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Traveling waves for nonlinear Schrödinger
equations with nonzero conditions at infinity: some

results and open problems
Mihai Mariş

Abstract
This text is a survey of recent results on traveling waves for nonlinear

Schrödinger equations with nonzero conditions at infinity. We present the
existence, nonexistence and stability results and we describe the main ideas
used in proofs.

1. Introduction
We consider the nonlinear Schrödinger (NLS) equation

i
∂Φ
∂t

+ ∆Φ + F (|Φ|2)Φ = 0 in RN ×R, (1.1)

where Φ is a complex-valued function that satisfies the "boundary condition" |Φ| −→
r0 as |x| −→ ∞, r0 is a positive constant and F is a real-valued function on R+
satisfying F (r2

0) = 0.
The analysis of Eq. (1.1) is an extremely active research field at the moment.

This equation, with the considered non-zero conditions at infinity, is relevant in a
large variety of physical problems such as superconductivity, superfluidity in Helium
II, phase transitions and Bose-Einstein condensates ([BGMP89], [BaMa88], [Be08],
[Co98], [GR74], [Gro63], [IoSm78], [JR82], [JPR86]). In nonlinear optics, it appears
in the context of dark solitons, that is, localized waves which exist on a stable
continuous background ([KiLD98], [KPS95]). Two important particular cases of (1.1)
have been extensively studied in the literature: the Gross-Pitaevskii equation (where
F (s) = 1− s) and the so-called "cubic-quintic" Schrödinger equation (where F (s) =
−α1 + α3s− α5s

2, α1, α3, α5 are positive and F has two positive roots).
In contrast to the case of zero boundary conditions at infinity (when the dy-

namics associated to (1.1) is essentially governed by dispersion and scattering), the
non-zero boundary condition allows a much richer dynamics and gives rise to a

MSC 2000: 35Q51, 35Q55, 35Q40, 35J20, 35J15, 35B65, 37K40.
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remarkable variety of special solutions, such as traveling-waves, standing waves or
vortex solutions.

Using the Madelung transformation Φ(x, t) =
√
ρ(x, t)eiθ(x,t) (which is well-defined

whenever Φ 6= 0), equation (1.1) is equivalent to a system of Euler’s equations for
a compressible inviscid fluid of density ρ and velocity 2∇θ. In this context it has
been shown that, if F is C1 near r2

0 and F ′(r2
0) < 0, the sound velocity at infinity

associated to (1.1) is vs = r0

√
−2F ′(r2

0) (see, e.g., the introduction of [M08]).

Eq. (1.1) is Hamiltonian, the "energy"

E(Φ) =
∫

RN
|∇Φ|2 dx+

∫
RN

V (|Φ|2) dx (1.2)

is (formally) conserved by the flow, where V (s) =
∫ r2

0

s
F (τ) dτ .

Let a =
√
−1

2F
′(r2

0) > 0. Then the sound velocity at infinity is vs = 2ar0 and it
is easy to see that we have the Taylor expansion

V (s) = a2(s− r2
0)2 + o((s− r2

0)2) as s −→ r2
0. (1.3)

Thus V (|Φ|2) is well approximated by a2(|Φ|2 − r2
0)2 if |Φ| is close to r0. Take a

nondecreasing cut-off function ϕ ∈ C∞([0,∞)) such that ϕ(s) = s for s ∈ [0, 2r0],
and ϕ is constant near infinity. The following Ginzburg-Landau energy is relevant in
the study of (1.1):

ẼGL(Φ) =
∫

RN
|∇Φ|2 dx+ a2

∫
RN

(ϕ(|Φ|)2 − r2
0)2dx.

The function space naturally associated to (1.1) is

Ẽ = {ψ ∈ H1
loc(RN) | ∇ψ ∈ L2(RN), ϕ(|ψ|)2 − r2

0 ∈ L2(RN)}.
Another important quantity for (1.1) is the momentum P (Φ) = (P1(Φ), . . . , PN(Φ)).

Notice that the momentum is also (formally) conserved by the flow. A rigorous def-
inition of the momentum will be given in Sect. 3; at the present stage we only give
its formal definition,

Pk(Φ) =
∫

RN
〈i ∂Φ
∂xk

,Φ〉 dx.

The Cauchy problem associated to (1.1) has been addressed in several papers. In
[BS99], global well-posedness was proved in the case of the Gross-Pitaevskii non-
linearity (that is, F (s) = 1 − s) for initial data in the affine space 1 + H1(RN),
N = 1, 2, 3. Later, C. Gallo studied the Schrödinger group on Zhidkov spaces
Xk(RN) = {u ∈ L∞(RN) | ∇u ∈ Hk−1(RN)} and proved well-posedness results
for (1.1) in Xk(RN), in the case of general nonlinearities, provided that k is large
enough (see [Ga04], [Ga06], [Ga08]). Finally, P. Gérard ([G06]; see also the survey
paper [G08]) studied the Cauchy problem for the Gross-Pitaevskii equation in the
energy space E = {ψ ∈ H1

loc(RN) | ∇ψ ∈ L2(RN), |ψ|2 − 1 ∈ L2(RN)}. He proved
that the solutions exist and are global in time for any initial data in E if N = 1, 2, 3.
He also proved a global existence result for small initial data in E if N = 4 (notice
that the equation becomes critical in space dimension four, so one could not expect
global existence for any initial data in that case). The same arguments should pre-
sumably work in any space dimension and for general nonlinearities provided that
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one imposes appropriate conditions on the growth of the nonlinearity F at infinity
and works with the space Ẽ introduced above instead of E .

On the other hand, Gustafson, Nakanishi and Tsai established in [GNT06], [GNT09]
the scattering theory of small solutions to the Gross-Pitaevskii equation in space
dimension three and four. In dimension two, where a scattering theory is excluded
due to the existence of small energy traveling-waves, they constructed dispersive
solutions with some prescribed data at infinity (see [GNT07]).

In despite of these results, the long time behavoir of the solutions of Eq. (1.1)
remains largely unknown. The first step in understanding the long-time dynamics
associated to (1.1) would be to understand the special solutions (such as traveling
waves, standing waves, or vortex solutions) and the behavior of those solutions which
are close to the special solutions.

In a series of papers (see, e.g., [GR74], [JR82], [JPR86], [BaMa88], [BGMP89],
[PR91], [PN93], [KR95a], [KR95b]), particular attention has been paid to a special
class of solutions of (1.1), namely the traveling waves. These are solutions of the
form Φ(x, t) = ψ(x − cty), where y ∈ SN−1 is the direction of propagation and
c ∈ R∗ is the speed of the traveling wave. Without loss of generality we may assume
that y = (1, 0, . . . , 0). The equation satisifed by the traveling wave profile ψ is then

− ic ∂ψ
∂x1

+ ∆ψ + F (|ψ|2)ψ = 0 in RN . (1.4)

We say that ψ has finite energy if ∇ψ ∈ L2(RN) and V (|ψ|2) ∈ L1(RN). Under
general assumptions it can be proved that this is equivalent to ẼGL(ψ) <∞.

Traveling waves are supposed to play an important role in the dynamics of (1.1)
(although this role is still not sufficiently understood). Travelling waves also model
various phenomena observed in Helium II such as vortices and sound waves. In
view of formal computations and numerical experiments, a list of conjectures, often
referred to as the Roberts programme, has been formulated about the existence, the
stability and the qualitative properties of traveling waves. We will try to describe
below, to the best of our knowledge, the main lines of the Roberts programme and
the parts of these conjectures that have already been proved.

1. Existence and nonexistence. It has been conjectured that finite energy traveling
waves of speed c exist if and only if |c| < vs, where vs is the sound velocity at infinity.

In space dimension one, Eq. (1.4) can be integrated (almost) explicitly and in
many interesting applications one can check directly that the above conjecture holds
true.

In higher dimensions, the nonexistence of traveling waves with supersonic speeds
(c > vs) has been proved in [Gr03] in the case of the Gross-Pitaevskii equation,
respectively in [M08] for more general nonlinearities.

Despite of many attempts, a rigorous proof of the existence of subsonic, finite
energy traveling waves in space dimension N ≥ 2 has been a long lasting prob-
lem. In the particular case of the Gross-Pitaevskii (GP) equation, this problem was
considered in a series of papers. In space dimension two, the existence of traveling
waves for any sufficiently small speed has been proved in [BS99]. In space dimension
N ≥ 3, the existence has been proved in [BOS04] for a sequence of speeds cn −→ 0
by using constrained minimization; a similar result has been established in [Ch04]

XIV–3



for all sufficiently small speeds by using a mountain-pass argument. In a recent pa-
per [BGS09], the existence of traveling waves for (GP) has been proved in space
dimension N = 2 and N = 3 for any speed in a set A ⊂ (0, vs). If N = 2, A contains
points arbitrarily close to 0 and to vs (although it is not clear that A = (0, vs)),
while in dimension three we have A ⊂ (0, v0), where v0 < vs and 0, v0 are limit
points of A. The traveling waves are obtained in [BGS09] by minimizing the energy
at fixed momentum (see section 3 for the definition of the momentum) and the
propagation speed is the Lagrange multiplier associated to minimizers. In the case
of cubic-quintic type nonlinearities, it has been proved in [M02] that traveling waves
exist for any sufficiently small speed if N ≥ 4. Notice that even for very specific
nonlinearities, none of the previous results covers the whole range (0, vs) of possible
speeds. In dimension N ≥ 3, the existence of traveling waves for any subsonic speed
and under general assumptions on the nonlinearity F has been obtained in [M09b]
(the proof is presented is section 3 below). In dimension two the problem is still
open, although some progress has been made ([CM10]).

2. Uniqueness. In dimension N ≥ 2, traveling wave solutions to (1.1) are not
expected to be unique (up to the invariances of the equation). However, it has been
conjectured thet those traveling waves that minimize the energy at fixed momentum
are unique up to the invariances of the equation. No rigorous result has been obtained
in that direction.

3. Qualitative properties.
The regularity of traveling waves has been proved in [Fa03] and [M08].
All traveling waves found up to now are axially symmetric.
The asymptotic behavior of traveling waves as |x| −→ ∞ has been accurately

described by the physicists in the seventies by using formal computations. More
recently, this behavior has been rigorously established in a series of works by P.
Gravejat (see [Gr04a], [Gr04b] , [Gr05] [Gr06]) in the case of the Gross-Pitaevskii
equation. Probably his proofs can be adapted to more general nonlinearities.

The fact that traveling waves do or do not present vortices should depend both
on their speed and on the nonlinearity in the equation. For Gross-Pitaevskii-type
nonlinearities, numerical experiments suggest that there is a critical speed vc <
vs such that travelling-waves of speed less than vc should present vortices, while
traveling waves moving faster than vc should not have vortices. For cubic-quintic
nonlinearities, all traveling-waves should not have vortices. As far as we know, no
rigorous result has been obtained in this direction. It is very likely that traveling
waves moving with small speeds have vortices if (1.1) does not admit finite energy
stationary solutions.

4. Transsonic limit. Let (ψcn) be a sequence of finite energy traveling waves for
(1.1), where cn −→ vs. It has been conjectured that, after a suitable anisotropic
rescaling and up to a subsequence, the functions r2

0 − |ψcn|2 and the phases of ψcn
should tend to solitary waves of the Korteweg-de Vries equation in one dimension,
respectively to the solitary waves of the Kadomtsev-Petviashvili I equation in di-
mensions two and three. In the case of the Gross-Pitaevskii nonlinearity, this has
been proved in [BGSS09] in dimension one, respectively in [BGS08] in dimension
two for those solutions that minimize the energy at fixed momentum. All other cases
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are still unknown (a major difficulty in proving this convergence seems to be the
obtention of good estimates on the energy of traveling waves).

5. Stability. In one dimension, the orbital stability (or instability) of traveling
waves has been proved in [Lin02] for cubic-quintic nonlinearities, respectively in
[BGSS08] and [GZ08] for the Gross-Pitaevskii nonlinearity. Even in one dimension,
no asymptotic stability result seems to be available.

The orbital stability of the set of traveling waves that minimize the energy at
fixed momentum is proved in [CM10] in any dimension N ≥ 2 and for general
nonlinearities, under the assumption that the potential V is nonnegative.

In the next section we present the proof of the nonexistence of supersonic traveling
waves. Section 3 is devoted to the proof of existence of such solutions for any subsonic
speed in the case N ≥ 3. Other recent existence results are described in the last
section.

2. Nonexistence of supersonic traveling waves
Using a new and quite unexpected integral identity, P. Gravejat proved in [Gr03] the
nonexistence of supersonic traveling waves with finite energy in the particular case
of the Gross-Pitaevskii equation. He also proved in [Gr04b] the nonexistence of sonic
traveling waves in space dimension 2. Simplifying his arguments, in [M08] we were
able to generalize his integral identity and to prove that the nonexistence of finite
energy supersonic traveling waves is a general phenomenon, which holds true for a
large class of equations of the form (1.1) (including the Gross-Pitaevskii and cubic-
quintic cases) as well as for systems of equations of this type. The nonexistence of
finite energy sonic traveling waves in dimension two, as well as in dimension N ≥ 3
under the additional assumption that their phase is integrable on the exterior of a
large ball, is also proved in [M08].

In the sequel we sketch the nonexistence proof. Throughout this section we sup-
pose that the following assumptions are satisfied:

C1. The function F is continuous on [0,∞), C1 in a neighborhood of r2
0, F (r2

0) = 0
and F ′(r2

0) < 0.
C2. There exist C, α > 0 such that for s sufficiently large we have F (s) ≤ −Csα.
The next result gives the regularity properties of finite energy traveling waves.

Proposition 2.1. Assume that conditions C1 and C2 are satisfied. Let ψ be a finite
energy solution of (1.4). Then:

i) We have ψ ∈ L∞ ∩W 2,p
loc (RN) for any p ∈ [1,∞).

ii) We have ∇ψ ∈ W 1,p(RN) for any p ∈ [2,∞) and there exists R∗ > 0 such that
ψ admits a lifting ψ = ρeiθ on RN \B(0, R∗), where ρ, θ ∈ W 2,p

loc (RN), p ∈ [1,∞).
iii) Moreover, if F ∈ Ck([0,∞)), then ψ ∈ W k+2,p

loc (RN) for any p ∈ [1,∞).

Notice that the classical bootstrap argument (which consists in using the equation,
standard elliptic estimates and Sobolev embeddings in oder to successively improve
the regularity of the solution) could not work because in most applications the
nonlinearity F is critical or supercritical. We use a method developed by A. Farina in
[Fa98, Fa03] for Ginzburg-Landau systems (and which is based on Kato’s inequality,
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see [Ka72]) to prove that finite energy travelling waves are in L∞(RN). Then the
standard elliptic regularity theory can be used to complete the proof fo Proposition
2.1.

At least formally, the solutions of (1.4) are critical points of the functional Ẽc(ψ) =
E(ψ) + cQ̃(ψ), where E is given by (1.2) and Q̃ is the "momentum" with respect to
the x1 direction (a precise definition will be given later; for the moment, Q̃ is just
a functional whose derivative Q̃′ satisfies Q̃′(φ) = 2iφx1 for any φ.) This variational
characterization enables us to prove Pohozaev identities:
Proposition 2.2. Let ψ be a finite energy solution of (1.4). Then ψ satisfies

−
∫

RN

∣∣∣∣∣ ∂ψ∂x1

∣∣∣∣∣
2

dx+
∫

RN

N∑
j=2

∣∣∣∣∣ ∂ψ∂xj
∣∣∣∣∣
2

dx+
∫

RN
V (|ψ|2) dx = 0 and (2.1)

∫
RN

∣∣∣∣∣ ∂ψ∂x1

∣∣∣∣∣
2

+ N − 3
N − 1

N∑
k=2

∣∣∣∣∣ ∂ψ∂xk
∣∣∣∣∣
2

dx+
∫

RN
V (|ψ|2) dx+ cQ̃(ψ) = 0. (2.2)

The Pohozaev identities are a consequence of the behavior of Ẽc with respect to
dilations in RN . Given a function v defined on RN , we will use the notation

vλ,σ(x) = v

(
x1

λ
,
x′

σ

)
, where x′ = (x2, . . . , xN). (2.3)

If ψ is a critical point of Ẽc, we should have d
dλ
∣∣∣
λ=1

Ẽc(ψλ,1) = 0 and d
dσ
∣∣∣
σ=1

Ẽc(ψ1,σ) =

0; these identities are precisely (2.1) and (2.2), respectively. Of course, this argu-
ment is purely formal because, in general, d

dλ
∣∣∣
λ=1

(ψλ,1) = −x1
∂ψ
∂x1

et d
dσ
∣∣∣
σ=1

(ψ1,σ) =

−∑N
j=2 xj

∂ψ
∂xj

do not belong to the function space on which Ẽ ′c(ψ) is defined.
In order to prove (2.1) and (2.2) rigorously, we multiply (1.4) by χ

(
x
n

)
xj

∂ψ
∂xj

,
where χ ∈ C∞c (RN) is a cut-off function that equals 1 in a neighborhood of the
origin, we perform some integrations by parts, then we pass to the limit as n −→
∞. To justify the integration by parts, one needs some smoothness for ψ. The
regularity provided by Proposition 2.1 (ψ ∈ L∞ ∩W 2,p

loc (RN) and ∇ψ ∈ W 1,p(RN)
for p ∈ [2,∞)) is enough to get Pohozaev identities.
Theorem 2.3. Suppose that c2 > v2

s and ψ is a finite energy solution of (1.4). Then
ψ satisfies the identity∫

RN
|∇ψ|2 − F (|ψ|2)|ψ|2 − v2

s

2 (|ψ|2 − r2
0) dx+ c

(
1− v2

s

c2

)
Q̃(ψ) = 0. (2.4)

Proof. Let ψ1 = Re(ψ), ψ2 = Im(ψ). Eq. (1.4) is equivalent to the system

c
∂ψ2

∂x1
+ ∆ψ1 + F (|ψ|2)ψ1 = 0 and (2.5)

− c∂ψ1

∂x1
+ ∆ψ2 + F (|ψ|2)ψ2 = 0. (2.6)

We multiply (2.5) by ψ2 and (2.6) by −ψ1, then we add the resulting equalities to
obtain

c

2
∂

∂x1
(|ψ|2 − r2

0) = div(ψ1∇ψ2 − ψ2∇ψ1). (2.7)
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Multiplying (2.5) by ψ1 and (2.6) by ψ2, then summing up the resulting equalities
we get

|∇ψ1|2 + |∇ψ2|2 − F (|ψ|2)|ψ|2 − c(ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
) = 1

2∆(|ψ|2 − r2
0). (2.8)

Let R∗ be as in Proposition 2.1 (ii) so that ψ has a lifting ψ = ρeiθ on RN \
B(0, R∗). Let χ ∈ C∞(RN) be a cut-off function such that χ = 0 on B(0, 2R∗) and
χ = 1 on RN \ B(0, 3R∗). Denote Gj = ψ1

∂ψ2
∂xj
− ψ2

∂ψ1
∂xj
− r2

0
∂
∂xj

(χθ), j = 1, . . . , N .
One can prove that Gj ∈ L1 ∩ L∞(RN) and the momentum Q̃(ψ) with respect to
the de x1 direction is given by

Q̃(ψ) = −
∫

RN
ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0
∂

∂x1
(χθ) dx = −

∫
RN

G1 dx.

From (2.7) and (2.8) we infer that
c

2
∂

∂x1
(|ψ|2 − r2

0) = div(ψ1∇ψ2 − ψ2∇ψ1 − r2
0∇(χθ)) + r2

0∆(χθ), (2.9)

respectively
1
2∆(|ψ|2 − r2

0)− v2
s

2 (|ψ|2 − r2
0)

= |∇ψ1|2 + |∇ψ2|2 − F (|ψ|2)|ψ|2 − v2
s

2 (|ψ|2 − r2
0)

−c
(
ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0
∂

∂x1
(χθ)

)
− cr2

0
∂

∂x1
(χθ).

(2.10)

Let

H = |∇ψ1|2+|∇ψ2|2−F (|ψ|2)|ψ|2−v
2
s

2 (|ψ|2−r2
0)−c

(
ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0
∂

∂x1
(χθ)

)
.

Take the derivative with respect to x1 of (2.9) and multiply it by c, then take the
Laplacian of (2.10). Summing up the resulting equalities we find

1
2

(
∆2 − v2

s∆ + c2 ∂
2

∂x2
1

)
(|ψ|2 − r2

0) = ∆H + c
∂

∂x1
(div(G)). (2.11)

Taking the Fourier transform of (2.11) we obtain

1
2
(
|ξ|4 + v2

s |ξ|2 − c2ξ2
1

)
F(|ψ|2 − r2

0) = −|ξ|2Ĥ − c
N∑
k=1

ξ1ξkĜk. (2.12)

Let Γ = {ξ ∈ RN | |ξ|4 + v2
s |ξ|2 − c2ξ2

1 = 0}. If c2 ≤ v2
s , then Γ = {0}. In the case

c2 > v2
s , Γ is a nontrivial submanifold of RN and using (2.12) we get

|ξ|2Ĥ(ξ) + c
N∑
k=1

ξ1ξkĜk(ξ) = 0 for any ξ ∈ Γ. (2.13)

It is obvious that Γ = {(ξ1, ξ
′) ∈ R × RN−1 | |ξ′|2 = 1

2(−v2
s − 2ξ2

1 +√
v4
s + 4c2ξ2

1)}. Let f(t) =
√

1
2

(
−v2

s − 2t2 +
√
v4
s + 4c2t2

)
. The function f is well

defined on [−
√
c2 − v2

s ,
√
c2 − v2

s ], we have f(0) = 0 and lim
t→0

f2(t)
t2

= −1 + c2

v2
s
. For
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j ∈ {2, . . . , N} and t ∈ (0,
√
c2 − v2

s ], let ξ(t) = (t, 0, . . . , 0, f(t), 0, . . . , 0) and
ξ̃(t) = (t, 0, . . . , 0,−f(t), 0, . . . , 0), where f(t) and −f(t), respectively, stand at the
jth place. It is clear that ξ(t), ξ̃(t) ∈ Γ. From (2.13) we obtain

(t2 + f 2(t))Ĥ(ξ(t)) + ct2Ĝ1(ξ(t)) + ctf(t)Ĝj(ξ(t)) = 0, and (2.14)

(t2 + f 2(t))Ĥ(ξ̃(t)) + ct2Ĝ1(ξ̃(t))− ctf(t)Ĝj(ξ̃(t)) = 0. (2.15)
We multiply (2.14) and (2.15) by 1

t2
, then take the limit as t ↓ 0 to get

c2

v2
s

Ĥ(0) + cĜ1(0) + c

√√√√−1 + c2

v2
s

Ĝj(0) = 0, respectively (2.16)

c2

v2
s

Ĥ(0) + cĜ1(0)− c

√√√√−1 + c2

v2
s

Ĝj(0) = 0. (2.17)

From (2.16) and (2.17) we find c2

v2
s
Ĥ(0) + cĜ1(0) = 0, and this equality is precisely

(2.4). �

Theorem 2.4. Let N ≥ 2. Assume that the conditions (C1) and (C2) hold, c2 > v2
s

and, moreover, there exists α ∈
[
−1 + N−3

N−1(1− v2
s

c2 ), v
2
s

c2

]
such that

sF (s) + v2
s

2 (s− r2
0) +

(
1− α− v2

s

c2

)
V (s) ≤ 0 for s ≥ 0.

Let ψ be a finite energy traveling wave of (1.1) moving with velocity c. Then ψ is
constant.

Proof. Multiply (2.2) by 1− v2
s

c2 and subtract the resulting equality from (2.4) to
get ∫

RN

v2
s

c2

∣∣∣∣∣ ∂ψ∂x1

∣∣∣∣∣
2

+
(

1− (1− v2
s

c2 )N − 3
N − 1

) N∑
k=2

∣∣∣∣∣ ∂ψ∂xk
∣∣∣∣∣
2

dx

−
∫

RN
F (|ψ|2)|ψ|2 + v2

s

2 (|ψ|2 − r2
0) +

(
1− v2

s

c2

)
V (|ψ|2) dx = 0.

(2.18)

Let α be as in Theorem 2.4. Multiply (2.1) by α and take the sum of the resulting
equality and of (2.18) to get∫

RN

(
v2
s

c2 − α
)∣∣∣∣∣ ∂ψ∂x1

∣∣∣∣∣
2

+
(
α+ 1−

(
1− v2

s

c2

)N − 3
N − 1

) N∑
k=2

∣∣∣∣∣ ∂ψ∂xk
∣∣∣∣∣
2

dx

=
∫

RN
F (|ψ|2)|ψ|2 + v2

s

2 (|ψ|2 − r2
0) + (1− α− v2

s

c2 )V (|ψ|2) dx.

(2.19)

It is easily seen that the right hand side of (2.19) is nonpositive, while the coefficients
on the left hand side are nonnegative and at least one is positive. Since ∇ψ ∈
L2(RN), we infer that ψ is constant. �

Notice that the assumptions of Theorem 2.4 are satisfied in the case F (s) = 1− s
as well as in the case F (s) = −α1 +α3s−α5s

2, where αi > 0 and F has two positive
roots. Hence the conclusion of Theorem 2.4 holds as well for the Gross-Pitaevskii
equation and for the cubic-quintic NLS.
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3. Existence of traveling waves for any subsonic speed (N ≥
3)

In addition to conditions (C1) and (C2) in the previous section, we introduce the
following one:

C3. There exists p0 <
2∗
2 − 2 = 2

N−2 and C > 0 such that |F (s)| ≤ Csp0 for any
s > M1.

The main result of [M09b] is

Theorem 3.1. Let N ≥ 3. Assume that (C1) and one of the conditions (C2) or
(C3) are satisfied. Ten for any c ∈ (0, vs), (1.1) has finite energy traveling waves of
speed c.

Sketch of the proof. If the conditions (C1) and (C2) in Section 2 are satisfied, the
proof of Proposition 2.1 gives an uniform estimate of the L∞ norm of the traveling
waves: there exists a positive constant M (depending only on F ) such that any
solution ψ of (1.4) satisfies |ψ(x)| ≤M on RN . Thus we may replace the function F
by a function F̃ such that F = F̃ on [0,M1], where M1 > M , F̃ satisfies (C1) and
(C2) (perhaps with another constant β ∈ (0, α) instead of α) and, moreover, F̃ has
a subcritical growth at infinity. If ψ satisfies the equation (1.4) with F̃ instead of F ,
Proposition 2.1 guarantees again that |ψ| ≤M , and consequently ψ is a solution of
(1.4). Hence we may always suppose that (C1) and (C3) are satisfied.

It can be shown that any finite-energy traveling wave tends to a constant of
modulus r0 at infinity. Since eq. (1.4) is invariant under multiplication by complex
numbers of modulus one, it suffices to search for solutions that tend to r0 at infinity.
Hence we look for traveling waves of the form ψ = r0−u, where u −→ 0 as |x| −→ ∞.
Then u satisfies the equation

icux1 −∆u+ F (|r0 − u|2)(r0 − u) = 0 in RN . (3.1)
Formally, the solutions of (3.1) are precisely the critical points of the functional

Ec(u) =
∫

RN
|∇u|2 dx+ cQ(u) +

∫
RN

V (|r0 − u|2) dx, (3.2)

where Q is the momentum with respect to x1.
Denote a =

√
−1

2F
′(r2

0), so that vs = 2ar0 and we have the Taylor expansion (1.3)
in a neighborhood of r2

0. Then for u close to zero we may approximate V (|r0−u|2) by
a2(|r0− u|2− r2

0)2. Fix a cut-off function ϕ ∈ C∞([0,∞),R) as in the Introduction,
such that ϕ(s) = s for s ∈ [0, 2r0], ϕ is nondecreasing and ϕ(s) = 3r0 for s ≥ 4r0.
Given a function u and a domain Ω ⊂ RN , we consider the Ginzburg-Landau energy

EΩ
GL(u) =

∫
Ω
|∇u|2dx+ a2

∫
Ω

(
ϕ2(|r0 − u|)− r2

0

)2
dx.

We denote EGL(u) = ERN
GL (u). Taking (1.3) into account, the function space natu-

rally associated to Ec is
X = {u ∈ D1,2(RN) | EGL(u) <∞} = {u ∈ D1,2(RN) | r0 − u ∈ Ẽ}.

By the Sobolev embedding we have X ⊂ L2∗(RN). Let u ∈ X . If u(x) is close to
zero, we have the estimate |V (|r0−u(x)|2)| ≤ C (ϕ2(|r0 − u|)− r2

0)2 thanks to (1.3).
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If u(x) is far away from zero, using (C3) we get the estimate |V (|r0 − u(x)|2)| ≤
C|u|2∗(x). Hence V (|r0 − u|2) ∈ L1(RN) for any u ∈ X .

The next step is to define the momentum with respect to x1 for any function in
X . It is clear that if u ∈ H1(RN) the momentum should be Q(u) =

∫
RN
〈iux1 , u〉 dx.

On the other hand, if u ∈ X is a function such that r0 − u has a lifting r0 − u =
ρeiθ, then we have formally Q(u) = −

∫
RN

ρ2θx1 dx = −
∫

RN
(ρ2 − r2

0)θx1 dx, where
ρ2 − r2

0, θx1 ∈ L2(RN).
The key point is the observation that for any u ∈ X we have 〈iux1 , u〉 ∈ L1(RN)+
Y , where Y = {∂x1φ | φ ∈ D1,2(RN)}. For v ∈ L1(RN) and w ∈ Y , let L(v + w) =∫

RN
v dx. It is standard to check that L is well-defined and is a continuous linear

form of L1(RN) + Y . This enables us to define

Q(u) = L(〈iux1 , u〉) for any u ∈ X .

Then it is not hard to prove that the functional Q has very convenient properties
for our variational approach.

Because of different scaling properties of the terms appearing in (3.2), we also
introduce the functionals

A(u) =
∫

RN

N∑
k=2

∣∣∣∣ ∂u∂xk
∣∣∣∣2 dx,

Bc(u) =
∫

RN

∣∣∣∣ ∂u∂x1

∣∣∣∣2 dx+ cQ(u) +
∫

RN
V (|r0 − u|2) dx,

Pc(u) = N − 3
N − 1A(u) +Bc(u).

(3.3)

It is clear that Ec(u) = A(u) + Bc(u) = 2
N−1A(u) + Pc(u). By Proposition 2.2,

any solution of (3.1) satisfies the Pohozaev identity Pc(u) = 0, and consequently
Bc(u) = −N−3

N−1A(u), which gives Bc(u) < 0 if N ≥ 4, and Bc(u) = 0 if N = 3,
respectively. Using the notation (2.3), it is easy to see that

Ec(v1,σ) = σN−3A(v) + σN−1Bc(v) and

d
dσ

(Ec(v1,σ)) = (N − 3)σN−4A(v) + (N − 1)σN−2Bc(v).
(3.4)

Assume that N ≥ 4. Let v be a function such that Bc(v) < 0. From (3.4) we see
that there is a unique σv > 0 such that Pc(v1,σv) = 0. Moreover, the function σ 7−→
Ec(v1,σv) is increasing on (0, σv] and decreasing on [σv,∞). This simple observation
suggests that the functional Ec has a mountain-pass geometry and the manifold
{v ∈ X | v 6= 0, Pc(v) = 0} separates two regions in X where Ec takes lower values.
Consequently, it would be interesting to minimize Ec under the constraint Pc = 0.
This is precisely our approach to find critical points of Ec.

An essential tool in proving Theorem 3.1 is a "regularization procedure" which
ebables us to get rid of the small-scale topological defects of functions in X . More
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precisely, given u ∈ X , h > 0 and a domain Ω ⊂ RN , we consider the functional

Gu
h,Ω(v) = EΩ

GL(v) + 1
h2

∫
Ω
ϕ

(
|v − u|2

32r0

)
dx.

We prove that Gu
h,Ω has minimizers in the set

{v ∈ X | v = u on RN \ Ω, v − u ∈ H1
0 (Ω)}.

Of course that we cannot expect for minimizers to be unique. However, for any
choice of a minimizer vh of the above functional, we have:

• ||vh − u||L2(RN ) −→ 0 as h −→ 0,

• We may estimate || |vh − r0| − r0 ||L∞(ω) in terms of h and EΩ
GL(u) on any

compact subset ω ⊂ Ω and we find that || |vh − r0| − r0 ||L∞(ω) is arbitrarily small
if the Ginzburg-Landau energy EΩ

GL(u) is sufficiently small.

Using this regularization procedure, we prove:

Lemma 3.2. Assume that 0 ≤ c < vs and let ε ∈ (0, 1 − c
vs

). There exists K > 0
such that for any u ∈ X with EGL(u) < K we have

Ec(u) > εEGL(u).

Idea of proof. Let δ > 0 be sufficiently small, so that δ < r0
2 and c

2a(r0−δ) < 1− ε
(such δ exist because vs = 2ar0 and ε < 1− c

vs
).

Assume first that a function v ∈ X satisfies r0 − δ < |r0 − v| ≤ r0 + δ on RN .
Then r0− v admits a lifting r0− v = ρeiθ and we have |∇v|2 = |∇ρ|2 + ρ2|∇θ|2 and
Q(v) = −

∫
RN

(ρ2 − r2
0)θx1 dx. Using the Cauchy-Schwarz inequality we obtain

c

1− ε |Q(v)| ≤ 2a(r0 − δ)|Q(v)| ≤ 2a(r0 − δ)||θx1||L2(RN )||ρ2 − r2
0||L2(RN )

≤ (r0 − δ)2
∫

RN
|θx1|2 dx+ a2

∫
RN

(
ρ2 − r2

0

)2
dx

≤
∫

RN
ρ2|∇θ|2 + a2

(
ρ2 − r2

0

)2
dx ≤ EGL(v).

Consequently EGL(v)− c|Q(v)| > εEGL(v).
One can prove that

∫
RN

V (|r0−v|2) dx is arbitrarily close to a2
∫

RN

(
ϕ2(|r0 − v|)− r2

0

)2
dx

if EGL(v) is small enough and we infer that v satisfies the conclusion of Lemma 3.2.
In the general case, let u ∈ X be a function with small Ginzburg-Landau en-

ergy. First we choose a small h > 0, then we choose a minimizer vh of Gu
h,RN .

If the Ginzburg-Lndau energy EGL(u) is sufficiently small, we have || |vh − r0| −
r0 ||L∞(RN ) < δ, therefore the conclusion of Lemma 3.2 holds for vh. If h has been
chosen sufficiently small, vh is close to u and we can prove that the conclusion of
Lemma 3.2 also holds for u.

Using Lemma 3.2, it is easy to see that for any k > 0, the functional Ec is bounded
on {u ∈ X | EGL(u) ≤ k}. Let

Ec,min(k) = inf{Ec(u) | u ∈ X , EGL(u) = k}.
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Lemma 3.3. Assume that 0 < c < vs. The function Ec,min has the following prop-
erties:

i) There exists k0 > 0 such that Ec,min(k) > 0 for any k ∈ (0, k0).
ii) We have lim

k→∞
Ec,min(k) = −∞.

iii) For any k > 0 we have Ec,min(k) < k.

Part (i) follows directly from Lemma 3.2. Notice that in the case c > vs, Lemmas
3.2 and 3.3 (i) do not hold. More precisely, one can prove that the function k 7−→
Ec,min(k) is decreasing (and negative) on (0,∞).

From Lemma 3.3 we infer that
Sc := sup {Ec,min(k) | k > 0} > 0. (3.5)

Lemma 3.4. The set C = {u ∈ X | u 6= 0, Pc(u) = 0} is not empty and we have
Tc := inf {Ec(u) | u ∈ C} ≥ Sc > 0.

Proof. Let w ∈ X be such that Ec(w) < 0 (such functions exist by Lemma 3.3
(ii)). Then Pc(w) = Ec(w)− 2

N−1A(w) < 0 and we have

Pc(wσ,1) = 1
σ

∫
RN

∣∣∣∣ ∂w∂x1

∣∣∣∣2 dx+ N − 3
N − 1σA(w) + cQ(w) + σ

∫
RN

V (|r0−w|2) dx. (3.6)

Since Pc(w1,1) = Pc(w) < 0 and lim
σ→0

Pc(wσ,1) =∞, there exists σ0 ∈ (0, 1) such that
Pc(wσ0,1) = 0, that is wσ0,1 ∈ C.

For the second part, assume first that N ≥ 4. Let v ∈ C. Then A(v) > 0 and
Bc(v) = −N−3

N−1A(v) < 0. Using (3.4) we infer that σ 7−→ Ec(v1,σ) is increasing on
(0, 1] and decreasing on [1,∞), therefore it achieves its maximum at σ = 1. Fix k >
0. It is easy to see that there exists a unique σ(k, v) > 0 such that EGL(v1,σ(k,v)) = k.
Then

Ec,min(k) ≤ Ec(v1,σ(k,v)) ≤ Ec(v1,1) = Ec(v).
Take the sup for k ≥ 0 in the last inequality to get Sc ≤ Ec(v).

Now consider the case N = 3. Let v ∈ C. Then Ec(v1,σ) = Ec(v) = A(v) =
constant for σ > 0. Let k > 0. We distinguish two cases:
• If A(v) ≥ k, we have Ec(v) = A(v) ≥ k > Ec,min(k) by Lemma 3.3 (iii).
• If A(v) < k, there exists a unique σ(k, v) > 0 such that EGL(v1,σ(k,v)) = k. Then

Ec(v) = Ec(v1,σ(k,v)) ≥ Ec,min(k).
In both cases we get Ec(v) ≥ Ec,min(k) for any k > 0 and v ∈ C. Lemma 3.4 is

proved. �

Lemma 3.5. Let Tc be as in Lemma 3.4. Then:
i) For any w ∈ X with Pc(w) < 0 we have A(w) > N−1

2 Tc.
ii) Let (un)n≥1 ⊂ X be a sequence such that (EGL(un))n≥1 is bounded and lim

n→∞
Pc(un) =

µ < 0. Then lim inf
n→∞

A(un) > N−1
2 Tc.

Proof. We only prove part (i). Recall that Pc(wσ,1) is given by (3.6). As in
the proof of Lemma 3.3, there exists σ0 ∈ (0, 1) such that Pc(wσ0,1) = 0, and
consequently wσ0,1 ∈ C. Then we have Ec(wσ0,1) ≥ Tc and we infer that A(wσ0,1) =
N−1

2 (Ec(wσ0,1)− Pc(wσ0,1)) ≥ N−1
2 Tc. This implies A(w) = 1

σ0
A(wσ0,1) ≥ N−1

2
1
σ0
Tc >

N−1
2 Tc. �
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In order to prove Theorem 3.1, we show that he functional Ec has a minimizer in
C, then we prove that the minimizers satisfy (1.4). The proofs are quite different in
the case N = 3 and in the case N ≥ 4. We begin with the simpler case N ≥ 4.

Theorem 3.6. Let N ≥ 4. Let (un)n≥1 ⊂ X \ {0} be a sequence satisfying the
following properties:

Pc(un) −→ 0 and Ec(un) −→ Tc as n −→∞. (3.7)

Then there exists a subsequence (unk)k≥1, a sequence (xk)k≥1 ⊂ RN and u ∈ C such
that

∇unk(·+xk) −→ ∇u and ϕ2(|r0−unk(·+xk)|)−r2
0 −→ ϕ2(|r0−u|)−r2

0 in L2(RN).

Moreover, we have Ec(u) = Tc, that is u minimizes Ec in C.

Sketch of proof. Since A(un) = N−1
2 (Ec(un)− Pc(un)) −→ N−1

2 Tc, from (3.7) we
infer that (A(un))n≥1 is bounded. Then we prove that (EGL(un))n≥1 is bounded.
We use the concentration-compactness method of P.-L. Lions [Lio84] to prove the
convergence of a subsequence of (un)n≥1.

Passing to a subsequence, we may assume that EGL(un) −→ α0 > 0 as n −→∞.
Let qn(t) be the concentration function of EGL(un), that is

qn(t) = sup
x∈RN

E
B(x,t)
GL (un).

Each qn is a nondecreasing function on [0,∞) and tends to EGL(un) as t −→ ∞.
By a standard argument, there is a subsequence (still denoted (un)n≥1) and a non-
decreasing function q : [0,∞) −→ R+ such that qn(t) −→ q(t) as n −→ ∞ for a.e.
t ∈ [0,∞).

Let α = lim
t→∞

q(t). It is obvious that α ∈ [0, α0]. Our aim is to prove that the
energy of un "concentrates," that is α = α0.

The fact that α > 0 follows from the next lemma.

Lemma 3.7. Let (un)n≥1 ⊂ X be a sequence satisfying:

a) M1 ≤ EGL(un) ≤M2 for some positive constants M1, M2.

b) lim
n→∞

Pc(un) = 0.

There exists k > 0 such that sup
y∈RN

E
B(y,1)
GL (un) ≥ k for all sufficiently large n.

The proof of Lemma 3.7 is delicate. It relies on the regularization procedure
described above and on Lieb’s lemma ([Li83]). The main ideas are as follows:

1. Assume, by contradiction, that lim
n→∞

sup
x∈RN

E
B(x,1)
GL (un) = 0.

Then we prove that there is a sequence hn −→ 0 and for each n there is a
minimizer vn of Gun

hn,RN such that

|| |vn − r0| − r0||L∞(RN ) −→ 0 as n −→∞. (3.8)

XIV–13



2. Let ε ∈ (0, 1− c
vs

). Using (3.8), we argue as in the proof of Lemma 3.2 to show
that for n sufficiently large we have∫

RN

∣∣∣∣∂vn∂x1

∣∣∣∣2 dx+ N − 3
N − 1A(vn) +

∫
RN

V (|r0 − vn|2) dx+ cQ(un)

≥ ε
(∫

RN

∣∣∣∣∂vn∂x1

∣∣∣∣2 dx+ N − 3
N − 1A(vn) + a2

∫
RN

(
ϕ2(|r0 − vn|)− r2

0

)2
dx

) (3.9)

3. Since hn −→ 0, it is clear that vn is close to un for large n, hence (3.9) holds
as well for (un) instead of vn and for some ε1 ∈ (0, ε) instead of ε. This is in
contradiction with Pc(un) −→ 0 and EGL(un) ≥M1 > 0.

The next step is to prove that α 6∈ (0, α0). We argue again by contradiction and
we suppose that α ∈ (0, α0). Then a standard argument shows that there exists a
sequence Rn −→∞ and a sequence (xn)n≥1 ⊂ RN such that

E
B(xn,Rn)
GL (un) −→ α and E

RN\B(xn,2Rn)
GL (un) −→ α0 − α. (3.10)

Obviously, (3.10) implies

E
B(xn,2Rn)\B(xn,Rn)
GL (un) −→ 0.

Since the Ginzburg-Landau energy of un in the annulus B(xn, 2Rn) \ B(xn, Rn) is
small, using again the regularization procedure we infer that for each sufficiently
large n there exist two functions un,1 and un,2 such that r0 − un,1 = eiθn(r0 − un)
on B(xn, Rn) (where θn is a constant), supp(un,1) ⊂ B(xn, 2Rn), un,2 = un on
RN \B(xn, 2Rn) , un,2 is constant on B(xn, Rn) and

EGL(un,1) −→ α and EGL(un,2) −→ α0 − α, (3.11)

|A(un)− A(un,1)− A(un,2)| −→ 0, (3.12)

|Pc(un)− Pc(un,1)− Pc(un,2)| −→ 0 as n −→∞. (3.13)
It is easy to see that the sequences (Pc(un,i))n≥1 are bounded, i = 1, 2. Passing again
to a subsequence, we may assume that there exist two constants p1, p2 such that

Pc(un,1) −→ p1 and Pc(un,2) −→ p2 as n −→∞.

Then (3.13) implies that p1 + p2 = 0 and we distinguish two cases:

Case a: One of pi’s is negative, for instance p1 < 0. By Lemma 3.5 (ii) we get
lim inf
n→∞

A(un,1) > N−1
2 Tc. Then (3.12) implies lim inf

n→∞
A(un) > N−1

2 Tc and using the
fact that Pc(un) −→ 0 we find lim inf

n→∞
Ec(un) > Tc, in contradiction with the as-

sumption of Theorem 3.6.

Case b: We have p1 = p2 = 0. Then we use the next result.

Lemma 3.8. Let (un)n≥1 ⊂ X be a sequence satisfying the following properties:
a) There are C1, C2 > 0 such that C1 ≤ EGL(un) and A(un) ≤ C2 for any n ≥ 1.
b) Pc(un) −→ 0 as n −→∞.

Then lim inf
n→∞

Ec(un) ≥ Tc, where Tc is as in Lemma 3.4.
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If p1 = p2 = 0, by Lemma 3.8 we get lim inf
n→∞

Ec(un,i) ≥ Tc for i = 1, 2. Using
(3.12) and (3.13) we find lim inf

n→∞
Ec(un) ≥ 2Tc, which is a contradiction.

From the preceding arguments we infer that lim
t→∞

q(t) = α0. Then it is standard to
prove that there is a sequence (xn)n≥1 ⊂ RN such that, denoting ũn = un(· + xn),
we have:

for any ε > 0, there exist Rε > 0 and nε ∈ N∗ such that
E

RN\B(0,Rε)
GL (ũnk) < ε for any n ≥ nε.

(3.14)

Since (EGL(ũn))n≥1 is bounded, there is a subsequence (ũnk)k≥1 such that

ũnk ⇀ u weakly in D1,2(RN),
ũnk −→ u in Lploc(RN) and a.e. on RN .

(3.15)

It follows that u ∈ X and ϕ2(|r0− ũnk |)− r2
0 ⇀ ϕ2(|r0− u|)− r2

0 weakly in L2(RN).
Then we prove that

lim
k→∞

∫
RN

V (|r0 − ũnk |2) dx =
∫

RN
V (|r0 − u|2) dx (3.16)

and
lim
k→∞

Q(ũnk) = Q(u). (3.17)

Using (3.15), (3.16), (3.17) and Lemma 3.5 (i) we prove that the subsequence
(ũnk)k≥1 satisfies the conclusion of Theorem 3.6. �

Proposition 3.9. Assume that N ≥ 4, 0 ≤ c < vs, (C1) and one of the conditions
(C2) or (C3) are satisfied. Let u be a minimizer of Ec in C. Then u ∈ W 2,p

loc (RN),
∇u ∈ W 1,p(RN) for p ∈ [2,∞) and u is a solution of (3.1).

Proof. It is obvious that u minimizes the functional A under the constraint
Pc = 0 and then it is not hard to see that u satisfies an Euler-Lagrange equation
A′(u) = αP ′c(u).

We claim that α < 0. Indeed, suppose that α > 0. Let w be such that P ′c(u).w > 0.
Then for t < 0 and t close to zero we have Pc(u+ tw) < 0 and A(u+ tw) < A(u) =
N−1

2 Tc, in contradiction with Lemma 3.5 (i). We cannot have α = 0 because this
would imply A′(u) = 0, and thus u = 0. Consequently, we have α < 0 and the
Euler-Lagrange equation above is equivalent to

− ∂2u

∂x2
1
−
(
N − 3
N − 1 −

1
α

) N∑
k=2

∂2u

∂x2
k

+ icux1 + F (|r0 − u|2)(r0 − u) = 0. (3.18)

As in Proposition 2.2 we prove that u satisfies a Pohozaev identity analogous to
(2.2):

N − 3
N − 1

(
N − 3
N − 1 −

1
α

)
A(u) +Bc(u) = 0. (3.19)

From (3.19) and from the fact that Pc(u) = N−3
N−1A(u) + Bc(u) = 0 we infer that

1
α

= − 2
N−1 and u satisfies (3.1). Finally, the regularity of u follows from Proposition

2.1. �

In the three dimensional case the proof follows the same lines, but is technically
more difficult. This is mainly due to the invariance of the functionals A and Bc with
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respect to dilations in the (x2, x3)−variables and to the fact that in three dimensions

we have Pc = Bc, thus Pc does not contain the terms
∫

R3

∣∣∣∣ ∂v∂x2

∣∣∣∣2 dx and
∫

R3

∣∣∣∣ ∂v∂x3

∣∣∣∣2 dx.
For v ∈ X we denote

D(v) =
∫

R3

∣∣∣∣ ∂v∂x1

∣∣∣∣2 dx+ a2
∫

R3

(
ϕ2(|r0 − v|)− r2

0

)2
dx.

It is obvious that for any v ∈ X and σ > 0 we have
A(v1,σ) = A(v), Bc(v1,σ) = σ2Bc(v) and D(v1,σ) = σ2D(v). (3.20)
Unlike in the case N ≥ 4, (3.20) implies that there are sequences (un)n≥1 ⊂ C such

that Ec(un) −→ Tc and D(un) −→∞, and consequently EGL(un) −→∞. However,
(3.20) also implies that there are sequences (un)n≥1 ⊂ C such that Ec(un) −→ Tc
and D(un) = 1 for each n.

Let
Λc = {λ ∈ R | there is a sequence (un)n≥1 ⊂ X such that

D(un) ≥ 1, Bc(un) −→ 0 and A(un) −→ λ as n −→∞}.
Let λc = inf Λc. It is easy to see that Tc ∈ Λc, thus λc ≤ Tc. One can prove that
λc ≥ Sc, where Sc is given by (3.5), but we do not know whether Sc = Tc.

Our main result is

Theorem 3.10. Let N = 3. Let (un)n≥1 ⊂ X be a sequence satisfying
D(un) −→ 1, Bc(un) −→ 0 and A(un) −→ λc as n −→∞. (3.21)

There exists a subsquence (unk)k≥1, a sequence (xk)k≥1 ⊂ R3 and a function u ∈ C
such that
∇unk(·+ xk) −→ ∇u and |r0 − unk(·+ xk)|2 − r2

0 −→ |r0 − u|2 − r2
0 in L2(R3).

Moreover, we have Ec(u) = A(u) = Tc = λc and u is a minimizer of Ec in C.

If u minimizes Ec in C, proceeding as in the proof of Proposition 3.9 one can
show that there exists α < 0 such that A′(u) = αB′c(u). Then it is not hard to see
that there is σ > 0 such that u1,σ solves (3.1). The smoothness of solutions of (3.1)
follows from Proposition 2.1.

Finally, Lemma 3.5 implies that any minimizer of Ec in C is also a minimizer of
the functional Pc under the constraint A = N−1

2 Tc. Then it is an easy consequence
of the general symmetry results in [M09a] that after a translation, any of these
minimizers is axially symmetric with respect to Ox1.

4. Further results and remarks
The geometry of the functional Ec is different in the two-dimensional case and the
approach to find traveling waves presented in the previous section fails. It can be
proved that Lemmas 3.2 and 3.3 still hold and this implies that Ec has a mountain-
pass geometry for any c ∈ (0, vs). This suggests that finite energy traveling waves
should exist for any subsonic speed.

However, if ψ = r0 − u is a traveling wave, it satisfies the Pohozaev identities
(2.1) and (2.2). Let v ∈ X . It is easy to see that if ϕ = r0 − v satisfies (2.1), the
function λ 7−→ Ec(vλ,1) achieves its minimum at λ = 1, and if r0 − v satisfies (2.2),
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then σ 7−→ Ec(v1,σ) reaches its minimum at σ = 1. It can be proved that Ec has
no minimizers in the set C = {u ∈ X | u 6= 0, Pc(u) = 0}. Even if we consider the
smaller set of functions that satisfy the two Pohozaev identities, C0 = {u ∈ X | u 6=

0, Pc(u) = 0 and −
∫

R2

∣∣∣∣ ∂u∂x1

∣∣∣∣2 dx +
∫

R2

∣∣∣∣ ∂u∂x2

∣∣∣∣2 dx +
∫

R2
V (|r0 − u|2) dx = 0}, the

infimum of Ec on C0 is zero and it is never achieved.
A natural idea would be to use other constraints. For instance, it is possible to

minimize Ec under the constraint EGL = k. Then one would try to adjust the value
of k in order to get traveling waves. Unfortunately it seems extremely difficult to
control the Lagrange multipliers associated to minimizers. Notice that the advantage
of minimizing a functional in the set of functions that satisfy a Pohozaev identity
associated to this functional (as in the previous section) is that minimizers auto-
matically have the "good" Lagrange multiplier. This observation is valid in a much
more general context (see [M10]).

In the two-dimensional case, assumption (C3) becomes |F (s)| ≤ Csp0 for large s
and some p0 ∈ R. If it is satisfied, for any k > 0 the functional Ec has minimizers
in the set of functions u such that

∫
R2
|∇u|2 dx = k. Then we use scaling properties

in order to get rid of the Lagrange multipliers associated to minimizers. Following
this approach, we prove:

Theorem 4.1. ([CM10]) Let N = 2. Assume that F satisfies (C1) and one of the
assumptions (C2) or (C3). There exists a set A ⊂ (0, vs) such that 0 and vs are
limit points of A and Eq. (1.1) has finite energy traveling waves for any c ∈ A.

Since both the energy E and the momentum Q are conserved by the flow as-
sociated to (1.1), it is very natural to minimize E at constant momentum. More
precisely, consider the problem
(Pp) minimize Ec(u) in the set {u ∈ X | Q(u) = p}.
Clearly, any minimizer of (Pp) satisfies an Euler-Lagrange equation E ′(u)+c(u)Q′(u) =
0, thus any minimizer is a traveling wave and its speed is precisely its Lagrange mul-
tiplier.

In the case of the Gross-Pitaevskii equation, it has ben proved in [BGS09] that
(Pp) admits solutions for any p > 0 in dimension two, respectively for any p > p0
(where p0 > 0) in dimension three. The minimizers were obtained via a limit process.
The authors considered the same problem on tori RTN (N = 2, 3). They proved
the existence of minimizers on RTN and obtained estimates on these minimizers
uniformly in R, then passed to the limit as R −→∞ in order to get minimizers on
RN . This approach clearly gives the existence of minimizers, but it does not imply
the compactness of all minimizing sequences of (Pp), therefore it does not give the
orbital stability of the set of minimizers.

Denote
Emin(p) = inf{E(u) | u ∈ X , Q(u) = p}. (4.1)

If V ≥ 0, it can be proved that the function Emin is continuous, increasing, concave
and tends to infinity as p goes to infinity. If there exists s ≥ 0 such that V (s) < 0,
it can be proved that Emin(p) = −∞ for any p > 0, hence (Pp) does not admit
solutions. We have the following result:
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Theorem 4.2. ([CM10]) Let N ≥ 2. Assume that the assumptions (C1) and (C3)
are satisfied and, moreover, V > 0 on [0, r2

0) ∪ (r2
0,∞). There exists p0 ≥ 0 (with

p0 = 0 if N = 2) such that for any p > p0, any minimizing sequence of (Pp) has a
convergent subsequence.

More precisely, for any sequence (un)n≥1 ⊂ X such that Q(un) −→ p and E(un) −→
Emin(p), there exist a subsequence (unk)k≥1, a sequence (xk)k≥1 ⊂ RN and a function
u ∈ X such that

∇unk(·+xk) −→ ∇u and ϕ2(|r0−unk(·+xk)|)−r2
0 −→ ϕ2(|r0−u|)−r2

0 in L2(RN).

Moreover, u is a solution of (Pp).

In particular, Theorem 4.2 implies that for any p > p0, Eq. (1.1) admits traveling
waves u having momentum p, and moving with a speed c(u). Let Sp be the set of
minimizers of (Pp). It follows from Theorem 4.2 and a classical result in [CaLi82]
that Sp is orbitally stable under the flow of (1.1).

As we can see, the main advantage of considering the problem (Pp) is that the
set of minimizers is orbitally stable. Its disadvantages are the difficulty to control
Lagrange multipliers (which prevents us to prove that the speeds of traveling waves
found in this way cover a whole interval) and the fact that (Pp) does not have global
minimizers if V takes negative values.

The following result establishes the relationship between the minimizers of (Pp)
and the traveling waves obtained in section 3.

Proposition 4.3. ([CM10]) Let N ≥ 3. Under the assumptions of Theorem 4.2,
suppose that u is a minimizer of (Pp) (with p > p0) and that u satisfies the Euler-
Lagrange equation E ′(u) + c(u)Q′(u) = 0. Then u minimizes Ec(u) under the Po-
hozaev constraint Pc(u) = 0.

The converse of Proposition 4.3 is not true in general. For instance, in the case
of the three dimensional Gross-Pitaevskii equation it has been proved in [BGS09]
that there exists a critical speed v0 < vs such that any minimizer u of (Pp) (for
some p > 0) has a speed c(u) ≤ v0. However, we have seen in section 3 that for any
c ∈ (v0, vs) there are minimizers of Ec under the constraint Pc = 0 and any of them
is a traveling wave of speed c.
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