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Journées Équations aux dérivées partielles
Biarritz, 6 juin–10 juin 2011
GDR 2434 (CNRS)

Description of the lack of compactness of some
critical Sobolev embedding

Hajer Bahouri
Abstract

In this text, we present two recent results on the characterization of the lack
of compactness of some critical Sobolev embedding. The first one derived in [5]
deals with an abstract framework including Sobolev, Besov, Triebel-Lizorkin,
Lorentz, Hölder and BMO spaces. The second one established in [3] concerns
the lack of compactness of H1(R2) into the Orlicz space. Although the two
results are expressed in the same manner (by means of defect measures) and
rely on the defect of compactness due to concentration as in [17] and [18], they
are actually of different nature. In fact, both in [5] and [3] it is proved that the
lack of compactness can be described in terms of an asymptotic decomposition,
but the elements involved in the decomposition are of completely different
kinds in the two frameworks. We also highlight that contrary to semilinear
cases like the wave equation studied in [2] and [9], the linearizability of the
non linear wave equation with exponential growth is not directly related to
the lack of compactness of H1(R2) into the Orlicz space.

1. Introduction

After the pioneering works of P. -L. Lions [17] and [18], the lack of compactness in
critical Sobolev embedding was investigated for different types of examples through
several angles. For instance, in [9] the lack of of compactness in the critical Sobolev
embedding

Ḣs(Rd) ↪→ Lp(Rd)

in the case where d ≥ 3 with 0 ≤ s < d/2 and p = 2d/(d− 2s) is described in terms
of microlocal defect measures and in [10], it is characterized by means of profiles.
More generally for Sobolev spaces in the Lq frame, this question is treated in [12]
by the use of nonlinear wavelet approximation theory.

Keywords: Critical Sobolev embedding, lack of compactness, BMO space, Orlicz space.
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Other studies have been conducted in various work ([6], [7], [22], [25], [23],...)
supplying us with a large amount of informations about solutions of nonlinear par-
tial differential equations, both in the elliptic frame or the evolution frame. (Among
other applications, one can mention [2], [15], [13], [16], [26],...).

Recently in [5], the wavelet-based profile decomposition introduced by S. Jaffard
in [12] is revisited in order to treat a larger range of examples of critical embedding
of functions spaces

X ↪→ Y

including Sobolev, Besov, Triebel-Lizorkin, Lorentz, Hölder and BMO spaces. (One
can consult [4] and the references therein for an introduction to these spaces).

For that purpose, two generic properties on the spaces X and Y was identified to
build the profile decomposition in a unified way. These properties concern wavelet
decompositions in the spaces X and Y supposed having the same scaling and en-
dowed by an unconditional wavelet basis (ψλ)λ∈Λ.

The first assumption is related to the existence of a nonlinear projector QM sat-
isfying

lim
M→+∞

max
‖f‖X≤1

‖f −QMf‖Y = 0. (1.1)

More precisely, if (ψλ)λ∈∇ is a normalized wavelet basis in the space X (so in Y in
view of the invariance by the same scaling) and

f =
∑
λ∈∇

dλψλ, (1.2)

is the wavelet decomposition of the function f , then QMf sometimes called best
M-term approximation takes the general form

QMf :=
∑
λ∈EM

dλψλ, (1.3)

where the sets EM = EM(f) of cardinality M depend on f and satisfy

EM(f) ⊂ EM+1(f).

The existence of such nonlinear projector was extensively studied in nonlinear ap-
proximation theory and for many cases as Sobolev embedding of Besov spaces in
Besov or Lebesgue spaces, it turns out that the set EM = EM(f) can be chosen as
the subset of ∇ that corresponds to the M largest values of |dλ|.

In fact it is known (see [19] for instance) that in Besov spaces Ḃσ
r,r, we have the

following norm equivalence :

‖f‖Ḃσr,r ∼ ‖(dλ)λ∈∇‖`r , (1.4)

for f = ∑
λ∈∇ dλψλ with wavelets normalized in Ḃσ

r,r. Therefore, in the particular
case where X = Ḃs

p,p and Y = Ḃt
q,q, with 1

p
− 1

q
= s−t

d
, the nonlinear projector
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QM defined by (1.3) where EM = EM(f) is the subset of ∇ of cardinality M that
corresponds to the M largest values of |dλ| is appropriate and satisfies:

sup
‖f‖Ḃsp,p≤1

‖f −QMf‖Ḃtq,q ≤ CM− s−t
d . (1.5)

Indeed, taking advantage of (1.4) and using the decreasing rearrangement (dm)m>0
of the |dλ|, we get

‖f −QMf‖Ḃtq,q ≤ C(∑λ/∈EM |dλ|
q)

1
q

= (∑m>M |dm|q)
1
q

≤ |dM |1−
p
q (∑m>M |dm|p)

1
q

≤ (M−1∑M
m=1 |dm|p)

1
p
− 1
q (∑m>M |dm|p)

1
q

≤M−( 1
p
− 1
q

)(∑m>0 |dm|p)
1
p

≤M− s−t
d ‖(dλ)λ∈∇‖`p ≤ CM− s−t

d ‖f‖Ḃsp,p ,

which achieves the proof of Assertion (1.5).

The second assumption concerns the stability of wavelet expansions in the func-
tions space X with respect to certain operations such as “shifting” the indices of
wavelet coefficients, as well as disturbing the value of these coefficients. In practice
and for most cases of interest, this property derives from the fact that the X norm of
a function is equivalent to the norm of its wavelet coefficients in a certain sequence
space by invoking Fatou’s lemma. We refer for instance to [8] and [19] for more
details on the construction of wavelet bases and on the characterization of classical
function spaces by expansions in such bases.

Under these assumptions, we proved in [5] that as in the previous works [9] and
[12] translational and scaling invariance are the sole responsible for the defect of
compactness of the embedding of X ↪→ Y . More precisely, we established that the
lack of compactness in this embedding can be described in terms of an asymptotic
decomposition in the following terms: a sequence (un)n≥0 bounded in X can be
decomposed up to a subsequence extraction according to

un =
L∑
l=1

h
s−d/p
l,n φl( · − xl,n

hl,n
) + rn,L (1.6)

where (φl)l>0 is a family of functions in X,
lim

L→+∞
(lim sup
n→+∞

‖rn,L‖Y ) = 0, (1.7)

and where the decomposition is asymptotically orthogonal in the sense that for k 6= l

| log(hl,n/hk,n)| → +∞ or |xl,n − xk,n|/hl,n → +∞, as n→ +∞.

The construction of the decomposition (1.6) relies on a diagonal subsequence ex-
traction procedure and proceed in several steps. In the first step, we split the wavelet
decomposition of the sequence (un) using the nonlinear projector QM . In the second
step, by an iterative scheme based on the orthogonality property, we built approx-
imate profiles φl,j. In the third step, the exact profiles φl are constructed as the
limits in X of the approximate profiles φl,j as j → +∞, making use of the second
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assumption and finally in the last step, (1.7) is established.

In [3], we looked into the lack of compactness of the critical Sobolev embedding
H1
rad(R2) ↪→ L, (1.8)

where L denotes the Orlicz space associated to the function φ(s) = es2 − 1 and gave
a characterization by means of an asymptotic decomposition. It was found that the
profiles involved in the decomposition (1.6) are not the right concept to describe the
lack of compactness in this embedding. In fact in [3], we characterized the lack of
compactness of the critical Sobolev embedding (1.8) by means of an asymptotically
orthogonal decomposition in terms of elementary concentrations under the form:

gn(x) :=
√
αn
2π ψ

(− log |x|
αn

)
,

where α := (αn) called the scale is a sequence of positive real numbers going to
infinity and ψ called the profile belongs to the set

P :=
{
ψ ∈ L2(R, e−2sds); ψ′ ∈ L2(R), ψ|]−∞,0] = 0

}
.

These elementary concentrations satisfying (see [3] for more details)

lim
n→∞

‖gn‖L = 1√
4π

max
s>0

|ψ(s)|√
s

are the same kind as the Lions’ example

fαn(x) =



0 if |x| ≥ 1,

− log |x|√
2αnπ if e−αn ≤ |x| ≤ 1,

√
αn
2π if |x| ≤ e−αn

that we can write as
fαn(x) =

√
αn
2π L

(− log |x|
αn

)
where

L(s) =


0 if s ≤ 0,
s if 0 ≤ s ≤ 1,
1 if s ≥ 1.

and which satisfies ‖fαn‖L → 1√
4π maxs>0

|L(s)|√
s

= 1√
4π as αn →∞ .

2. Critical 2D Sobolev embedding

2.1. Sobolev embedding in BMO ∩ L2 and in Orlicz space
It is well known that H1(R2) is continuously embedded in BMO(R2) ∩ L2(R2),
where BMO(Rd) denotes the space of bounded mean oscillations which is the space
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of locally integrable functions f such that

‖f‖BMO
def= sup

B

1
|B|

∫
B
|f − fB| dx <∞ with fB

def= 1
|B|

∫
B
f dx.

The above supremum being taken over the set of Euclidean balls B, | · | denoting
the Lebesgue measure.

It is also known that
‖u‖L ≤

1√
4π
‖u‖H1 , (2.1)

where L denotes the Orlicz space associated to the function φ(s) = es2−1. This em-
bedding derives immediately from the following Trudinger-Moser type inequalities
(see [1, 20, 27]):

Proposition 2.1.

sup
‖u‖H1≤1

∫
R2

(
e4π|u(x)|2 − 1

)
dx := κ <∞. (2.2)

Let us recall that generally, if φ : R+ → R+ is a convex increasing function such
that

φ(0) = 0 = lim
s→0+

φ(s) and lim
s→∞

φ(s) =∞,

then Lφ the Orlicz space on Rd associated to the function φ is defined as follows:

Definition 2.2.
We say that a measurable function u : Rd → C belongs to Lφ if there exists λ > 0
such that ∫

Rd
φ

(
|u(x)|
λ

)
dx <∞

and we denote

‖u‖Lφ = inf
{
λ > 0,

∫
Rd
φ

(
|u(x)|
λ

)
dx ≤ 1

}
. (2.3)

Remark 2.3. Let us observe that we may replace in (2.3) the number 1 by any
positive constant. This changes the norm ‖ · ‖Lφ by an equivalent norm. In what
follows we shall endow the Orlicz space L with the norm ‖ · ‖L where the number 1
is replaced by the constant κ involving in Identity (2.2).

2.2. Comparaison between BMO ∩ L2 and L
It turns out that there is no comparison between L and BMO. More precisely, we
have the following result

Proposition 2.4.
L 6↪→ BMO ∩ L2 and BMO ∩ L2 6↪→ L.

Proof. Let us consider the sequence gαn(r, θ) = fαn(r) eiθ where fαn is the fundamen-
tal example introduced in Section 1, and let us set Bαn = B(0, e−αn2 ). It is obvious
that ∫

Bαn

gαn = 0 .
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In other respects, by elementary computations we get
1
|Bαn|

∫
Bαn

|gαn| =
√
αn

2
√

2π
+ 1− e−αn

2
√

2παn
.

Hence ‖gαn‖BMO → ∞ as αn → ∞ . Since ‖gαn‖L = ‖fαn‖L → 1√
4π , we deduce

that
L 6↪→ BMO ∩ L2 .

To show that BMO ∩ L2 is not embedded in L, we shall use the following sharp
inequality established in [14]

‖u‖Lq ≤ C q‖u‖BMO∩L2 , q ≥ 2, (2.4)
together with the fact that (for u 6= 0),∫

R2

(
e
|u(x)|2

‖u‖2L − 1
)
dx ≤ κ . (2.5)

To go to this end, let us suppose that BMO ∩ L2 is embedded in L. Then, for any
integer q ≥ 1, we get

‖u‖L2q ≤ κ1/2q (q!)1/2q ‖u‖L ≤ C κ1/2q (q!)1/2q ‖u‖BMO∩L2

which contradicts (2.4) since

(q!)1/2q ∼ e−1/2√q,
where ∼ is used to indicate that the ratio of the two sides goes to 1 as q goes to
∞. �

3. Lack of compactness in Sobolev embedding in Orlicz space

The embedding H1 ↪→ L is non compact at least for two reasons. The first rea-
son is the lack of compactness at infinity. A typical example is uk(x) = ϕ(x + xk)
where 0 6= ϕ ∈ D and |xk| → ∞. The second reason is of concentration-type derived
by P.-L. Lions [17, 18] and illustrated by the fundamental example fαn defined above.

In [3], we described the lack of compactness of this embedding in terms of an
asymptotic decomposition as follows:

Theorem 3.1. Let (un) be a bounded sequence in H1
rad(R2) such that

un ⇀ 0, (3.1)

lim sup
n→∞

‖un‖L = A0 > 0, and (3.2)

lim
R→∞

lim sup
n→∞

∫
|x|>R

|un|2 dx = 0. (3.3)

Then, there exists a sequence (α(j)) of pairwise orthogonal scales and a sequence of
profiles (ψ(j)) in P such that, up to a subsequence extraction, we have for all ` ≥ 1,

un(x) =
∑̀
j=1

√√√√α
(j)
n

2π ψ(j)
(
− log |x|
α

(j)
n

)
+ r(`)

n (x), lim sup
n→∞

‖r(`)
n ‖L

`→∞−→ 0. (3.4)
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Moreover, we have the following stability estimates

‖∇un‖2
L2 =

∑̀
j=1
‖ψ(j)′‖2

L2 + ‖∇r(`)
n ‖2

L2 + ◦(1), n→∞. (3.5)

The approach that we adopted to prove Theorem 3.1 uses in a crucial way the
radial setting and particularly the fact we deal with bounded functions far away
from the origin thanks to the well known radial estimate

|u(r)| ≤ C√
r
‖u‖

1
2
L2‖∇u‖

1
2
L2 . (3.6)

Through a diagonal subsequence extraction, the main step consists to extract a scale
(αn) and a profile ψ such that

‖ψ′‖L2 ≥ C A0,

where C is a universal constant. The extraction of the scale follows from the fact
that for any ε > 0

sup
s≥0

(∣∣∣∣ vn(s)
A0 − ε

∣∣∣∣2 − s
)
→∞, n→∞, (3.7)

with vn(s) = un(e−s). Property (3.7) is proved by contradiction assuming that

sup
s≥0,n∈N

(∣∣∣∣ vn(s)
A0 − ε

∣∣∣∣2 − s
)
≤ C <∞,

which ensures by virtue of Lebesgue theorem that∫
|x|<1

(
e|
un(x)
A0−ε

|2 − 1
)
dx = 2π

∫ ∞
0

(
e|
vn(s)
A0−ε

|2 − 1
)

e−2s ds→ 0, n→∞.

In other respects, taking advantage of the radial estimate (3.6), we deduce that the
sequence (un) is bounded on the set {|x| ≥ 1} which implies that∫

|x|≥1

(
e|
un(x)
A0−ε

|2 − 1
)
dx ≤ C‖un‖2

L2 → 0 .

In conclusion, this leads to
lim sup
n→∞

‖un‖L ≤ A0 − ε,

which is in contradiction with Hypothesis (3.2). Fixing ε = A0/2, a scale (αn) can
be extracted such that

A0

2
√
αn ≤ |vn(αn)| ≤ C

√
αn + ◦(1).

Finally, setting

ψn(y) =
√

2π
α

(1)
n

vn(α(1)
n y),

one can prove that ψn converges simply to a profile ψ. Since |ψn(1)| ≥ CA0, we
obtain

CA0 ≤ |ψ(1)| =
∣∣∣∣ ∫ 1

0
ψ′(τ) dτ

∣∣∣∣ ≤ ‖ψ′‖L2(R),

which ends the proof of the main point.

Before concluding this section, let us comment the results of Theorem 3.1.
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Remarks 3.2.
• It should be emphasized that, contrary to the case of Sobolev embedding in Lebesgue
spaces, where the asymptotic decomposition derived by P. Gérard in [10] leads to

‖un‖pLp →
∑
j≥1
‖ψ(j)‖pLp ,

Theorem 3.1 induces to

‖un‖L → sup
j≥1

(
lim
n→∞

‖g(j)
n ‖L

)
, (3.8)

where g(j)
n =

√
α

(j)
n

2π ψ(j)
(
− log |x|
α

(j)
n

)
. A detailed proof of this fact is given in [3].

• Let us also observe that each elementary concentration g(j)
n is supported in the unit

disc. This is due to the fact that in the radial case, any bounded sequence in H1(R2)
is compact away from the origin in Orlicz space.
• As it is mentioned above, the elementary concentration g(j)

n are completely different
from the profiles involving in the characterization of the lack of compactness in [5].
In fact, one can prove that for any 0 < a < b and any sequence (hn) of nonnegative
real numbers ∫

a<hn|ξ|<b
|∇̂g(j)

n (ξ)|2 dξ → 0, n→∞.

Actually, the scales α(j)
n do not correspond to scales in point of view frequencies but

to values taken by the functions g(j)
n in consistent sets of size.

4. Qualitative study of nonlinear wave equation

The two-dimensional nonlinear Klein-Gordon equation

�u+ u+ f(u) = 0, u : Rt × R2
x → R, (4.1)

where
f(u) = u

(
e4πu2 − 1

)
have been studied for the sake of several physical models and global well posedness
is established in subcritical and critical cases (see [11] and the references therein
for a survey on the subject). Here and contrary to higher dimensions where the
criticality depends on the nonlinearity, the notion of criticality depends on the size
of the initial energy E0 with respect to 1. More precisely, denoting by

E0 := ‖u1‖2
L2 + ‖∇u0‖2

L2 + 1
4π ‖e

4πu2
0 − 1‖L1 ,

we define as follows the various regimes:

Definition 4.1. The Cauchy problem associated to Equation (4.1) with initial data
(u0, u1) ∈ H1(R2)× L2(R2) is said to be subcritical if

E0 < 1.

It is said critical if E0 = 1 and supercritical if E0 > 1.
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Let us emphasize that the solutions of the two-dimensional nonlinear Klein-
Gordon equation formally satisfy the conservation of energy

E(u, t) = ‖∂tu(t)‖2
L2 + ‖∇u(t)‖2

L2 + 1
4π ‖e

4πu(t)2 − 1‖L1 (4.2)

= E(u, 0) := E0.

As in earlier works of P. Gérard [9] and H. Bahouri-P. Gérard [2], we undertook in
[3] a qualitative study of the solutions of two-dimensional nonlinear Klein-Gordon
equation. This study was conducted following the approach introduced by P. Gérard
in [9] which consists to compare the evolution of oscillations and concentration effects
displayed by sequences of solutions of the nonlinear Klein-Gordon equation (4.1) and
solutions of the linear Klein-Gordon equation.

�v + v = 0 (4.3)
More precisely, if (ϕn, ψn) is a sequence of data in H1×L2 supported in some fixed
ball and satisfying

ϕn ⇀ 0 in H1, ψn ⇀ 0 in L2, (4.4)
such that

En ≤ 1, n ∈ N (4.5)
where En stands for the energy of (ϕn, ψn) given by

En = ‖ψn‖2
L2 + ‖∇ϕn‖2

L2 + 1
4π ‖e

4πϕ2
n − 1‖L1 ,

we consider (un) and (vn) the sequences of finite energy solutions of (4.1) and (4.3)
such that

(un, ∂tun)(0) = (vn, ∂tvn)(0) = (ϕn, ψn).

Arguing as in [9], we introduce the following definition

Definition 4.2. Let T be a positive time. The sequence (un) is said linearizable on
[0, T ], if

sup
t∈[0,T ]

Ec(un − vn, t) −→ 0 as n→∞

where Ec(w, t) denotes the kinetic energy defined by:

Ec(w, t) =
∫
R2

[
|∂tw|2 + |∇xw|2 + |w|2

]
(t, x) dx. (4.6)

Similarly to the case of dimension d ≥ 3 (see [9]), we proved that in the subcritical
case (i.e. the case where lim sup

n→∞
En < 1), the sequence (un) is linearizable on any

time interval [0, T ]. In other respects, we proved that in the critical case ( i.e. the
case where lim sup

n→∞
En = 1), the sequence (un) is linearizable on [0, T ] provided that

the sequence (vn) satisfies

lim sup
n→∞

‖vn‖L∞([0,T ];L) <
1√
4π

, (4.7)

where L denotes the Orlicz space L.

Denoting by wn = un − vn, we can easily verify that wn is the solution of the
nonlinear wave equation
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�wn + wn = −f(un)
with null Cauchy data.

Under energy estimate, we obtain
‖wn‖T ≤ ‖f(un)‖L1([0,T ],L2(R2)),

where ‖wn‖2
T

def= supt∈[0,T ] Ec(wn, t). Therefore, to prove that the sequence (un) is
linearizable on [0, T ], it suffices to establish that

‖f(un)‖L1([0,T ],L2(R2)) −→ 0 as n→∞.

Thanks to finite propagation speed, the sequence f(un) is uniformly supported in
a fixed compact subset of [0, T ] × R2. So, to prove that the sequence (f(un)) con-
verges strongly to 0 in L1([0, T ], L2(R2)), we just follow the strategy of P. Gérard
in [9] which reduce the problem to demonstrate that this sequence is bounded
in L1+ε([0, T ], L2+ε(R2)), for some nonnegative ε. This is done in the subcritical
case by classical arguments thanks to Strichartz estimates and Trudinger-Moser in-
equality.

To handle with the critical case and estimate ‖f(un)‖1+ε
L1+ε([0,T ],L2+ε(R2)) for ε small

enough, we split f(un) as follows applying Taylor’s formula

f(un) = f(vn + wn) = f(vn) + f ′(vn)wn + 1
2 f ′′(vn + θnwn)w2

n,

for some 0 ≤ θn ≤ 1. Strichartz inequality (see [21] for more details) yields
‖wn‖ST(I) . ‖f(vn)‖L1([0,T ];L2(R2)) + ‖f ′(vn)wn‖L1([0,T ];L2(R2))

+ ‖f ′′(vn + θnwn)w2
n‖L1([0,T ];L2(R2)) (4.8)

. In + Jn +Kn ,

where I = [0, T ] and ‖v‖ST(I) := sup(q,r) admissible ‖v‖Lq(I;B1
r,2(R2)) .

The term In is the easiest term to treat. Indeed, by Assumption (4.7) we have

‖vn‖L∞([0,T ];L) ≤
1√

4π(1 + η)
, (4.9)

for some η and n large enough. This leads by similar arguments to the ones used in
the proof of the subcritical case to the fact that

‖f(vn)‖L1([0,T ],L2(R2)) → 0.
The second term Jn satisfies

Jn ≤ εn ‖wn‖ST(I), (4.10)
where εn → 0. Indeed by Hölder inequality, we are reduced to prove that (f ′(vn))
converges to 0 in L1+η([0, T ];L2+2η(R2)), for η small enough. This is achieved ar-
guing exactly in the same manner as for (f(vn)) since the sequences (f(vn)) and
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(f ′(vn)) are similar.

For the last (more difficult) term we will establish that

Kn ≤ εn ‖wn‖2
ST(I), εn → 0, (4.11)

provided that

lim sup
n→∞

‖wn‖L∞([0,T ];H1) ≤
1− L

√
4π

2 . (4.12)

In fact by Hölder inequality, Strichartz estimate and convexity argument, we get
Kn ≤ ‖w2

n‖L1+ 1
η ([0,T ];L2+ 2

η (R2))
‖f ′′(vn + θnwn)‖L1+η([0,T ];L2+2η(R2))

≤ ‖wn‖2
ST(I)

(
‖f ′′(vn)‖L1+η([0,T ];L2+2η(R2)) + ‖f ′′(un)‖L1+η([0,T ];L2+2η(R2))

)
.

According to the previous step, we are then led to prove that for η small enough
‖f ′′(un)‖L1+η([0,T ];L2+2η(R2)) → 0 . (4.13)

Arguing exactly as in the subcritical case, il suffices to establish that the sequence
(f ′′(un)) is bounded in L1+η0([0, T ];L2+2η0(R2)) for some η0 > 0. This derives from
the fact that under Assumption (4.12), we have

lim sup
n→∞

‖un‖L∞([0,T ];L) ≤ lim sup
n→∞

‖vn‖L∞([0,T ];L) + lim sup
n→∞

‖wn‖L∞([0,T ];L)

≤ L+ 1√
4π
‖wn‖L∞([0,T ];H1)

≤ 1
2

(
L+ 1√

4π

)
<

1√
4π

.

This leads to the result by classical arguments.
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