser theory
where the “tame" exponents are s-independent. Actually the conditions (3.8) are
optimal for the convergence, as a famous counter-example of Lojasiewicz-Zehnder
[24] shows: if δ = 1 the Nash-Moser iterative scheme does not converge.
L2-bounds. The first step is to show that, for “most" parameters λ ∈ Λ, the eigen-
values of Ln := PnL(un−1)|Hn are in modulus bounded from below by O(N−τn ) and
so

‖L−1
n ‖0 = O(N τ

n) . (3.9)
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The proof is based on an eigenvalue variation argument using that −∆ + V (x) ≥
β0I > 0 is positive definite, see (2.6). Dividing Ln by λ, and setting ξ := 1/λ, we
observe that the derivative with respect to ξ satisfies

∂ξ(ξLn) = Pn

(
−∆ + V (x) 0

0 −∆ + V (x)

)
|Hn

+O(ε‖T1‖0 + ε‖∂λT1‖0)
(2.6)
≥ β0

2 ,

for ε small, i.e. it is positive definite. So, the eigenvalues µl,j(ξ, ε) (which depend
C1-smoothly on ξ for fixed ε) of the self-adjoint matrix ξLn satisfy

∂ξµl,j(ξ, ε) ≥
β0

2 , ∀|(l, j)| ≤ Nn ,

which easily implies (3.9) except in a set of λ’s of measure O(N−τ+d+ν
n ), see Lemma

6.7 in [6]

Remark 3.1. The L2-estimate (3.9) alone implies only that

||L−1
n ||s ≤ N s+d+ν

n ‖L−1
n ‖0 = O(N s+d+ν+τ

n ) , ∀s > 0 ,

which has the form (3.8) with δ = 1.

In order to prove the sublinear decay (3.8) for the Green functions we have to
exploit (mild) “separation properties" of the small divisors: not all the eigenvalues
of Ln are O(N−τn ) small. We have to worry only about the singular sites (l, j) such
that

| ± ω · l + |j|2 +m| ≤ Θ , (3.10)
where Θ ≥ 1 is a fixed constant, depending, in particular, on V .

Remark 3.2. For periodic solutions (ν = 1) the singular sites are “separated at
infinity" (see [17]), namely the distance between distinct singular sites increases when
the Fourier indices tend to infinity. This property never holds for quasi-periodic
solutions (ν ≥ 1), neither for finite dimensional systems.

Multiscale Step. The bounds (3.8) follow by an inductive application of a “mul-
tiscale argument".

A matrix A ∈ME
E, E ⊂ Zb × {0, 1}, with diam(E) ≤ N is called N-good if

||A−1||s ≤ N τ ′+δs , ∀s ∈ [s0, s1] ,

for some s1 := s1(d, ν) large. Otherwise we say that A is N -bad.
The aim of the multiscale step is to deduce that a matrix A ∈ME

E with

diam(E) ≤ N ′ = Nχ with χ� 1 ,

is N ′-good, knowing

• (H1) (Off-diagonal decay) ||A−Diag(A)||s1 ≤ Υ where Diag(A) := (δkk′Ak
′

k )k,k′∈E.

Condition (H1) means that A is “polynomially localized" close to the diagonal. For
the matrix A in (3.4) the constant Υ = O(‖V ‖s1 + ε‖(p, q)‖s1) and Θ, defined in
(3.10), must be Θ� Υ.

• (H2) (L2-bound) ‖A−1‖0 ≤ (N ′)τ .
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Condition (H2) is usually verified with an exponent τ ≥ d+ ν large, imposing lower
bounds on the modulus of the eigenvalues of A.

In order to prove an off-diagonal decay for A−1, we need assumptions concerning
the N -dimensional submatrices centered along the diagonal of A. We define an index
k ∈ E to be

1. regular for A if |Akk| ≥ Θ. Otherwise, k is singular.

2. (A,N)-regular if there is F ⊂ E such that diam(F ) ≤ 4N , d(k,E\F ) ≥ N
and AFF is N -good.

3. (A,N)-good if it is regular for A or (A,N)-regular. Otherwise we say that k
is (A,N)-bad.

We suppose that

• (H3) (Separation properties) There is a partition of the (A,N)-bad sites
B = ∪αΩα with

diam(Ωα) ≤ NC1 , d(Ωα,Ωβ) ≥ N2 , ∀α 6= β , (3.11)
for some C1 := C1(d, ν) ≥ 2.

The goal of the multiscale proposition is to deduce that A is N ′-good, from (H1)-
(H2)-(H3), under suitable relations between the constants χ, C1, δ, s1, see Propo-
sition 4.1 in [6] for a precise statement. The proof is based on “resolvent identity"
arguments, showing that A can be “quasi block-diagonalized" on subsbaces which,
in Fourier space, are supported on the bad-clusters Ωα. The main conditions on the
exponents are C1 < δχ and 2s1 � χτ . The first means that the size NC1 of any bad
clusters Ωα is small with respect to the size N ′ := Nχ of the matrix A. The second
means that s1 is large enough to have a sufficiently fast off diagonal decay outside
the resonant clusters Ωα.
Separation properties of small divisors. We apply the previous multiscale step
to the matrix ANn+1(ε, λ). The key property to verify is (H3). It is sufficient to
prove the separation properties (3.11) for the Nn-bad sites of A(ε, λ), namely the
indices (l0, j0) which are singular and for which there exists a site (l, j), with |(l, j)−
(l0, j0)| ≤ N , such that ANn,l,j(ε, λ) is Nn-bad.

Such separation properties are obtained for all the parameters (ε, λ) which are
Nn-good, namely such that

∀ j0 ∈ Zd , BNn(j0; ε, λ) :=
{
θ ∈ R : ANn,j0(ε, λ, θ) is Nn − bad

}
⊂

⋃
q=1,...,N2d+ν+4

n

Iq

where Iq are disjoint intervals with |Iq| ≤ N−τn . (3.12)
We first use the covariance property (3.7) and the “complexity" information (3.12)
to bound the number of “bad" time-Fourier components. Indeed
ANn,l0,j0(ε, λ) is Nn-bad ⇔ ANn,j0(ε, λ, ω · l0) is Nn-bad ⇔ ω · l0 ∈ BNn(j0; ε, λ) .
Then, using that ω is Diophantine, the complexity bound (3.12) implies that, for
each fixed j0, there are at most CN3d+2ν+4

n sites (l0, j0), |l0| ≤ Nn+1, which are
Nn-bad, see Corollary 5.1 in [6].
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Next, we prove that a N2
n-“chain" of singular sites, i.e. a sequence of integers

k1, k2, . . . , kL satisfying (3.10) with |ki+1 − ki| ≤ N2
n ,

which are also Nn-bad, has a “length" L bounded by L ≤ NC(d,ν)
n , see Lemma

5.2 in [6]. The proof uses ideas similar to [14]. This implies a partition of the
(ANn+1(ε, λ), Nn)-bad sites as in (3.11) at order Nn, see Proposition 5.1 in [6]
Measure and “complexity" estimates. In order to conclude the inductive proof
we have to verify that “most" parameters (ε, λ) are Nn-good. We prove first that,
except a set of measure O(ε0N

−1
n ), all parameters (ε, λ) ∈ [0, ε0] × Λ are Nn-good

in a weak sense, namely

∀ j0 ∈ Zd , B0
Nn(j0; ε, λ) :=

{
θ ∈ R : ‖A−1

Nn,j0(ε, λ, θ)‖0 > N τ
n

}
⊂

⋃
q=1,...,N2d+ν+4

n

Iq

where Iq are disjoint intervals with |Iq| ≤ N−τn .

The proof is again based on simple eigenvalue variation arguments, using that −∆+
V (x) is positive definite, see section 6 in [6].

Finally, the multiscale Proposition step, and the fact that the separation proper-
ties of the Nn-bad sites of A(ε, λ, θ) hold uniformly in θ ∈ R, imply inductively that
most of the parameters (ε, λ) are actually Nn-good (in the strong sense), concluding
the inductive argument, see Lemma 7.6 in [6].

References

[1] Bambusi D., Berti M., Magistrelli E., Degenerate KAM theory for partial dif-
ferential equations, J. Differential Equations 250, 3379-3397, 2011.

[2] Bambusi D., Delort J.M., Grebért B., Szeftel J., Almost global existence for
Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on
Zoll manifolds, Comm. Pure Appl. Math. 60, 11, 1665-1690, 2007.

[3] Berti M., Nonlinear Oscillations of Hamiltonian PDEs, Progr. Nonlinear Dif-
ferential Equations Appl. 74, H. Brézis, ed., Birkhäuser, Boston, 1-181, 2008.

[4] Berti M., Biasco L., Branching of Cantor manifolds of elliptic tori and appli-
cations to PDEs, Comm. Math. Phys, 305, 3, 741-796, 2011.

[5] Berti M., Bolle P., Sobolev Periodic solutions of nonlinear wave equations in
higher spatial dimension, Archive for Rational Mechanics and Analysis, 195,
609-642, 2010.

[6] Berti M., Bolle P., Quasi-periodic solutions with Sobolev regularity of NLS on
Td with a multiplicative potential, to appear on the Journal European Math.
Society.

[7] Berti M., Bolle P., Quasi-periodic solutions of nonlinear Schrödinger equations
on Td, Rend. Lincei Mat. Appl. 22, 223-236, 2011.

[8] Berti M., Bolle P., Procesi M., An abstract Nash-Moser theorem with parameters
and applications to PDEs, Ann. I. H. Poincaré, 27, 377-399, 2010.

II–11



[9] Berti M., Procesi M., Nonlinear wave and Schrödinger equations on compact
Lie groups and homogeneous spaces, Duke Math. J., 159, 3, 479-538, 2011.

[10] Bourgain J., Construction of quasi-periodic solutions for Hamiltonian pertur-
bations of linear equations and applications to nonlinear PDE, Internat. Math.
Res. Notices, no. 11, 1994.

[11] Bourgain J., Construction of periodic solutions of nonlinear wave equations in
higher dimension, Geom. Funct. Anal. 5, no. 4, 629-639, 1995.

[12] Bourgain J., On Melnikov’s persistency problem, Internat. Math. Res. Letters,
4, 445 - 458, 1997.

[13] Bourgain J., Quasi-periodic solutions of Hamiltonian perturbations of 2D linear
Schrödinger equations, Annals of Math. 148, 363-439, 1998.

[14] Bourgain J., Green’s function estimates for lattice Schrödinger operators and
applications, Annals of Mathematics Studies 158, Princeton University Press,
Princeton, 2005.

[15] Burq N., Gérard P., Tzvetkov N., Bilinear eigenfunction estimates and the non-
linear Schrödinger equation on surfaces, Invent. Math., 159, 187-223, 2005.

[16] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Weakly turbolent
solutions for the cubic defocusing nonlinear Schrödinger equation, 181, 1, 39-
113, Inventiones Math., 2010.

[17] Craig W., Wayne C. E., Newton’s method and periodic solutions of nonlinear
wave equation, Comm. Pure Appl. Math. 46, 1409-1498, 1993.

[18] Delort J.M., Periodic solutions of nonlinear Schrödinger equations: a para-
differential approach, to appear in Analysis and PDEs.

[19] Eliasson L.H., Perturbations of stable invariant tori for Hamiltonian systems,
Ann. Sc. Norm. Sup. Pisa., 15, 115-147, 1988.

[20] Eliasson L. H., Kuksin S., On reducibility of Schrödinger equations with
quasiperiodic in time potentials, Comm. Math. Phys, 286, 125-135, 2009.

[21] Eliasson L. H., Kuksin S., KAM for nonlinear Schrödinger equation, Annals of
Math., 172, 371-435, 2010.

[22] Kuksin S., Hamiltonian perturbations of infinite-dimensional linear systems
with imaginary spectrum, Funktsional Anal. i Prilozhen. 2, 22-37, 95, 1987.

[23] Kuksin S., Analysis of Hamiltonian PDEs, Oxford Lecture series in Math. and
its applications, 19, Oxford University Press, 2000.

[24] Lojasiewicz S., Zehnder E., An inverse function theorem in Fréchet-spaces, J.
Funct. Anal. 33, 165-174, 1979.

[25] Procesi C., Procesi M., A normal form for the Schrödinger equation with ana-
lytic non-linearities, to appear on Comm. Math. Phys.

II–12



[26] Wang W. M., Supercritical nonlinear Schrödinger equations I: quasi-periodic
solutions, preprint 2010.

[27] Wayne E., Periodic and quasi-periodic solutions of nonlinear wave equations
via KAM theory, Comm. Math. Phys. 127, 479-528, 1990.

Dipartimento di Matematica e Applicazioni “R. Caccioppoli",
Università degli Studi Napoli Federico II, Via Cintia, Monte S.
Angelo, I-80126, Napoli, Italy
m.berti@unina.it

II–13

mailto:m.berti@unina.it

	1. Introduction
	2. Quasi-periodic solutions of NLS on  Td 
	3. Ideas of the proof
	References

