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Journées Équations aux dérivées partielles
Port d’Albret, 7 juin–11 juin 2010
GDR 2434 (CNRS)

Entropy of eigenfunctions of the Laplacian in
dimension 2
Gabriel Rivière

Abstract
We study asymptotic properties of eigenfunctions of the Laplacian on com-

pact Riemannian surfaces of Anosov type (for instance negatively curved sur-
faces). More precisely, we give an answer to a question of Anantharaman and
Nonnenmacher [4] by proving that the Kolmogorov-Sinai entropy of a semi-
classical measure µ for the geodesic flow gt is bounded from below by half of
the Ruelle upper bound. (This text has been written for the proceedings of
the 37èmes Journées EDP (Port d’Albret-June, 7-11 2010))

1. Motivations and results

Consider a smooth, compact, connected and Riemannian manifold M which has no
boundary and which is of finite dimension d. In this talk, the main result will give an
information on the asymptotic behavior of eigenfunctions of the Laplace Beltrami
operator ∆ on M in the case of a chaotic geodesic flow.

The geodesic flow gt on the cotangent bundle T ∗M is defined as the Hamiltonian
flow corresponding toH(x, ξ) := ‖ξ‖2x

2 , where ‖.‖x is the norm on T ∗xM induced by the
metric on M . Using pseudodifferential calculus with a small parameter ~ > 0 [12],
the quantum operator corresponding to H is −~2∆. A way to look at eigenfunctions
of ∆ in the large eigenvalue limit is to understand the eigenfunctions ψ~ of −~2∆

2
associated to the eigenvalue1 1 in the semiclassical limit ~ → 0, i.e. look at the
solutions of

−~2∆ψ~ = ψ~.

Using again ~-pseudodifferential calculus, one can associate to every observable a in
a good class of symbols an operator Op~(a) acting on L2(M). Using these operators,
one can define a distribution µ~ on T ∗M :

∀a ∈ C∞o (T ∗M), µ~(a) =
∫
T ∗M

a(x, ξ)dµ~(x, ξ) := 〈ψ~,Op~(a)ψ~〉L2(M).

1As M is compact, a sequence of such semiclassical parameters ~ is a discrete subsequence that
tends to 0.
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This quantity allows to describe the state ψ~ in function of the variables of position
and impulsion (x, ξ). In order to understand the asymptotic behavior of the eigen-
states of ∆, we will describe the properties of the distribution µ~ as ~ tends to 0.
One can show that any accumulation point of the sequence (µ~)~→0+ is a probability
measure which is invariant under the geodesic flow gt and which is supported in the
unit cotangent bundle S∗M := {(x, ξ) : ‖ξ‖2x = 1} [9]. A semiclassical measure is
defined as any accumulation of a sequence (µ~)~→0 as defined previously. We will
denoteMsc(S∗M, gt) the set of semiclassical measures. From the point of view of er-
godic theory [25], we have constructed from eigenfunctions of the Laplacian a subset
of the setM(S∗M, gt) of gt-invariant probability measures of the dynamical system
(S∗M, gt). One can then ask about the form of the subsetMsc(S∗M, gt) in function
of the geometric and dynamical properties of the manifold M . Our main concern
in this talk is the case where the geodesic flow gt on S∗M is of chaotic nature. A
typical assumption verified by a chaotic system is that the desintegration L of the
Liouville measure on S∗M is ergodic for the geodesic flow, i.e.

∀a ∈ C0(S∗M), L a.e., lim
T→+∞

1
T

∫ T
0
a ◦ gs(ρ)ds =

∫
S∗M

adL.

It means that almost surely, the time average of an observable along an orbit of the
geodesic flow is equal to the space average of this observable. This assumption is
satisfied by manifolds of negative curvature (or more generally if the geodesic flow is
of Anosov type on S∗M [15]). Under this ergodicity assumption, one can prove the
well-known Shnirelman-Zelditch-Colin de Verdière theorem [24], [27], [10]. It tells us
that for a given orthonormal basis of eigenvectors, almost all the associated distri-
butions converge to the Liouville measure on S∗M . This theorem raises the question
to know whether the Liouville measure is the only element ofMsc(S∗M, gt) for er-
godic systems. More precisely, Rudnick and Sarnak conjectured that for manifolds
of negative curvature, L is the only semiclassical measure2 [21].
This conjecture remains widely open in this general setting and our goal will be more
to describe some quantitative properties of the elements of Msc(S∗M, gt). Before
describing these results, we would like to underline that this conjecture is specific
to manifolds of negative curvature. For instance, for a linear symplectomorphism A
of the torus T2, one can construct a subset Msc(T2, A) of semiclassical measures
in the subset of A-invariant probability measures on the torus [7]. In this context,
one can prove an analogue of Shnirelman’s theorem if the Lebesgue measure Leb is
ergodic for A on T2. Yet, de Bièvre, Faure and Nonnenmacher proved that Quantum
Unique Ergodicity fails in this setting [13] and in particular, 1

2δ0 + 1
2Leb (where δ0

is the Dirac measure carried by (0, 0)) is a semiclassical measure for A :=
(

2 1
1 1

)
.

This provides an highly chaotic dynamical systems (Anosov type for instance) for
which Quantum Unique Ergodicity is not true. Other counterexamples have been
constructed in [16] and [14] for symplectic dynamical systems of Anosov type.

2This conjecture is known as the Quantum Unique Ergodicity Conjecture.
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1.1. Main result
Regarding the last examples for quantum chaos, it is clear that we can not hope
to answer the Quantum Unique Ergodicity Conjecture by making only dynamical
assumptions. However, we can try to understand which quantitative properties on
the set of semiclassical measures we can get by using only dynamical properties on
(S∗M, gt). In the following (except in paragraph 1.3), we will make the assumption
that the geodesic flow is strongly chaotic and we will suppose it satisfies the Anosov
property (it is the case for manifolds of negative curvature). It means that, for every
ρ in S∗M , one has

TρS
∗M = Eu(ρ)⊕ Es(ρ)⊕ RXH(ρ),

where XH is the Hamiltonian vector field associated to H, Eu is the unstable space
and Es the stable one [15]. We underline that these three subspaces are stable
under the tangent map dρgt and that in the case of surfaces, they are 1-dimensional
subspace.

Invariant probability measures are typical objects from ergodic theory so we can
try to characterize them using tools from ergodic theory. More precisely, we will
use Kolmogorov-Sinai entropy [25]. This quantity associates a nonnegative number
hKS(µ, g) to every probability measure µ invariant under gt. The entropy tells us
about what the measure µ sees of the separation of points under gt (see paragraph 2.1
for a precise definition): the more the entropy is positive, the more the measure
understands the complexity of gt. Our main result gives a lower bound on the
entropy of semiclassical measures in the case of Anosov surfaces [19]:
Theorem 1.1. Let M be a compact, smooth, Riemannian surface without boundary.
Suppose the geodesic flow (gt)t satisfies the Anosov property. Then,

∀µ ∈Msc(S∗M, gt), hKS(µ, g) ≥
1
2

∫
S∗M

log Ju(ρ)dµ(ρ), (1.1)

where Ju(ρ) is the unstable Jacobian (for the induced volume) at point ρ, i.e. Ju(ρ) :=
det

(
dρg

1
|Eu(ρ)

)
.

1.2. Comments
This result follows earlier results and questions on the entropy of semiclassical mea-
sures by Anantharaman and Nonnenmacher [4]. In [2], Anantharaman has shown
that the Kolmogorov-Sinai entropy of a semiclassical measure is positive under the
Anosov assumption. Her result forbids that eigenfunctions of the Laplacian con-
centrate only on closed orbits of the geodesic flow in the large eigenvalue limit. In
order to comment our result (which provides an explicit lower bound in the case
of surfaces), let us recall that the Margulis-Ruelle’s inequality tells us that for an
invariant probability measure µ ofM(S∗M, gt), one has [22]

hKS(µ, g) ≤
∫
S∗M

log Ju(ρ)dµ(ρ),

with equality if and only if µ = L [17]. So, answering Rudnick and Sarnak’s question
would be equivalent to get rid of the factor 1/2 in the inequality of our theorem. We
can also underline that the inequality (1.1) is sharp in the case of the counterex-
amples in [13], [16], [14]. So, under dynamical assumptions only, this result seems
optimal. In order to illustrate theorem 1.1, we can draw two corollaries. The first
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one can be derived from the Margulis-Ruelle’s inequality and the affine properties
of the entropy [25]:
Corollary 1.2. Suppose the assumptions of theorem 1.1 are satisfied. If µ is in
Msc(S∗M, (gt)) and if µ is of the form tL + (1 − t)µγ (where µγ is a probability
measure carried by a closed orbit γ), then one has

t ≥ µγ(log Ju)
µγ(log Ju) + L(log Ju) .

A second nice corollary can be deduced from Young’s equality ([26] and appen-
dix A):
Corollary 1.3. Suppose the assumptions of theorem 1.1 are satisfied. If µ is in
Msc(S∗M, (gt)), then one has

dimH µ := inf {dimH Y : µ(Y ) = 1} ≥ 2,
where dimH Y is the Hausdorff dimension of Y .

In terms of eigenfunctions of the Laplacian, this result tells us that in the large
eigenvalue limit, eigenfunctions concentrate on a set which has at least Hausdorff
dimension equal to 2. Finally, we underline that theorem 1.1 answers a question
raised by Anantharaman and Nonnenmacher in [4]. In fact, in the case of a manifold
of dimension d, they proved (with Koch [3]) that

∀µ ∈Msc(S∗M, gt), hKS(µ, g) ≥
∫
S∗M

log Ju(ρ)dµ(ρ)− (d− 1)λmax

2 , (1.2)

where λmax := limt→±∞ 1
t

log supρ∈S∗M |dρgt| is the maximal expansion rate of the
geodesic flow. The term (d− 1)λmax bounds the quantity log Ju on S∗M and comes
from the fact that the range of validity for the semiclassical approximation is given
by time scales of order3 | log ~|/(2λmax) [5], [8]. We can underline that if λmax is very
large, then the bound obtained by Anantharaman, Koch and Nonnenmacher can be
negative (which is not completely nice as the entropy is a nonnegative quantity).
Regarding the different counterexamples and the case of constant negative curvature,
they asked the question to know if the inequality of theorem 1.1 is true or not [4].
Our result gives a positive answer to this question in the case of dimension d = 2
but the higher dimensional case remains an open question.

1.3. Extension of the entropic bound in the nonpositively
curved case

In [20], we also showed that theorem 1.1 remains true for surfaces of nonpositive
curvature. To do this, we can use an analogue of the unstable Jacobian Ju for
these surfaces and use the fact that these surfaces has a strucure which is very
similar to the Anosov case (existence of a stable/unstable foliation for instance) [23].
These properties allow to prove inequality (1.1) in this weakly chaotic situation. An
interesting feature of this result is that it is still an open question to know if the
Liouville measure is ergodic for the geodesic flow (even if the genus is larger than 1).
So in this situation, we are able to prove an entropic bound on the eigenfunctions
of the Laplacian even if we do not have (a priori) any Shnirelman’s property.

3This time is also known as the Ehrenfest time.
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1.4. A first intuition about the proof
The procedure developed in [3] uses a result known as the entropic uncertainty
principle [18]. To use this principle in the semiclassical limit, we need to understand
the precise link between the classical evolution and the quantum one for large times.
Typically, we have to understand Egorov theorem for large range of times of order
t ∼ | log ~| (i.e. have a uniform remainder term for a large range of times). For a
general symbol a in C∞o (T ∗M), we can only expect to have a uniform Egorov property
for times t in the range of times [−1

2 | log ~|/λmax,
1
2 | log ~|/λmax] [8], [5]. However, if

we only consider this range of times, we do not take into account that the unstable
Jacobian can be very different between two points of S∗M . Our strategy to prove
the main theorem relies on the fact that the range of times for which the Egorov
property holds depends also on the support of the symbol a(x, ξ) we consider. For
particular families of symbol of small support (that depends on ~), we can show
that we have a “local” Egorov theorem with an allowed range of times that depends
on the support of our symbol. To make this heuristic idea work, we first try to
reparametrize the flow in order to have a uniform expansion rate on the manifold.
We define gτ (ρ) := gt(ρ) where

τ := −
∫ t

0
log Ju(gsρ)ds. (1.3)

This new flow g has the same trajectories as g. However, the velocity of motion
along the trajectory at ρ is | log Ju(ρ)|-greater for g than for g. We underline here
that the unstable direction is of dimension 1 (as M is a surface) and it is crucial
because it implies that log Ju exactly measures the expansion rate in the unstable
direction at each point. As a consequence, this new flow g has a uniform expansion
rate. Once this reparametrization is done, we use the following formula to recover t
knowing τ :

tτ (ρ) = inf
{
s > 0 : −

∫ s
0

log Ju(gs′ρ)ds′ ≥ τ
}
. (1.4)

The number tτ (ρ) can be thought of as a stopping time corresponding to ρ. We
consider now τ = 1

2 | log ~|. For a given symbol a(x, ξ) localized near a point ρ,
t 1

2 | log ~|(ρ) is exactly the range of times for which we can expect Egorov to hold.
This new flow seems in a way more adapted to our problem. Moreover, we can
define a g-invariant measure µ corresponding to µ. The measure µ is absolutely
continuous with respect to µ and verifies dµ

dµ
(ρ) = log Ju(ρ)/

∫
S∗M log Ju(ρ)dµ(ρ).

We can apply the classical result of Abramov

hKS(µ, g) =
∣∣∣∣∫
S∗M

log Ju(ρ)dµ(ρ)
∣∣∣∣hKS(µ, g).

To prove our main result, we would have to show that hKS(µ, g) ≥ 1/2. However,
the flow g has no reason to be a Hamiltonian flow to which corresponds a quantum
propagator U . As a consequence, there is no particular reason that this inequal-
ity should be a consequence of [4]. In the quantum case, there is also no obvious
reparametrization we can make as in the classical case.

In this talk, we will explain how it is possible to reparametrize the quantum
propagator starting from a symbolic interpretation of the quantum dynamics. In
order to have an artificial discrete reparametrization of the geodesic flow, we will
have to introduce a suspension set [1]. It turns out that in this setting, it is possible to
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define discrete analogues of quantities (1.3) and (1.4) (see theorem 3.2 for instance).
Finally, we will briefly explain how one can prove a lower bound on the entropy of
this reparametrized dynamic and then using Abramov theorem [1], we will deduce
the expected lower bound on the entropy of a semiclassical measure.

2. Kolmogorov-Sinai entropy and quantum entropy

2.1. Kolmogorov-Sinai entropy
In this first paragraph, we would like to recall some definitions and properties of
entropy that can be found for instance in [25]. Consider a probability space (X,B, µ),
a finite set I and P := (Pα)α∈I a finite measurable partition of X, i.e. a finite subset
of measurable subsets of X that form a partition of X. Each of the Pα is called an
atom of the partition. Using the convention 0 log 0 = 0, we define the entropy of a
partition as

H(µ, P ) := −
∑
α∈I

µ(Pα) log µ(Pα) ≥ 0. (2.1)

For two given measurable partitions P := (Pα)α∈I and Q := (Qβ)β∈K , we say that
P is a refinement of Q if every element of Q can be written as the union of elements
of P and we can verify that H(µ,Q) ≤ H(µ, P ). In the other case, we introduce
the join P ∨Q := (Pα ∩Qβ)α∈I,β∈K and we have H(µ, P ∨Q) ≤ H(µ, P ) +H(µ,Q)
(subadditivity property). We fix now an application T of X which preserves µ. The
n-th refined partition ∨n−1

i=0 T
−iP of P with respect to T is the partition made of

the atoms (Pα0 ∩ · · · ∩ T−(n−1)Pαn−1)α∈In . We introduce the entropy of this refined
partition
Hn(µ, T, P ) = −

∑
|α|=n

µ(Pα0 ∩ · · · ∩ T−(n−1)Pαn−1) log µ(Pα0 ∩ · · · ∩ T−(n−1)Pαn−1).

(2.2)
Using the subadditivity property, one has, for every integers (n,m),
Hn+m(µ, T, P ) ≤ Hn(µ, T, P )+Hm(T n]µ, T, P ) = Hn(µ, T, P )+Hm(µ, T, P ). (2.3)

We underline that this last property has been obtained using crucially the fact that
µ is T -invariant. A classical argument for subadditive sequences allows to define

hKS(µ, T, P ) := lim
n→∞

Hn (µ, T, P )
n

. (2.4)

This quantity is called the entropy of (T, µ) with respect to the partition P . The
Kolmogorov-Sinai entropy hKS(µ, T ) of (µ, T ) is defined as the supremum of hKS(µ, T, P )
over all the finite partitions P of X. In our case, the entropy is always finite (thanks
to the Margulis-Ruelle’s inequality for instance). We can also mention that, if for ev-
ery sequence of indices (α0, · · · , αn−1), µ(Pα0∩· · ·∩T−(n−1)Pαn−1) ≤ Ce−βn where C
is some positive constant, then hKS(µ, T ) ≥ β: the entropy measures the exponential
decrease of the µ-volume of the atoms of the refined parition.

2.2. Quantum entropy
We can also define a quantum analogue of entropy. To do this, we fix an Hilbert
space H and call a partition of identity (τα)α∈I a finite family of operators that
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satisfies ∑
α∈I

τ ∗ατα = IdH. (2.5)

We define then the entropy of a unit vector ψ with respect to this partition

hτ (ψ) := −
∑
α∈I
‖ταψ‖2 log ‖ταψ‖2. (2.6)

Finally, this entropy satisfies an entropic uncertainty principle [18] due to Maassen
and Uffink (see [4] for the generalized version presented here):

Theorem 2.1. Let Oβ be a family of bounded operators and U an unitary operator
on the Hilbert space (H, ‖.‖). Let δ′ be some positive number. Consider two partitions
of identity (τα)α∈I and (πβ)β∈K and ψ an unit vector in H satisfying

‖(Id−Oβ)πβψ‖ ≤ δ′.

Suppose also that the cardinal of these two partitions is bounded by N . One has then

hτ (Uψ) + hπ(ψ) ≥ −2 log (cO(U) +N δ′) ,

where cO(U) = max
α∈I,β∈K

(
‖ταUπ∗βOβ‖

)
(‖ταUπ∗βOβ‖ is the norm operator on H).

3. Outline of the proof

In this talk, we will give a sketch of proof of our main result. We will emphasize
on the strategy and on the main ideas of the proof and we refer the reader [19] for
the details. Consider (ψ~k) a sequence of normalized eigenfunctions of the Laplacian
associated to the eigenvalues −1/~−2

k → +∞ and such that the corresponding se-
quence of distributions µ~k converges to µ as k tends to infinity. In order to simplify
the notations, we will denote ~ → 0 the fact that k tends to infinity, ψ~ the eigen-
function and −~−2 the eigenvalue.
We fix ε > 0 and define the following Ehrenfest time:

nE(~) := [(1− ε)| log ~|]. (3.1)

We underline that this time does not depend on the maximal expansion rate λmax
of the geodesic flow (which was not the case in [5] or [8]).

3.1. Symbolic interpretation of semiclassical measures
In order to compute the entropy of µ, we introduce a smooth partition of unity4

P = (Pi)i=1,..K of the manifold M

∀x ∈M,
K∑
i=1

P 2
i (x) = 1.

We make the assumption that the diameter of the partition is small enough (in a
sense that is precised in [19]). We can associate a partition of identity on L2(M) to

4The smoothness is required to use tools from semiclassical analysis.
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this classical partition. If we introduce P̂i the multiplication operator by Pi(x) on
L2(M), then one has

K∑
i=1

P̂ ∗i P̂i = IdL2(M). (3.2)

This relation will allow us to introduce a probability space associated to ψ~ and to
give a symbolic interpretation of the quantum dynamic. This symbolic setting will
provide a discretized version of the phase space in the semiclassical limit. To do this,
we introduce the space Σ+ := {1, · · · , K}N of sequences with values in {1, · · · , K}.
For (α0, · · · , αn−1) fixed in {1, · · · , K}n, we define the cylinder

[α0, · · · , αn−1] := {(xk)k∈N ∈ Σ+ : ∀0 ≤ k ≤ n− 1, xk = αk} .
We fix η > 0 and we introduce the measure of a cylinder

µ
Σ+
~ ([α0, · · · , αn−1]) := ‖P̂αn−1((n− 1)η) · · · P̂α0ψ~‖2,

where Â(t) := e−
ıt~∆

2 Âe
ıt~∆

2 . Using relation (3.2), all the compatibility conditions
needed to define a probability measure are satisfied [25].

Remark. This symbolic coding is a standard procedure in ergodic theory. In partic-
ular, it is important to underline that, for a fixed n, one has

lim
~→0

µ
Σ+
~ ([α0, · · · , αn−1]) = µ

(
P 2
α0 × P

2
α1 ◦ g

η × · · ·P 2
αn−1 ◦ g

(n−1)η
)
.

If we forget the fact that we considered a smooth partition, the quantity that appears
in the semiclassical limit is exactly the one used to compute the Kolmogorov-Sinai
entropy (see relation (2.2)). The previous limit also tells us that the sequence of
measures µΣ+

~ converges weakly to µΣ+ which is defined on cylinders by

µΣ+ ([α0, · · · , αn−1]) := µ
(
P 2
α0 × P

2
α1 ◦ g

η × · · ·P 2
αn−1 ◦ g

(n−1)η
)
.

In order to define a dynamical system on Σ+, we introduce the shift map σ+

σ+ ((xn)n∈N) := (xn+1)n∈N.

As the measure µ is gt-invariant, one can verify that the measure µΣ+ is σ+-invariant.
On the other hand, the measure µΣ+

~ is not a priori Σ+-invariant. Using results on
composition of ~-pseudodifferentials operators and Egorov theorem [12], one has
yet, for every n and n0 fixed,

µ
Σ+
~

(
σ−n+ [α0, · · · , αn0−1]

)
= µ

Σ+
~ ([α0, · · · , αn0−1]) +On,n0(~),

where the remainder depends on n and n0. So, for fixed scales of times, the measure
is “almost invariant” under σ+, i.e. it is “invariant” modulo terms that tend to 0
in the semiclassical limit. In order to make the more precise analysis as possible,
we need to understand for which range of times n and n0 (depending on ~), the
measure is ‘almost invariant’ modulo small terms in ~. To do this, one can apply
Egorov property for large times [5], [8] and verify that, for |n+n0|η ≤ nE(~)/λmax [4],

µ
Σ+
~

(
σ−n+ [α0, · · · , αn0−1]

)
= µ

Σ+
~ ([α0, · · · , αn0−1]) +O(~2ε),

where the remainder is uniform for n and n0 in the allowed interval. The measure
is “invariant” (modulo small terms in ~) as long as we remain in a scale of times of
order nE(~)/λmax. In other words, the semiclassical approximation is valid for the
discretized system until the Ehrenfest time. The main default of this last property
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is that it does not take into account the variations of the unstable Jacobian. All
the points in the phase space are treated in the same way, i.e. like if they all have
a Lyapunov exponent equal to λmax. This limit of the semiclassical approximation
appeared in [4] and [3] and was the reason of the apparition of the correction term
−d−1

2 λmax in inequality (1.2).

3.2. Suspension of the quantum dynamic
In order to solve the problem we have just mentioned, we can, in the case of di-
mension 2, reparametrize the map σ+ (and so implicitly the geodesic flow and the
quantum dynamic) in order to take into account the variations of the unstable Ja-
cobian. In fact, in this case, the unstable direction is of dimension 1 and the
Jacobian Ju measures then exactly how vectors are expanded in the unstable direc-
tion for positive times5. We will use this map to reparametrize the map σ+. To do
this, we introduce a roof function on Σ+ by setting, for a sequence α := (α0, α1, · · · )
(finite or not),

f(α) := η sup
{
log Ju(ρ) : ρ ∈ supp(Pα0) ∩ g−ηsupp(Pα1) ∩ S∗M

}
.

Remark. We have introduced a small parameter η > 0. The use of this parameter is
quite important even if the reason for this will not really be made precised in this
talk. Again, we refer the reader to [19] for more details (sections 3 and 5). We also
make the assumption that f(α) > 0 (we can restrict to this case: see also [19]). If the
set over which the supremum is taken is empty, we choose the supremum of log Ju
over S∗M . Last, we underline that choosing a step of time η and the Jacobian of
the map at time 1 is not really symmetric. However, it is not really important and
it presents the advantage of having a clear dependence of f in η, i.e. a linear one.

Now that we have defined a roof function on Σ+, we can use a classical pro-
cess of dynamical systems to reparametrize the map: we make a suspension of
(Σ+, µ

Σ+
~ , σ+). We first define the so-called suspension set

Σ+ := {(x, t) ∈ Σ+ × R+ : 0 ≤ t < f(x)} .

This set is naturally endowed with the probability measure

µ
Σ+
~ := µ

Σ+
~ × Leb∫
Σ+
fdµ

Σ+
~
.

There exists also a natural semiflow σ+ associated to σ+:

∀s ≥ 0, σs+ (x, t) :=
σn−1

+ (x), s+ t−
n−2∑
j=0

f
(
σj+x

) ,
where n is the unique integer such that

n−2∑
j=0

f
(
σj+x

)
≤ s + t <

n−1∑
j=0

f
(
σj+x

)
. This

new system (Σ+, µ
Σ+
~ , σ+) reparametrizes (Σ+, µ

Σ+
~ , σ+) and takes into account the

5This is not the case in higher dimension.
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variations of log Ju. We underline that the measure µΣ+
~ converges weakly to the

measure

µΣ+ := µΣ+ × Leb∫
Σ+
fdµΣ+

.

Moreover, this last measure is σt+-invariant. Again, the measure µΣ+
~ is not a priori

σt+-invariant. However, compared with the case of µΣ+
~ , we will be able to prove the

“almost-invariance” of the measure µΣ+
~ for larger scales of times than nE(~)/λmax.

In order to observe this phenomenon, we have first to construct a partition for which
we can compute the measure of the atoms of the partition and of its refinements.

3.2.1. Construction of an adapted partition

The construction of the partition is a little bit technical and we need to make good
choices in order to do the necessary computations. We will just give here a good
partition and we refer the refer the reader to [19] (section 5) for more explanations
on the different choices we made. First, we define, for t ≥ 0 (large enough) the
family of indices

I(t) :=
{
α = (α0, · · · , αk) : k ≥ 3,

k−2∑
i=1

f
(
σi+α

)
≤ t <

k−1∑
i=1

f
(
σi+α

)}
.

We underline6 that for α ∈ I(1) of length k(α) + 1, there exists an unique integer
k′(α) ≤ k(α) such that

k′−2∑
j=0

f
(
σj+α

)
≤ 1 <

k′−1∑
j=0

f
(
σj+α

)
.

Inspired by the definition of the suspension flow, we divide the interval [0, f(α)[ in
the following way:

Ik′(α)−2(α) =
0,
k′(α)−1∑
j=0

f
(
σj+α

)
− 1

 , · · · Ip−2(α) =
p−2∑
j=0

f
(
σj+α

)
− 1,

p−1∑
j=0

f
(
σj+α

)
− 1

 ,

· · · , Ik(α)−2(α) =
k(α)−2∑
j=0

f
(
σj+α

)
− 1, f (α)

 ,
for k′(α) ≤ p ≤ k(α). If k(α) = k′(α), we defineIk′(α)−2(α) = Ik(α)−2(α) = [0, f(α)[.
We define a partition of Σ+ using these subintervals:

C+ :=
{
Cα,p = [α0, · · · , αk]× Ip−2(α) : α ∈ I(1), et k′(α) ≤ p ≤ k(α)

}
.

The advantage of the subdivision of the interval [0, f(α)[ is to know the precise
action of σ1

+ on every atom of the partition.

6We remark that as f is proportional to η, the set I(1) is nonempty for η small enough [19].
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3.2.2. Invariance of the measure until times of order nE(~)

For this choice of partition (there could be others), we can prove the following
proposition (sections 6 and 7 in [20]):

Proposition 3.1. Let n, n0 be two positive integers satisfying n+ n0 ≤ nE(~). For
every atom A := Cγ0,p0∩· · ·∩σ

−(n0−1)
+ Cγn0−1,pn0−1 of the refined partition ∨n0−1

j=0 σ−j+ C+,
one has

µ
Σ+
~

(
σ−n+ A

)
= µ

Σ+
~ (A) +O(~5ε),

where the constant of the remainder is uniform for n0 and n in the allowed interval.

By making this choice of partition, we can compute precise expressions for µΣ+
~

(
σ−n+ A

)
and µΣ+

~ (A) and show that they are equal modulo terms of lower order. We under-
line that we have now “almost invariance” of the measure for scales of times that
do not depend on the maximal expansion rate λmax of the geodesic flow. In order to
prove this proposition, we need to consider operators of the form P̂αn(nη) · · · P̂α0 of
length n that can be more or less long depending on the value of log Ju along the
trajectory associated to the word (α0, · · · , αn). The proof of the proposition relies
in particular on the following theorem of pseudodifferential calculus [19] (section 7):

Theorem 3.2. Let (Qi)Ki=1 be a family of smooth functions on T ∗M such that, for
every 1 ≤ i ≤ K, Qi belongs to C∞(suppPαi ∩ E) (where E is a small neighborhood
of S∗M [19]) and 0 ≤ Qi ≤ 1. Consider a family of indices (α1, · · · , αl) satisfying

l−1∑
j=1

f(αj+1, αj) ≤
nE(~)

2 .

Then, for every 1 ≤ j ≤ l, Op~(Qα1)(jη)Op~(Qα2)((j − 1)η) · · ·Op~(Qαj)(η) is an
~-pseudo-differential operator of the class Ψ−∞,0ν (M) where ν < 1/2 (section 7 and
appendix of [19]) and of principal symbol

Qαj ◦ gη · · ·Qα2 ◦ g(j−1)ηQα1 ◦ gjη.

Remark. In order to prove this theorem, we crucially use the fact that the dimen-
sion is 2. In fact, the remainders that appear in the different formulas of stationary
phase (for the composition of pseudodifferential operators, for the Egorov theorem)
contain derivatives of gt. For instance, we have to estimate the norm of dρgt for ρ
in the support of Qαj ◦ gη · · ·Qα2 ◦ g(j−1)ηQα1 ◦ gjη. As the unstable direction is of
dimension 1, for t ≥ 0, this norm is controlled in term of the unstable Jacobian
(norms are preserved in the direction of the flow and contracted in the stable one).
For the allowed family of indices, we can verify that the loss of derivatives is at
most ~− 1

2 which is the maximal allowed loss of derivatives in the stationary phase
formulas [12].

3.3. Lower bound on the entropy of the suspension system
Our construction has provided a dynamical system adapted to the variation of the
unstable Jacobian over the manifold. Our goal now is now to bound its Kolmogorov-
Sinai entropy using the entropic uncertainty principle (theorem 2.1). Before we give
our main estimate on the entropy, we underline that we have constructed a system
that looks at positive times only. We could also have introduced a system that would
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look at negative times (see [19]-section 4 for a more precise definition) and that we
would denote (Σ−, µΣ−

~ , σ−). Using the entropic uncertainty principle, we are then
able to prove the following proposition:

Proposition 3.3. Using the notations of paragraph 2.1, one has, for ~ small enough,
1

nE(~)
(
HnE(~)

(
µ

Σ+
~ , σ+, C+

)
+HnE(~)

(
µ

Σ−
~ , σ−, C−

))
≥ (1− 5ε). (3.3)

This lower bound on the entropy of the reparametrized dynamical system at time
nE(~) is a key point of our proof. We provide some details on the strategy we should
follow to prove such an inequality and we refer the reader to section 5 of [19] for
more details.

First observation

We introduce a slightly smaller time than nE(~), i.e.
TE(~) := (1− 2ε)nE(~).

We underline that the following collection of subsets forms a partition of Σ+:

C~
+ := {[α0, · · · , αk]× [0, f(α)[: α ∈ I(TE(~))} .

This new partition depends on ~ and a crucial (but nontrivial) property of this
partition is that the partition ∨nE(~)−1

j=0 σ−j+ C+ is a refinement of the partition
C~

+. In particular, from paragraph 2.1, we know that

H
(
µ

Σ+
~ , C~

+

)
≤ H

(
µ

Σ+
~ ,∨nE(~)−1

j=0 σ−j+ C+
)

= HnE(~)
(
µ

Σ+
~ , σ+, C+

)
.

The quantity H
(
µ

Σ−
~ , C~

−

)
+ H

(
µ

Σ+
~ , C~

+

)
is the one for which we will be able to

give a lower bound on the entropy using the entropic uncertainty principle.

Second observation

In order to apply the entropic uncertainty principle (theorem 2.1), we underline that
the family (

P̂αk(kη) · · · P̂α1(η)P̂α0

)
α∈I(TE(~))

is a partition of identity for L2(M). We can apply the entropic uncertainty principle
for this partition (and for its analogue for negative times). It turns out that this
strategy do not allow us to find our result, i.e. a lower bound on the entropy of the
partition C~

+. In fact, if we apply theorem 2.1 directly to these partitions, the terms
that correspond to the Lebesgue part of the measure µΣ+

~ are missing in the sum. In
order to solve this problem, we can apply the entropic uncertainty principle several
times. To do this, we observe two things:

• the Lebesgue part of the measure of a cylinder only depends on the two first
letters (α0, α1) of the word;

• if (γ0, γ1) is fixed,
(
P̂αk(kη) · · · P̂α3(3η)P̂α2(2η)

)
(where α is in I(TE(~)) and

(α0, α1) = (γ0, γ1)) is a partition of identity.
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The entropic uncertainty principle can be applied for each of these partitions. We
obtain K2 inequalities and we can make a sum of these lower bounds (multiplying
also by appropriate coefficients). It gives the lower bound on the entropy we wanted
to bound. We will not give more details but these are the main tools we used in [19]
to give a lower bound on H

(
µ

Σ−
~ , C~

−

)
+H

(
µ

Σ+
~ , C~

+

)
.

Third observation

In the entropic uncertainty principle, the lower bound is the norm of an operator
and this quantity can be bounded using tools from [2] and [4]. We briefly recall a
central result of [4]. To do this, we fix K > 0 (large enough). One can construct a
family of symbols χ(n) localized in a small neighborhood of S∗M (of size depending
on ~ and n) and these symbols can be quantized using a nonstandard procedure [4].
Anantharaman and Nonnenmacher proved then that there exist two constants c
(depending only on M) and CK (depending on M and K) such that for all family
of indices (α0, · · · , αn) satisfying nη ≤ K| log ~|, one has∥∥∥P̂αn(nη) · · · P̂α1(η)P̂α0Op~(χ(n))

∥∥∥
L(L2(M))

≤ CK~−
1
2−cδ exp

−1
2

n−1∑
j=0

f(σj+α)
 ,

where δ > 0 is fixed. When we apply the entropic principle with the previous parti-
tions, the norm that appears in the lower bound is the one of P̂αn(nη) · · · P̂α1(η)P̂α0Op~(χ(n))
where α in I(2TE(~)). The apparition of the factor 2 in front of TE(~) is important
and it comes from the fact that we have considered positive and negative times.
For this scale of times (α ∈ I(2TE(~))), one has, thanks to the Anantharaman-
Nonnenmacher’s result,∥∥∥P̂αn(nη) · · · P̂α1(η)P̂α0Op~(χ(n))

∥∥∥
L(L2(M))

≤ CK~
1
2−2ε−cδ,

where δ > 0 can be picked arbitrarily small. This upper bound tells us that the atom
of the refined quantum partition has an exponential decrease for α in I(2TE(~)). If
we have used the Anantharaman-Nonnenmacher’s bound for larger times, we would
have obtain a better exponent but the property of invariance of the measure (we
will use to make the next arguments work) is no longer true for this range of times.
The power 1

2 is the better exponent we can expect in the proof that we present here.

3.4. Subadditivity of the entropy
We fix two integers n and n0 in N. Using only classical properties of the entropy
(property (2.3)), we find

Hn+n0

(
µ

Σ+
~ , σ+, C+

)
≤ Hn

(
µ

Σ+
~ , σ+, C+

)
+Hn0

(
σn]µ

Σ+
~ , σ+, C+

)
.

As the map x 7→ −x log x is continuous on the interval [0, 1] and as the measures
are “almost invariant” under σ+ (proposition 3.1), one has that, for n+n0 ≤ nE(~),

Hn0

(
σn]µ

Σ+
~ , σ+, C+

)
= Hn0

(
µ

Σ+
~ , σ+, C+

)
+ on0(1), as ~→ 0.

We write nE(~) = qn0 + r with 0 ≤ r < n0 (n0 is fixed). We use the last two
properties to obtain that
HnE(~)

(
µ

Σ+
~ , σ+, C+

)
≤ qHn0

(
µ

Σ+
~ , σ+, C+

)
+Hr

(
µ

Σ+
~ , σ+, C+

)
+ on0(q) as ~→ 0.
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This last inequality allows to verify

HnE(~)
(
µ

Σ+
~ , σ+, C+

)
nE(~) ≤

Hn0

(
µ

Σ+
~ , σ+, C+

)
n0

+ on0(1) as ~→ 0.

This result holds also for (Σ−, µΣ−
~ , σ−) and if we combine them to inequality (3.3),

we have that, as ~ tends to 0,
1
n0

(
Hn0

(
µ

Σ+
~ , σ+, C+

)
+Hn0

(
µ

Σ−
~ , σ−, C−

))
+ on0(1) ≥ (1− 5ε). (3.4)

3.5. The conclusion: applying the Abramov theorem
To conclude the proof of theorem 1.1, we first let ~ tends to 0 in inequality (3.4)
and we find that

1
n0

(
Hn0

(
µΣ+ , σ+, C+

)
+Hn0

(
µΣ− , σ−, C−

))
≥ (1− 5ε).

We underline that the previous inequality is a lower bound on the entropy of
a smooth partition of M (and not a true partition). If we take some precau-
tions ([2], [4], [19]-section 4), we can obtain a lower bound on the entropy of a
true partition. Suppose that we have done this transformation: we can let then n0
tends to infinity. This gives us

hKS
(
µΣ+ , σ+, C+

)
+ hKS

(
µΣ− , σ−, C−

)
≥ (1− 5ε).

Now, we have to use the last key argument of the proof: the Abramov theorem [1].
This theorem gives a link between the entropy of a dynamical system and the entropy
of some of its suspensions. In our case, it tells us that

hKS(µΣ+ , σ+,P) = hKS
(
µΣ+ , σ+, C+

)
×
∫

Σ+
fdµΣ+ .

We can then observe two things. The first one is that hKS(µΣ+ , σ+,P) is bounded
from above by hKS(µ, gη) which is equal to ηhKS(µ, g) [1]. The second is that, as
the diameter of the partition tends to 0,∫

Σ+
fdµΣ+ → η

∫
S∗M

log Ju(ρ)dµ(ρ).

Finally, we have

2ηhKS(µ, g) = η(hKS(µ, g) + hKS(µ, g−1)) ≥ (1− 5ε)η
∫
S∗M

log Ju(ρ)dµ(ρ).

As it holds for any ε > 0, the conclusion follows.�

Appendix A. Dimension, entropy and Lyapunov exponents

In this short appendix, we would like to explain how Young’s results relate the
Hausdorff dimension of a measure to its entropy and to its Lyapunov exponents [26].
This will allow us to derive corollary 1.3.
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Suppose M is a Riemannian surface of Anosov type and let µ be an element in
M(S∗M, gt). One can define the positive Lyapunov exponent of µ at point ρ as
follows [6]:

χ+
µ (ρ) := lim

T→+∞

1
T

∫ T
0

log Ju(gtρ)dt.
By Birkhoff’s theorem, this quantity is well defined for µ-almost every ρ in S∗M .
If µ is not an ergodic measure, this quantity can be a non trivial function of ρ.
In the case of an ergodic measure µ, this Lyapunov exponent is constant µ-almost
everywhere. Adapting an argument of Young in the case of Anosov geodesic flow on
surfaces [26], one has that, for an ergodic measure µ,

dimH µ := inf{dimH Y : µ(Y ) = 1} = 1 + 2hKS(µ, g)
χ+
µ

,

where dimH Y is the Hausdorff dimension of a set Y . One can combine this result and
our lower bound on the entropy of semiclassical measures to derive a lower bound on
dimH µ when µ is inMsc(S∗M, gt). To do this, we consider a semiclassical measure
µ and write its ergodic decomposition [11]

µ =
∫
S∗M

µρdµ(ρ),

where for µ-a.e. ρ, µρ is ergodic. Let Y be a measurable set such that µ(Y ) = 1.
Then, for µ-a.e. ρ in S∗M , one has µρ(Y ) = 1. From our lower bound on the entropy
and from the properties of the ergodic decomposition, we know that∫

S∗M
hKS(µρ, g)dµ(ρ) = hKS(µ, g) ≥

1
2

∫
S∗M

χ+
µρdµ(ρ).

Combining this observation to Young’s formula, we know that on a set of µ-positive
measure, dimH(µρ) ≥ 2 and in particular, dimH Y ≥ 2.
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