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Carleman estimates for elliptic operators with
jumps at an interface: Anisotropic case

and sharp geometric conditions
Jérôme Le Rousseau Nicolas Lerner

Abstract
We consider a second-order selfadjoint elliptic operator with an anisotropic

diffusion matrix having a jump across a smooth hypersurface. We prove the
existence of a weight-function such that a Carleman estimate holds true. We
moreover prove that the conditions imposed on the weight function are nec-
essary.

1. Introduction

1.1. Carleman estimates
Let P (x,Dx) be a differential operator defined on some open subset of Rn. A Car-
leman estimate for this operator is the following weighted a priori inequality

‖eτϕPw‖L2(Rn) & ‖eτϕw‖L2(Rn), (1.1)
where the weight function ϕ is real-valued with a non-vanishing gradient, τ is a large
positive parameter and w is any smooth compactly supported function. This type
of estimate was used for the first time in 1939 in T. Carleman’s article [5] to handle
uniqueness properties for the Cauchy problem for non-hyperbolic operators. To this
day, it remains essentially the only method to prove unique continuation properties
for ill-posed problems, in particular to handle uniqueness of the Cauchy problem for
elliptic operators with non-analytic coefficients. This tool has been refined, polished
and generalized by manifold authors and plays now a very important rôle in control
theory and inverse problems. The 1958 article by A.P. Calderón [4] gave a very
important development of the Carleman method with a proof of an estimate of
the form of (1.1) using a pseudo-differential factorization of the operator, giving a
new start to singular-integral methods in local analysis. In the article [7] and in
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his first PDE book (Chapter VIII, [8]), L. Hörmander showed that local methods
could provide the same estimates, with weaker assumptions on the regularity of the
coefficients of the operator.

For instance, for second-order elliptic operators with real coefficients1 in the prin-
cipal part, Lipschitz continuity of the coefficients suffices for a Carleman estimate to
hold and thus for unique continuation across a C 1 hypersurface. Naturally pseudo-
differential methods require more derivatives, at least tangentially, i.e., essentially
on each level surface of the weight function ϕ. Chapters 17 and 28 in the 1983-85
four-volume book [9] by L. Hörmander contain more references and results.

Furthermore, it was shown by A. Pliś [18] that Hölder continuity is not enough
to get unique continuation: this author constructed a real homogeneous linear dif-
ferential equation of second order and of elliptic type on R3 without the unique
continuation property although the coefficients are Hölder-continuous with any ex-
ponent less than one. The construction by K. Miller in [17] showed that Hölder
continuity2 is not enough to obtain unique continuation for second-order elliptic
operators, even in divergence form (see also the 1998 articles [3], [19] for the par-
ticular 2D case where boundedness is essentially enough to get unique continuation
for elliptic equations in the case of W 1,2 solutions).

1.2. Jump discontinuities
Although the situation seems to be almost completely clarified by the previous
results, with a minimal and somewhat necessary condition on Lipschitz continuity,
we are interested in the following second-order elliptic operator L,
Lw = − div(A(x)∇w), A(x) = (ajk(x))1≤j,k≤n = AT (x), inf

‖ξ‖Rn=1
〈A(x)ξ, ξ〉 > 0,

(1.2)
in which the matrix A has a jump discontinuity across a smooth hypersurface.
However we shall impose some stringent –yet natural– restrictions on the domain of
functions w, which will be required to satisfy some transmission conditions, detailed
in the next sections. Roughly speaking, it means that w must belong to the domain
of the operator, with continuity at the interface, so that ∇w remains bounded and
continuity of the flux across the interface, so that div(A∇w) remains bounded,
avoiding in particular the occurrence of a simple or multiple layer at the interface.

The article [6] by A. Doubova, A. Osses, and J.-P. Puel tackled that problem, in
the isotropic case (the matrix A is scalar c Id) with a monotonicity assumption: the
observation takes place in the region where the diffusion coefficient c is the ‘low-
est’. (Note that the work of [6] concerns the case of a parabolic operator but an
adaptation to an elliptic operator is straightforward.) In the one-dimensional case,
the monotonicity assumption was relaxed for general piecewise C 1 coefficients by
A. Benabdallah, Y. Dermenjian and J. Le Rousseau [2], and for coefficients with
bounded variations [11]. The case of an arbitrary dimension without any mono-
tonicity condition in the elliptic case was solved by J. Le Rousseau and L. Robbiano
in [11]: there the isotropic case is treated as well as a particular case of anisotropic

1The paper [1] by S. Alinhac shows nonunique continuation property for second-order elliptic
operators with non-conjugate roots; of course, if the coefficients of the principal part are real, this
is excluded.

2The counterexample of [17] is Hölder continuous with index 1/6.
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medium. An extension of their approach to the case of parabolic operators can be
found in [15].

The purpose of the present article is to show that a Carleman estimate can be
proven for any operator of type (1.2) without an isotropy assumption: A(x) is a
symmetric positive-definite matrix with a jump discontinuity across a smooth hy-
persurface. We also provide conditions on the Carleman weight function that are
rather simple to handle and we prove that they are sharp.

The approach we follow differs from that of [11] where the authors base their anal-
ysis on the usual Carleman method for certain microlocal regions and on Calderón
projectors for others. The regions they introduce are determined by the ellipticity
or non-ellipticity of the conjugated operator. Here, our approach is somewhat closer
to A. Calderón’s original work on unique continuation [4]: the conjugated operator
is factored out in first-order (pseudo-differential) operators for which estimates are
derived. Naturally, the quality of these estimates depends on their elliptic or non-
elliptic nature; we thus recover microlocal regions that correspond to that of [11].
Note that such a factorization is also used in [10] to prove Carleman estimates at a
boundary in the case of non-homogeneous boundary conditions.

1.3. Notation and statement of the main result
Let Ω be an open subset of Rn and Σ be a C∞ oriented hypersurface of Ω: we have
the partition

Ω = Ω+ ∪ Σ ∪ Ω−, Ω± = Ω± ∪ Σ, Ω± open subsets of Rn, (1.3)
and we introduce the following Heaviside-type functions

H± = 1Ω± . (1.4)
We consider the elliptic second-order operator

L = D · AD = − div(A(x)∇), (D = −i∇), (1.5)
where A(x) is a symmetric positive-definite n× n matrix, such that

A = H−A− +H+A+, A± ∈ C∞(Ω). (1.6)
We shall consider functions w of the following type:

w = H−w− +H+w+, w± ∈ C∞(Ω). (1.7)
We have dw = H−dw− + H+dw+ + (w+ − w−)δΣν, where δΣ is the Euclidean hy-
persurface measure on Σ and ν is the unit conormal vector field to Σ pointing into
Ω+. To remove the singular term, we assume

w+ = w− at Σ, (1.8)
so that Adw = H−A−dw− +H+A+dw+ and

div(Adw) = H− div (A−dw−) +H+ div (A+dw+) + 〈A+dw+ − A−dw−, ν〉δΣ.

Moreover, we shall assume that
〈A+dw+ − A−dw−, ν〉 = 0 at Σ, i.e. 〈dw+, A+ν〉 = 〈dw−, A−ν〉, (1.9)

so that
div(Adw) = H− div (A−dw−) +H+ div (A+dw+). (1.10)

XIII–3



Conditions (1.8)-(1.9) will be called transmission conditions on the function w and
we define the vector space

W = {H−w− +H+w+}w±∈C∞(Ω) satisfying (1.8)-(1.9). (1.11)
Note that (1.8) is a continuity condition of w across Σ and (1.9) is concerned with
the continuity of 〈Adw, ν〉 across Σ, i.e. the continuity of the flux of the vector field
Adw across Σ. A weight function “suitable for observation from Ω+” is defined as a
Lipschitz continuous function ϕ on Ω such that
ϕ = H−ϕ− +H+ϕ+, ϕ± ∈ C∞(Ω), ϕ+ = ϕ−, 〈dϕ±, X〉 > 0 at Σ, (1.12)

for any positively transverse vector field X to Σ (i.e. 〈ν,X〉 > 0).
Theorem 1.1. Let Ω,Σ,L,W be as in (1.3), (1.5) and (1.11). Then for any compact
subset K of Ω, there exist a weight function ϕ satisfying (1.12) and positive constants
C, τ1 such that for all τ ≥ τ1 and all w ∈ W with suppw ⊂ K,

C‖eτϕLw‖L2(Rn) ≥ τ
3
2‖eτϕw‖L2(Rn) + τ

1
2‖eτϕ∇w‖L2(Rn) + τ

3
2 |(eτϕw)|Σ|L2(Σ)

+ τ
1
2 |(eτϕ∇w+)|Σ|L2(Σ) + τ

1
2 |(eτϕ∇w−)|Σ|L2(Σ). (1.13)

Remark 1.2. It is important to notice that whenever a true discontinuity occurs
for the vector field Aν, then the space W does not contain C∞(Ω): the inclusion
C∞(Ω) ⊂ W implies from (1.9) that for all w ∈ C∞(Ω), 〈dw,A+ν − A−ν〉 = 0
at Σ so that A+ν = A−ν at Σ, that is continuity for Aν. The Carleman estimate
which is proven in the present paper takes naturally into account these transmission
conditions on the function w and it is important to keep in mind that the occurrence
of a jump is excluding many smooth functions from the spaceW . On the other hand,
we have W ⊂ Lip(Ω).

1.4. Sketch of the proof
We provide in this subsection an outline of the main arguments used in our proof.
To avoid technicalities, we somewhat simplify the geometric data and the weight
function, keeping of course the anisotropy. We consider the operator

L0 = ∑
1≤j≤n

DjcjDj, cj(x) = H+c
+
j +H−c

−
j , (1.14)

c±j positive constants, H± = 1{±xn>0}, (1.15)

with Dj = ∂
i∂xj

, and the vector spaceW0 of functions H+w++H−w−, w± ∈ C∞c (Rn),
such that
at xn = 0, w+ = w−, c

+
n ∂nw+ = c−n ∂nw− (transmission conditions across xn = 0). (1.16)

As a result, for w ∈ W0, we have Dnw = H+Dnw+ +H−Dnw− and
L0w = ∑

j
(H+c

+
j D

2
jw+ +H−c

−
j D

2
jw−). (1.17)

We also consider a weight function3

ϕ = (α+xn + βx2
n/2)︸ ︷︷ ︸

ϕ+

H+ + (α−xn + βx2
n/2)︸ ︷︷ ︸

ϕ−

H−, α± > 0, β > 0, (1.18)

3In the main text, we shall introduce some minimal requirements on weight function and suggest
other possible choices for ϕ.
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a positive parameter τ and the vector space Wτ of functions H+v+ + H−v−, v± ∈
C∞c (Rn), such that at xn = 0

v+ = v−, (1.19)
c+
n (Dnv+ + iτα+v+) = c−n (Dnv− + iτα−v−). (1.20)

Observe that w ∈ W0 ⇔ v = eτϕw ∈ Wτ . We have
eτϕL0w = eτϕL0e

−τϕ︸ ︷︷ ︸
Lτ

(eτϕw)

so that proving a weighted a priori estimate ‖eτϕL0w‖L2(Rn) & ‖eτϕw‖L2(Rn) for
w ∈ W0 amounts to getting ‖Lτv‖L2(Rn) & ‖v‖L2(Rn) for v ∈ Wτ .
Step 1: pseudo-differential factorization. Using Einstein convention on repeated
indices j ∈ {1, . . . , n− 1}, we have

Lτ = (Dn + iτϕ′)cn(Dn + iτϕ′) +DjcjDj

and for v ∈ Wτ , from (1.17), with m± = m±(D′) = (c±n )− 1
2 (c±j D2

j )
1
2 ,

Lτv = H+c
+
n

(
(Dn + iτϕ′+)2 +m2

+

)
v+ +H−c

−
n

(
(Dn + iτϕ′−)2 +m2

−

)
v−

so that

Lτv = H+c
+
n

(
Dn + i(

e+︷ ︸︸ ︷
τϕ′+ +m+)

)(
Dn + i(

f+︷ ︸︸ ︷
τϕ′+ −m+)

)
v+

+H−c
−
n

(
Dn + i(τϕ′− −m−︸ ︷︷ ︸

f−

)
)(
Dn + i(τϕ′− +m−︸ ︷︷ ︸

e−

)
)
v−. (1.21)

Note that e± are elliptic positive in the sense that e± = τα± + m± & τ + |D′|.
We want at this point to use some natural estimates for first-order factors on the
half-lines R±: on t > 0 for ω ∈ C∞c (R), λ, γ positive, we compute

‖Dtω + i(λ+ γt)ω‖2L2(R+) (1.22)
= ‖Dtω‖2L2(R+) + ‖(λ+ γt)ω‖2L2(R+) + 2 Re〈Dtω, iH(t)(λ+ γt)ω〉

≥
+∞
∫
0

(
(λ+ γt)2 + γ

)
|ω(t)|2dt+ λ|ω(0)|2 ≥ ‖λω‖2L2(R+) + λ|ω(0)|2,

which is somehow a perfect estimate of elliptic type, suggesting that the first-order
factor containing e+ should be easy to handle.

Changing λ in −λ gives
‖Dtω + i(−λ+ γt)ω‖2L2(R+) ≥ 2 Re〈Dtω, iH(t)(−λ+ γt)ω〉

=
+∞
∫
0
γ|ω(t)|2dt− λ|ω(0)|2,

so that
‖Dtω + i(−λ+ γt)ω‖2L2(R+) + λ|ω(0)|2 ≥ γ‖ω‖2L2(R+), (1.23)

an estimate of lesser quality, because we need to secure a control of ω(0) to handle
this type of factor.

Now, changing λ in −λ and t in −t, i.e., working on the negative half-line, yields
‖Dtω + i(λ+ γt)ω‖2L2(R−) ≥ ‖λω‖2L2(R−) + λ|ω(0)|2. (1.24)
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suggesting that the first-order factor containing f− should be useful in the case
f− < 0.

Step 2: case f+ ≥ 0. Looking at formula (1.21), since the factor containing e+ is
elliptic in the sense given above, we have to discuss on the sign of f+. Identifying
the operator with its symbol, we have f+ = τ(α+ + βxn)−m+(ξ′), and thus τα+ ≥
m+(ξ′) yields a positive f+. Iterating the method outlined above on the half-line R+,
we get a nice estimate of the form of (1.22) on R+; in particular we obtain a control
of v+(0). From the transmission condition, we have v+(0) = v−(0) and hence this
amounts to also controlling v−(0). That control along with the natural estimates on
R− are enough to prove an inequality of the form of the sought Carleman estimate.

Step 3: case f+ < 0. Here, we assume that τα+ < m+(ξ′). We can still use on R+
the factor containing e+, and by (1.21) and (1.22) control the following quantity

c+
n (Dn + if+)v+(0) =

=V+︷ ︸︸ ︷
c+
n (Dnv+ + iτα+)v+(0)−c+

n im+v+(0). (1.25)

Our key assumption is
f+(0) < 0 =⇒ f−(0) ≤ 0. (1.26)

Under that hypothesis, we can use the negative factor f− on R− (note that f− is
increasing with xn, so that f−(0) ≤ 0 =⇒ f−(xn) < 0 for xn < 0). With (1.24) we
then control

c−n (Dn + ie−)v−(0) = c−n (Dnv− + iτα−)v−(0)︸ ︷︷ ︸
=V−

+c−n im−v−(0). (1.27)

Because of (1.23) we conclude that nothing more can be achieved with inequalities
on each side of the interface. At this point we however notice that the second trans-
mission condition in (1.20) implies V− = V+, yielding the control of the difference
of (1.27) and (1.25), i.e., of

c−n im−v−(0) + c+
n im+v+(0) = i

(
c−nm− + c+

nm+
)
v(0).

Now, as c−nm−+ c+
nm+ is elliptic positive, this gives a control of v(0) in (tangential)

H1-norm, which is enough then to get an estimates on both sides that leads to the
sought Carleman estimates.

Step 4: stitching estimates together. The analysis we have sketched relies on a
separation into two zones in the (τ, ξ′) space. Patching the estimates of the form
of (1.13) in each zone together allows us to conclude the proof of the Carleman
estimate.

1.5. Explaining the key assumption
In the first place, our key assumption, condition (1.26), can be reformulated as

∀ξ′ ∈ Sn−2,
α+

α−
≥ m+(ξ′)
m−(ξ′) . (1.28)
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In fact4, (1.26) means τα+ < m+(ξ′) =⇒ τα− ≤ m−(ξ′) and since α±,m± are
all positive, this is equivalent to having m+(ξ′)/α+ ≤ m−(ξ′)/α−, which is (1.28).
An analogy with an estimate for a first-order factor may shed some light on this
condition. With
f(t) = H(t)(τα++βt−m+)+H(−t)(τα−+βt−m−), τ, α±, β,m± positive constants,

we want to prove an injectivity estimate of the type ‖Dtv+ if(t)v‖L2(R) & ‖v‖L2(R),
say for v ∈ C∞c (R). It is a classical fact (see e.g. Lemma 3.1.1 in [16]) that such
an estimate (for a smooth f) is equivalent to the condition that t 7→ f(t) does
not change sign from + to − while t increases: it means that the adjoint operator
Dt − if(t) satisfies the so-called condition (Ψ). Looking at the function f , we see
that it increases on each half-line R±, so that the only place to get a “forbidden”
change of sign from + to − is at t = 0: to obtain an injectivity estimate, we have to
avoid the situation where f(0+) < 0 and f(0−) > 0, that is, we have to make sure
that f(0+) < 0 =⇒ f(0−) ≤ 0, which is indeed the condition (1.28). The function
f is increasing affine on R± with the same slope β on both sides, with a possible
discontinuity at 0.

Figure 1.1: f(0−) ≤ 0; f(0+) < 0.

When f(0+) < 0 we should have f(0−) ≤ 0 and the line on the left cannot go
above the dotted line, in such a way that the discontinuous zigzag curve with the
arrows in Figure 1.1 has only a change of sign from − to +.

When f(0+) ≥ 0, there is no other constraint on f(0−): even with a discontinuity,
the change of sign can only occur from − to +.

We prove below (Section 5) that condition (1.28) is relevant to our problem in
the sense that it is indeed necessary to have a Carleman estimate with this weight:
should (1.28) be violated, we would be able for this model to construct a quasi-mode
for Lτ , i.e. a τ -family of functions v with L2-norm 1 such that ‖Lτv‖L2 � ‖v‖L2 , as

4For the main theorem, we shall in fact require the stronger strict inequality
α+

α−
>
m+(ξ′)
m−(ξ′)

. (1.29)

However, we shall see in Section 5 that in the particular case presented here, where the matrix
A is piecewise constant and the weight function ϕ solely depends on xn the inequality (1.28) is
actually a necessary and sufficient condition to obtain a Carleman estimate with weight ϕ.
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Figure 1.2: f(0−) ≷ 0; f(0+) ≥ 0.

τ goes to∞, ruining any hope to prove a Carleman estimate. As usual for this type
of construction, it uses some type of complex geometrical optics method, which is
easy in this case to implement directly, due to the simplicity of the expression of
the operator.

Remark 1.3. A very particular case of anisotropic medium was tackled in [14] for
the purpose of proving a controllability result for linear parabolic equations. The
condition imposed on the weight function in [14] (Assumption 2.1 therein) is much
more demanding than what we impose here. In the isotropic case, c±j = c± for all
j ∈ {1, . . . , n}, we have m+ = m− = |ξ′| and our condition (1.29) reads α+ > α−.
Note also that the isotropic case c− ≥ c+ was already considered in [6].

2. Framework

2.1. Preliminaries
Let Ω,Σ,L,W , ϕ be as in (1.3), (1.5), (1.11) and (1.12). LetW0 = {w ∈ W , suppw compact}.
For τ ≥ 0 we define the vector space

Wτ = {eτϕw}w∈W0 (2.1)

For v ∈ Wτ , we have v = eτϕw with w ∈ W0 so that, using the notation introduced
in (1.4), (1.7), with v± = eτϕ±w±, we have

v = H−v− +H+v+, (2.2)

and we see that the transmission conditions (1.8)–(1.9) on w read for v as

v+ = v− at Σ,
〈dv+ − τv+dϕ+, A+ν〉 = 〈dv− − τv−dϕ−, A−ν〉 at Σ.

(2.3)
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Observing that eτϕ±De−τϕ± = D + iτdϕ±, for w ∈ W , we obtain from (1.10),
eτϕLw
= H−e

τϕ−D · A−Dw− +H+e
τϕ+D · A+Dw+

= H−e
τϕ−D · A−De−τϕ−v− +H+e

τϕ+D · A+De
−τϕ+v+

= H−(D + iτdϕ−) · A−(D + iτdϕ−)v− +H+(D + iτdϕ+) · A+(D + iτdϕ+)v+,

so that,

‖eτϕLw‖2L2(Rn) = ‖eτϕLe−τϕv‖2L2(Rn) =
∫

Ω−
|(D+ iτdϕ−) ·A−(D+ iτdϕ−)v−|2dx+ ∫

Ω+

|(D+ iτdϕ+) ·A+(D+ iτdϕ+)v+|2dx.

(2.4)
Summing-up, with

Ξ = {positive-definite n× n matrices},
we consider A± ∈ C∞(Ω; Ξ), ϕ± ∈ C∞(Ω), v± ∈ C∞c (Ω) such that

v+ = v−, ϕ+ = ϕ−, 〈dv− − τdϕ−, A−ν〉 = 〈dv+ − τdϕ+, A+ν〉 at Σ. (2.5)
We define

P± = (D + iτdϕ±) · A±(D + iτdϕ±). (2.6)
From the identity (2.4), proving Theorem 1.1 amounts to finding a proper lower-
bound for the quantity

‖H−P−v−‖2L2(Rn) + ‖H+P+v+‖2L2(Rn) = ‖eτϕLe−τϕv‖2L2(Rn). (2.7)

2.2. Description in local coordinates
Assuming as we may that the hypersurface Σ is given locally by the equation {xn =
0}, we have, using the Einstein convention on repeated indices j ∈ {1, . . . , n −
1}, and noting from the ellipticity condition that ann > 0 (the matrix A(x) =
(ajk(x))1≤j,k≤n),

L = DnannDn +DnanjDj +DjajnDn +DjajkDk,

= Dnann
(
Dn + a−1

nnanjDj
)

+DjajnDn +DjajkDk,

so that the transmission conditions (1.8)–(1.9) on xn = 0, are
w+ = w−, a+

nnDnw+ + a+
njDjw+ = a−nnDnw− + a−njDjw−. (2.8)

We note also that with
T = a−1

nnanjDj, (2.9)
we have
L =

(
Dn + T ∗)ann

(
Dn + T

)
− T ∗annDn − T ∗annT +DjajnDn +DjajkDk

and since T ∗ = Dja
−1
nnanj, we have T ∗annDn = DjanjDn = DjajnDn and

L =
(
Dn + T ∗)ann

(
Dn + T

)
+DjbjkDk, (2.10)

where the (n−1)×(n−1) matrix (bjk) is positive-definite since with ξ′ = (ξ1, . . . , ξn−1)
and ξ = (ξ′, ξn),

〈Bξ′, ξ′〉 = ∑
1≤j,k≤n−1

bjkξjξk = 〈Aξ, ξ〉,
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where annξn = −∑1≤j≤n−1 anjξj. Note also that bjk = ajk − (anjank/ann).
According to (1.10), for w ∈ W , we have

Lw = H−
[
(Dn + T ∗−)a−nn(Dn + T−)w− +Djb

−
jkDkw−

]
+H+

[
(Dn + T ∗+)a+

nn(Dn + T+)w+ +Djb
+
jkDkw+

]
(2.11)

and the transmission conditions (1.8), (1.9) read
w− = w+, a−nn(Dn + T−)w− = a+

nn(Dn + T+)w+, at Σ. (2.12)

2.3. Pseudo-differential factorization on each side
For simplicity we consider here the weight function ϕ = H+ϕ+ + H−ϕ− with ϕ±
that solely depend on xn.

We define for m ∈ R the class of tangential standard symbols Sm as the smooth
functions on Rn × Rn−1 such that, for all (α, β) ∈ Nn × Nn−1,

sup
(x,ξ′)∈Rn×Rn−1

〈ξ′〉−m+|β||(∂αx∂
β
ξ′a)(x, ξ′)| <∞, (2.13)

with 〈ξ′〉 =
(
1 + |ξ′|2

) 1
2 . Some basic properties of standard pseudo-differential oper-

ators are recalled in Appendix A.
Section 2.2 and formulæ (2.6), (2.11) gives

P± =
(
Dn + iτϕ′± + T ∗±

)
a±nn
(
Dn + iτϕ′± + T±

)
+Djb

±
jkDk. (2.14)

Let M± ∈ op(S1) be the principal part of a pseudo-differential positive selfadjoint
square root ofDjbjkDk. We denote bym± its principal symbol. We havem± ≥ C〈ξ′〉.
For |ξ′| sufficiently large, say |ξ′| ≥ 1, we have

m± =
( b±jk
a±nn

ξjξk

) 1
2
. (2.15)

In particular m± is homogeneous of degree one in ξ′, for |ξ′| ≥ 1.
Introduce

Σ1 = S1 + τS0 + S0ξn, Ψ1 = op(S1) + τop(S0) + op(S0)Dn. (2.16)
Modulo the operator class Ψ1 we may write

P+ ≡ PE+a
+
nnPF+, P− ≡ PF−a−nnPE−, (2.17)

where
PE± = Dn + S± + i(τϕ′± +M±︸ ︷︷ ︸

E±

), PF± = Dn + S± + i(τϕ′± −M±︸ ︷︷ ︸
F±

), (2.18)

with

S± = sw(x,D′), s± = ∑
1≤j≤n−1

a±nj
a±nn

ξj, so that S∗± = S±, S± = T± + 1
2 div T±,

where T± is the vector field ∑1≤j≤n−1
a±nj
ia±nn

∂j.
We denote by f± and e± the symbols of F± and E± respectively, modulo the

symbol class Σ1.
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The transmission conditions (2.5) with our choice of coordinates read, at xn = 0,
v− = v+, a−nn(Dn + T− + iτϕ′−)v− = a+

nn(Dn + T+ + iτϕ′+)v+. (2.19)
Remark 2.1. Note that the Carleman estimate we shall prove is insensitive to
terms in Ψ1 in the conjugated operator P . Formulæ (2.17) and (2.18) for P+ and
P− will thus be the base of our analysis.
Remark 2.2. In the articles [14, 15], the zero crossing of the roots of the symbol
of P±, as seen as a polynomial in ξn, is analysed. Here, the factorization into first-
order operators isolates each root. In fact, f± changes sign and we shall impose a
condition on the weight function at the interface to obtain a certain scheme for this
sign change. See Section 4.

2.4. Choice of weight-function
From (2.14), the symbols of P±, modulo the symbol class Σ1, are given by p±(x, ξ, τ) =
a±nn
(
q±2 + 2iq±1

)
with

q±2 = (ξn + s±)2 +
b±jk
a±nn

ξjξk − τ 2(ϕ′±)2, q±1 = τϕ′±(ξn + s±),

and from the construction of m±, for |ξ′| ≥ 1, we have
q±2 = (ξn + s±)2 +m2

± − (τϕ′±)2 = (ξn + s±)2 − f±e±. (2.20)
We formulate the usual sub-ellipticity condition on the weight function.

Assumption 2.3. The weight function ϕ is such that
q±2 = 0 and q±1 = 0 =⇒ {q±2 , q±1 } > 0,

It is important to note that this property is coordinate free. For elliptic operators
with smooth coefficients this property is necessary and sufficient for a Carleman
estimate as that of Theorem 1.1 to hold (see [8] or e.g. [12]).

There are various “classical” forms for the weight function ϕ. For instance, one
may use

ϕ±(xn) = α±xn + βx2
n/2, α± > 0, β > 0, (2.21)

as already used in the sketch of the proof in the introductory section. One may also
use ϕ(xn) = eβφ(xn) with the function φ of the form

φ = H−φ− +H+φ+, φ± ∈ C∞c (R),
such that φ is continuous and |φ′±| ≥ C > 0. In both cases, Assumption 2.3 can be
achieved by choosing the parameter β sufficiently large. In any case we set

α± = ϕ′|xn=0± .

Of course, with the present non-smooth coefficient case, we shall impose some con-
ditions on the constants α±, depending on the jump discontinuities of the matrix
A. This will be exposed in Section 4.

The sub-ellipticity condition above implies the following lemma.
Lemma 2.4. Let λ2 = 1 + τ 2 + |ξ′|2.There exist C > 0, C ′ > 0 τ1 > 1 and δ > 0
such that for τ ≥ τ0

|f±| ≤ δλ =⇒ τ/C ≤ |ξ′| ≤ Cτ and {ξn + s±, f±} ≥ C ′λ.
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3. Estimates for first-order factors
Most of the pseudo-differential calculus arguments we use concern the calculus with
the large parameter τ presented in Appendix A.2.

The L2(Rn) and L2(Rn−1) dot-products will be both denoted by 〈·, ·〉. Sobolev
norms with the positive parameter τ are denoted as follows

|v|Hσ = τσ|v|L2(Rn−1) + |〈Dx′〉σv|L2(Rn−1), σ ≥ 0. (3.1)

3.1. Positive imaginary part on a half-line
We have the following estimates for the operators PE+ and PE− given in (2.18).
They can be proven with multiplier techniques.

Lemma 3.1. Let ` ≥ 0. There exists τ1 ≥ 1 such that
‖H+PE+ω‖L2(R;H`) & |ω|xn=0+ |

H`+
1
2

+ ‖H+ω‖L2(R;H`+1) + ‖H+Dnω‖L2(R;H`), (3.2)
and
‖H−PE−ω‖L2(R;H`) + |ω|xn=0−|H`+ 1

2
& ‖H−ω‖L2(R;H`+1) + ‖H−Dnω‖L2(R;H`), (3.3)

for τ ≥ τ1 and ω ∈ C∞c (Rn).

Note that the first estimate, in R+, is of very good quality as both the trace and
the volume norms are dominated: we have a perfect elliptic estimate. In R−, we
obtain an estimate of lesser quality.

For the operator PF+ we can also obtain a microlocal estimate. We place ourselves
in a microlocal region where f+ = τϕ+−m+ is positive. More precisely, let χ(τ, ξ′) ∈
S(λ0), a Fourier multiplier, be such that |ξ′| ≤ Cτ and f+ ≥ C1λ in supp(χ), C1 > 0.

Lemma 3.2. Let ` ≥ 0. There exists τ1 ≥ 1 such that

‖H+PF+opw(χ)ω‖L2(R;H`) + ‖H+ω‖L2(Rn)

& |opw(χ)ω|xn=0+ |
H`+

1
2

+ ‖H+opw(χ)ω‖L2(R;H`+1),+‖H+Dnopw(χ)ω‖L2(R;H`),

for τ ≥ τ1 and ω ∈ C∞c (Rn).

As for (3.2) of Lemma 3.1, up to an harmless remainder term, we thus obtain an
elliptic estimate in this microlocal region.

3.2. Negative imaginary part on the negative half-line
Here we place ourselves in a microlocal region where f− = τϕ− −m− is negative.
More precisely, let χ(τ, ξ′) ∈ S(λ0), a Fourier multiplier, be such that |ξ′| ≥ Cτ
and f− ≤ −C1λ in supp(χ), C1 > 0. We have the following lemma whose form is
adapted to our needs in the next section. Up to harmless remainder terms, this can
also be considered as an elliptic estimate.

Lemma 3.3. There exists τ1 ≥ 1 such that
‖H−PF−u‖L2(Rn) + ‖H−ω‖L2(Rn) + ‖H−Dnω‖L2(Rn) & |u|xn=0−|H 1

2
+ ‖H−u‖L2(R;H1),

(3.4)
for τ ≥ τ1 and u = a−nnPE−opw(χ)ω with ω ∈ C∞c (Rn).
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3.3. Increasing imaginary part on a half-line
The following estimate can be proven by classical techniques for Carleman estimates
using Lemma 2.4, i.e., the sub-ellipticity property of the weight function. This esti-
mate exhibits a loss of a half derivative.
Lemma 3.4. There exists τ1 ≥ 1 such that

‖H±PF±ω‖L2(R;H`) + |ω|xn=0±|H`+ 1
2

& τ−
1
2

(
‖H±ω‖L2(R;H`+1) + ‖H±Dnω‖L2(R;H`)

)
,

for τ ≥ τ1 and ω ∈ C∞c (Rn).
Remark 3.5. Observe that in any region where τ & |ξ′| the operator M± ∈ op(S1)
is not in the calculus with the large parameter. This can create difficulties in some
of the proofs of the estimates below. This technical point can be circumvented by
introducing a cut-off function in (τ, ξ′). These details are omitted here. They can be
found in [13].

4. Proof of the Carleman estimate

4.1. The geometric hypothesis
The operators M± have a principal symbol m±(x, ξ′) in S1, which is positively-
homogeneous5 of degree 1 and elliptic, i.e. there exists λ±0 , λ±1 positive such that for
|ξ′| ≥ 1, x ∈ Rn,

λ±0 |ξ′| ≤ m±(x, ξ′) ≤ λ±1 |ξ′|. (4.1)
Our main assumption is the following.
Assumption 4.1. The weight function ϕ is chosen such that

α+

α−
>
λ+

1

λ−0
, α± = ∂xnϕ±|xn=0± . (4.2)

Let us explain the immediate consequences of that assumption: first of all, we can
reformulate it by saying that

∃σ > 1, α+

α−
= σ2λ

+
1

λ−0
. (4.3)

Let 1 < σ0 < σ.
First, consider (ξ′, τ) ∈ Rn−1 × R+,∗ such that

τα+ ≥ σ0λ
+
1 |ξ′|. (4.4)

Observe that we then have
τα+ −m+(x, ξ′) ≥ τα+ − λ+

1 |ξ′| ≥ τα+(1− σ−1
0 )

≥ σ0 − 1
2σ0

τα+ + σ0 − 1
2 λ+

1 |ξ′| ≥ Cλ.

As f+ = τ(ϕ′ − α+) + τα+ −m+(x, ξ′), for the support of v+ sufficiently small, we
obtain f+ ≥ Cλ, which means that f+ is elliptic positive in that region.

Second, if we now have
τα+ ≤ σλ+

1 |ξ′|, (4.5)

5The homogeneity property means as usual m±(x, ρξ′) = ρm±(x, ξ′) for ρ ≥ 1, |ξ′| ≥ 1.
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Figure 4.1: The overlapping cones Γσ0 , Γ̃σ in the τ, |ξ′| plane.

we get (note that ξ′ 6= 0 since τ > 0) that τα− ≤ σ−1λ−0 |ξ′|: otherwise we would
have τα− > σ−1λ−0 |ξ′| and thus

λ−0 |ξ′|
σα−

< τ ≤ σλ+
1 |ξ′|
α+

=⇒ α+

α−
< σ2λ

+
1

λ−0
= α+

α−
which is impossible.

As a consequence we have

τα− −m−(x, ξ′) ≤ τα− − λ−0 |ξ′| ≤ −λ−0 |ξ′|
(σ − 1)
σ

≤ −λ−0 |ξ′|
(σ − 1)

2σ − (σ − 1)
2 τα− ≤ −Cλ. (4.6)

With f− = τ(ϕ′ − α−) + τα− −m−(x, ξ′), for the support of v− sufficiently small,
we obtain f− ≤ −Cλ, which means that f− is elliptic negative in that region.

We have thus proven the following result.

Lemma 4.2. Let σ > σ0 > 1, and α±, λ
+
1 , λ

+
0 be positive numbers such that (4.3)

holds. For s > 0, we define the following cones in Rn−1
ξ′ × R∗+ by

Γs ≡ τα+ > sλ+
1 |ξ′|, Γ̃s ≡ τα+ < sλ+

1 |ξ′|.

For the compact set K sufficiently small, we have Rn−1 × R∗+ = Γσ0 ∪ Γ̃σ and

Γσ0 ⊂
{

(ξ′, τ) ∈ Rn−1× R∗+,∀xn ≥ 0, x ∈ supp(v+) ⊂ K, f+(x, ξ′) ≥ Cλ
}
, (4.7)

Γ̃σ ⊂
{

(ξ′, τ)∈Rn−1× R∗+,∀xn ≤ 0, , x ∈ supp(v−) ⊂ K, f−(x, ξ′) ≤ −Cλ
}
. (4.8)

N.B. The key result for the sequel is that Assumption (4.2) is securing the fact that
the overlapping open cones Γσ0 , Γ̃σ are such that on Γσ0 , f+ is elliptic positive and on
Γ̃σ, f− is elliptic negative (for the calculus with a large parameter of Appendix A.2).
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Using a partition of unity and symbolic calculus, we shall be able to assume that
either F+ is elliptic positive, or F− is elliptic negative.

With the two overlapping cones, for τ ≥ τ2, we introduce an homogeneous parti-
tion of unity

1 = χ0(ξ′, τ) + χ1(ξ′, τ), supp(χ0) ⊂ Γσ0︸ ︷︷ ︸
|ξ′|.τ, f+ elliptic > 0

, supp(χ1) ⊂ Γ̃σ︸ ︷︷ ︸
|ξ′|&τ, f− elliptic < 0

. (4.9)

We have χ0, χ1 ∈ S(λ0). with these Fourier multipliers we associate the following
operators.

Ξj = op(χj), j = 0, 1 and we have Ξ2
0 + Ξ2

1 = Id. (4.10)
From the transmission conditions (2.19) we find

Ξjv−|xn=0− = Ξjv+|xn=0+ = Ξjv|xn=0+ , (4.11)
and

a−nn(Dn + T− + iτϕ′−)Ξjv−|xn=0− = a+
nn(Dn + T+ + iτϕ′+)Ξjv+|xn=0+

+ opw(κ0)v|xn=0+ , j = 0, 1,

with κ0 ∈ S(λ0), that originates from commutators. Defining Vj,± = a±nn(Dn+S±+
iτϕ′±)Ξjv±|xn=0± we find

Vj,− = Vj,+ + opw(κ1)v|xn=0+ , κ1 ∈ S(λ0). (4.12)
We shall now prove microlocal Carleman estimates in the two overlapping regions,
Γσ0 and Γ̃σ

4.2. Region Γσ0: both roots are positive on the positive half-
line

On the one hand, From Lemma 3.1 we have
‖H+P+Ξ0v+‖L2(Rn) & |V0,+ − ia+

nnM+Ξ0v+|xn=0+ |H 1
2

+ ‖H+PF+Ξ0v+‖L2(R;H1).

(4.13)
The ellipticity of F+ on the support of χ0 allows us to reiterate the estimate by
Lemma 3.2 to obtain

‖H+P+Ξ0v+‖L2(Rn) + ‖H+v+‖L2(Rn) & |V0,+ − ia+
nnM+Ξ0v+|xn=0+ |H 1

2

+ |Ξ0v+|xn=0+ |H 3
2

+ ‖H+Ξ0v+‖L2(R,H2) + ‖H+DnΞ0v+‖L2(R,H1).

Since we have also
|V0,+|H 1

2
. |V0,+ − ia+

nnM+Ξ0v+|xn=0+ |H 1
2

+ |Ξ0v+|xn=0+ |H 3
2
, (4.14)

we obtain

‖H+P+Ξ0v+‖L2(Rn) + ‖H+v+‖L2(Rn) & |V0,+|H 1
2

+ |Ξ0v+|xn=0+ |H 3
2

+ ‖H+Ξ0v+‖L2(R,H2) + ‖H+DnΞ0v+‖L2(R,H1). (4.15)
On the other hand, with Lemma 3.4 we have

‖H−P−Ξ0v−‖L2(Rn) + |V0,− + ia−nnM−Ξ0v−|xn=0−|H 1
2

& τ−
1
2‖H−PE−Ξ0v−‖L2(R;H1),
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which with Lemma 3.1 yields

‖H−P−Ξ0v−‖L2(Rn) + |V0,− + ia−nnM−Ξ0v−|xn=0−|H 1
2

+ τ−
1
2 |Ξ0v−|xn=0−|H 3

2

& τ−
1
2

(
‖H−Ξ0v−‖L2(R;H2) + ‖H−Ξ0Dnv−‖L2(R;H1)

)
.

Arguing as for (4.14) we find

‖H−P−Ξ0v−‖L2(Rn) + |V0,−|H 1
2

+ |Ξ0v−|xn=0−|H 3
2

& τ−
1
2

(
‖H−Ξ0v−‖L2(R;H2) + ‖H−Ξ0Dnv−‖L2(R;H1)

)
. (4.16)

Now, from the transmission conditions (4.11)–(4.12), by summing ε(4.16)+(4.15)
we obtain

‖H−P−Ξ0v−‖L2(Rn) + ‖H+P+Ξ0v+‖L2(Rn) + ‖H+v+‖L2(Rn)

& |V0,−|H 1
2

+ |V0,+|H 1
2

+ |Ξ0v|xn=0|H 3
2

+ τ−
1
2

(
‖Ξ0v‖L2(R;H2) + ‖H−Ξ0Dnv−‖L2(R;H1) + ‖H+Ξ0Dnv+‖L2(R;H1)

)
.

by choosing ε > 0 sufficiently small and τ sufficiently large. Finally, recalling the
form of V0,± we obtain

‖H−P−Ξ0v−‖L2(Rn) + ‖H+P+Ξ0v+‖L2(Rn) + ‖H+v+‖L2(Rn) (4.17)
& |Ξ0Dnv−|xn=0−|H 1

2
|Ξ0Dnv+|xn=0+ |H 1

2
+ |Ξ0v|xn=0|H 3

2

+ τ−
1
2

(
‖Ξ0v‖L2(R;H2) + ‖H−Ξ0Dnv−‖L2(R;H1) + +‖H+Ξ0Dnv+‖L2(R;H1)

)
.

4.3. Region Γ̃σ: only one root is positive on the positive half-
line

This case is more difficult a priori since we cannot expect to control v|xn=0+ directly
from the estimates of the first-order factors. Nevertheless when the positive ellipticity
of F+ is violated, the complement of Γ+

σ0 is included in Γ−σ in which F− is elliptic
negative: this is the result of our main geometric assumption in Lemma 4.2.

As in (4.13) we have

‖H+P+Ξ1v+‖L2(Rn) & |V1,+ − ia+
nnM+Ξ1v+|xn=0+ |H 1

2
+ ‖H+PF+Ξ1v+‖L2(R;H1).

and using Lemma 3.3 for the negative half-line, we have

‖H−P−Ξ1v−‖L2(Rn) + ‖H−v−‖L2(Rn) + ‖H−Dnv−‖L2(Rn)

& |V1,− + ia−nnM−Ξ1v−||xn=0−|H 1
2

+ ‖H−PE−Ξ1v−‖L2(R;H1),

A quick glance at the above estimate shows that none could be iterated in a favorable
manner, since F+ could be negative on the positive half-line and E− is indeed positive
on the negative half-line. We have to use the additional information given by the
transmission conditions. From the above inequalities, we control

|V1,− + ia−nnM−Ξ1v−|xn=0−|H 1
2

+ | − V1,+ + ia+
nnM+Ξ1v+|xn=0+ |H 1

2
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which, by transmission conditions (4.11)–(4.12) implies the control of
|V1,− − V1,+ia

−
nnM−Ξ1v−|xn=0− + ia+

nnM+Ξ1v+|xn=0+ |H 1
2

= |
(
opw(κ1) + a−nnM− + a+

nnM+
)
Ξ1v|xn=0|H 1

2

For τ sufficiently large, the positivity of m± yields

|V1,− + ia−nnM−Ξ1v−|xn=0−|H 1
2

+ | − V1,+ + ia+
nnM+Ξ1v+|xn=0+ |H 1

2

+ |v|xn=0|L2(Rn−1) & |Ξ1v|xn=0|H 3
2

+ |Ξ1Dnv−|xn=0−|H 1
2

+ |Ξ1Dnv+|xn=0+ |H 1
2
.

We thus have
‖H−P−Ξ1v−‖L2(Rn) + ‖H+P+Ξ1v+‖L2(Rn)

+ ‖H−v−‖L2(Rn) + ‖H−Dnv−‖L2(Rn) + |v|xn=0|L2(Rn−1)

& |Ξ1v|xn=0|H 3
2

+ |Ξ1Dnv−|xn=0−|H 1
2

+ |Ξ1Dnv+|xn=0+ |H 1
2

+ ‖H−PE−Ξ1v−‖L2(R;H1) + ‖H+PF+Ξ1v+‖L2(R;H1).

The remaining part of the discussion is very similar to the last part of the argument
in the previous subsection. By Lemmata 3.1 and 3.4 we have
‖H−PE−Ξ1v−‖L2(R;H1) + |Ξ1v|xn=0|H 3

2
& ‖H−Ξ1v−‖L2(R;H2) + ‖H−Ξ1Dnv−‖L2(R;H1)

and

‖H+PF+Ξ1v+‖L2(R;H1) + |Ξ1v|xn=0|H 3
2

& τ−
1
2

(
‖H+Ξ1v+‖L2(R;H2) + ‖H+Ξ1Dnv+‖L2(R;H1)

)
.

Since |Ξ1v|xn=0|H 3
2

is already controlled, we control as well the r.h.s. of the above
inequalities and have
‖H−P−Ξ1v−‖L2(Rn) + ‖H+P+Ξ1v+‖L2(Rn) (4.18)
+ ‖H−v−‖L2(Rn) + ‖H−Dnv−‖L2(Rn) + |v|xn=0|L2(Rn−1)

& |Ξ1v|xn=0|H 3
2

+ |Ξ1Dnv−|xn=0−|H 1
2

+ |Ξ1Dnv+|xn=0+ |H 1
2

+ τ−
1
2

(
‖Ξ1v‖L2(R;H2) + ‖H−Ξ1Dnv−‖L2(R;H1) + ‖H+Ξ1Dnv+‖L2(R;H1)

)
,

From the estimates (4.17) and (4.18) obtained in each microlocal region, the final
derivation of the Carleman estimate of Theorem 1.1 is classical. We assumed the
compact set K small here. In fact, this can be relaxed as local Carleman estimates
of the type we prove here can be patched together.

5. Necessity of the geometric assumption on the weight func-
tion

Considering the operator Lτ given by (1.21), we may wonder about the relevance
of conditions (1.28) to derive a Carleman estimate. In the simple model and weight
used in Section 1.4, it turns out that we can show that condition (1.28) is necessary
for an estimate to hold. For simplicity, we consider a piecewise constant case c =
H+c+ + H−c− as in Section 1.4 and we use a weight function of the form of (1.18)
here.
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Theorem 5.1. Let us assume that (1.29) is violated, i.e.,

∃ξ′0 ∈ Rn−1 \ 0, α+

α−
<
m+(ξ′0)
m−(ξ′0)

. (5.1)

Then, for any neighborhood V of the origin, and τ0 > 0, there exist

vτ = H+vτ,+ +H−vτ,−, τ ≥ τ0, vτ,± ∈ C∞c (Rn), ‖vτ‖L2(Rn) = 1,

satisfying the transmission conditions (1.19)–(1.20) at xn = 0, such that

supp(vτ ) ⊂ V and ‖Lτv‖L2(Rn) −→τ→∞ 0.

The existence of such a quasi-mode v obviously ruins any hope to obtain a Car-
leman estimate for the operator L with a weight function satisfying (5.1). The
remainder of this section is devoted to this construction.

We set

(Mτu)(ξ′, xn) = H+(xn)c+
n

(
Dn + ie+

)(
Dn + if+

)
u+ (5.2)

+H−(xn)c−n
(
Dn + ie−

)(
Dn + if−

)
u−,

that is, the action of the operator Lτ given in (1.21) in the Fourier domain with
respect to x′. We start by constructing a quasi-mode forMτ , i.e., functions u±(ξ′, xn)
compactly supported in the xn variable and in a conic neighborhood of ξ′0 in the
variable ξ′ with ‖Mτu‖L2 � ‖u‖L2 , so that u is nearly an eigenvector of Mτ for
the eigenvalue 0.

Condition 5.1 implies that there exists τ0 > 0 such that

m−(ξ′0)
α−

< τ0 <
m+(ξ′0)
α+

, which gives τ0α+ −m+(ξ′0) < 0 < τ0α− −m−(ξ′0).

By homogeneity we may in fact choose (τ0, ξ
′
0) such that τ 2

0 + |ξ′0|2 = 1. We have
thus, using the notation in (1.21),

f+(xn = 0) = τα+ −m+(ξ′) < 0 < f−(xn = 0) = τα− −m−(ξ′),

for (τ, ξ′) in a conic neighborhood Γ of (τ0, ξ
′
0) in R × Rn−1. Let χ1 ∈ C∞c (R),

0 ≤ χ1 ≤ 1, with χ1 ≡ 1 in a neighborhood of 0, such that supp(ψ) ⊂ Γ with

ψ(τ, ξ′) = χ1

(
τ

(τ 2 + |ξ′|2) 1
2
− τ0

)
χ1

(∣∣∣∣ ξ

(τ 2 + |ξ′|2) 1
2
− ξ0

∣∣∣∣).
We thus have

f+(xn = 0) ≤ −Cτ, C ′τ ≤ f−(xn = 0) in supp(ψ).

Let (τ, ξ′) ∈ supp(ψ). We can solve the equations(
Dn + if+(xn, ξ′))

)
q+ = 0 on R+, f+(xn, ξ′) = τϕ′(xn)−m+(ξ′) = f+(0) + τβxn,(

Dn + if−(xn, ξ′))
)
q− = 0 on R−, f−(xn, ξ′) = τϕ′(xn)−m−(ξ′) = f−(0) + τβxn,(

Dn + ie−(xn, ξ′))
)
q̃− = 0 on R−, e−(xn, ξ′) = τϕ′(xn) +m−(ξ′) = e−(0) + τβxn,
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that is

q+(ξ′, xn) = Q+(ξ′, xn)q+(ξ′, 0), Q+(ξ′, xn) = e
xn

(
f+(0)+ τβxn2

)
,

q−(ξ′, xn) = Q−(ξ′, xn)q−(ξ′, 0), Q−(ξ′, xn) = e
xn

(
f−(0)+ τβxn2

)
,

q̃−(ξ′, xn) = Q̃−(ξ′, xn)q̃−(ξ′, 0), Q̃−(ξ′, xn) = e
xn

(
e−(0)+ τβxn2

)
.

Since f+(0) < 0 a solution of the form of q+ is a good idea on xn ≥ 0 as long as
τβxn + 2f+(0) ≤ 0, i.e., xn ≤ 2|f+(0)|/τβ. Similarly as f−(0) > 0 (resp. e−(0) >
0) a solution of the form of q− (resp. q̃−) is a good idea on xn ≤ 0 as long as
τβxn + 2f−(0) ≥ 0 (resp. τβxn + 2e−(0) ≥ 0). To secure this we introduce a cut-off
function χ0 ∈ C∞c ((−1, 1); [0, 1]), equal to 1 on [−1

2 ,
1
2 ] and for γ ≥ 1 we define

u+(ξ′, xn) = Q+(ξ′, xn)ψ(τ, ξ′)χ0

(
τβγxn
|f+(0)|

)
,

u−(ξ′, xn) = aQ−(ξ′, xn)ψ(τ, ξ′)χ0

(
τβγxn
f−(0)

)
+ bQ̃−(ξ′, xn)ψ(τ, ξ′)χ0

(
τβγxn
e−(0)

)
,

with a, b ∈ R, and
u(ξ′, xn) = H+(xn)u+(ξ′, xn) +H−(xn)u−(ξ′, xn)

The factor γ is introduced to control the size of the support in the xn direction.
Observe that we can satisfy the transmission condition (1.19)–(1.20) by choosing
the coefficients a and b. Transmission condition (1.19) implies

a+ b = 1. (5.3)

Transmission condition (1.20) and the equations satisfied by Q+, Q− and Q̃− imply
c+m+ = c−(a− b)m−. (5.4)

We have the following lemma.

Lemma 5.2. For τ sufficiently large we have
‖Mτu‖2L2(Rn−1×R) ≤ C(γ2 + τ 2)γτn−1e−C

′τ/γ

and
‖u‖2L2(Rn−1×R) ≥ Cτn−2

(
1− e−C′τ/γ

)
.

We now introduce
v±(x′, xn) = (2π)−(n−1)χ0(|τ

1
2x′|)ˇ̂u±(x′, xn) = (2π)−(n−1)χ0(|τ

1
2x′|)û±(−x′, xn),

that is, a localized version of the inverse Fourier transform (in x′) of u±. The
functions v± are smooth and compactly supported in Rn−1

± × R and they sat-
isfy transmission conditions (1.19)–(1.20). We set v(x′, xn) = H+(xn)v+(x′, xn) +
H−(xn)v−(x′, xn). In fact we have the following estimates.

Lemma 5.3. Let N ∈ N. For τ sufficiently large we have
‖Lτv‖2L2(Rn−1×R) ≤ C(γ2 + τ 2)γτn−1e−C

′τ/γ + Cγ,Nτ
−N

and
‖v‖2L2(Rn−1×R) ≥ Cτn−2

(
1− e−C′τ/γ

)
− Cγ,Nτ−N .
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We may now conclude the proof of Theorem 5.1. In fact, if V is an arbitrary
neighborhood of the origin, we choose τ and γ sufficiently large so that supp(v) ⊂ V .
We then keep γ fixed. The estimates of Lemma 5.3 show that

‖Lτv‖L2(Rn−1×R)‖v‖−1
L2(Rn−1×R) −→τ→∞ 0.

Remark 5.4. As opposed to the analogy we give at the beginning of Section 1.5,
the construction of this quasi-mode does not simply rely on one of the first-order
factor. The transmission conditions are responsible for this fact. In very particular
cases it could only involve the factors Dn + if± on both sides. In the more general
case, as studied in this section, the construction relies on the factor Dn + if+ in
xn ≥ 0, i.e., a one-dimensional space of solutions, and on both factors Dn+ if− and
Dn + ie− in xn ≥ 0, i.e., a two-dimensional space of solutions.

Appendix A. A few facts on pseudo-differential operators

A.1. Standard classes and Weyl quantization
We define for m ∈ R the class of symbols Sm as the smooth functions on Rn×Rn−1

such that, for all (α, β) ∈ Nn × Nn−1,

Nαβ(a) = sup
(x,ξ′)∈Rn×Rn−1

〈ξ′〉−m+|β||(∂αx∂
β
ξ′a)(x, ξ′)| <∞, (A.1)

with 〈ξ′〉2 = 1 + |ξ′|2. The quantities on the l.h.s. above are called the semi-norms
of the symbol a. For a ∈ Sm, we define op(a) as the operator defined on S (Rn) by

(op(a)u)(x′, xn) = a(x,D′)u(x′, xn) = ∫
Rn−1

eix
′·ξ′a(x′, xn, ξ′)û(ξ′, xn)dξ′(2π)1−n,

(A.2)
with (x′, xn) ∈ Rn−1×R, where û is the partial Fourier transform of u with respect
to the variable x′. For all (k, s) ∈ Z× R we have

op(a) : Hk(Rxn ;Hs+m(Rn−1
x′ ))→ Hk(Rxn ;Hs(Rn−1

x′ )) continuously, (A.3)

and the norm of this mapping depends only on {Nαβ(a)}|α|+|β|≤µ(k,s,m,n), where µ :
Z× R× R× N→ N.

We shall also use the Weyl quantization of a denoted by opw(a) and given by the
formula

(opw(a)u)(x′, xn) = aw(x,D′)u(x′, xn) (A.4)

= ∫∫
R2n−2

ei(x
′−y′)·ξ′a

(x′ + y′

2 , xn, ξ
′
)
u(y′, xn)dy′dξ′(2π)1−n.

Property (A.3) holds as well for opw(a). A nice feature of the Weyl quantization
that we use in this article is the simple relationship with adjoint operators with the
formula (

opw(a)
)∗

= opw(ā), (A.5)
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so that for a real-valued symbol a ∈ Sm (opw(a))∗ = opw(a). We have also for
aj ∈ Smj , j = 1, 2,

opw(a1)opw(a2) = opw(a1]a2), a1]a2 ∈ Sm1+m2 , (A.6)
opw(a1)opw(a2) = opw(a1a2) + opw(r1), r1 ∈ Sm1+m2−1, (A.7)

with r1 = 1
2i {a1, a2}+ r2, r2 ∈ Sm1+m2−2, (A.8)

[opw(a1), opw(a2)] = opw(1
i
{a1, a2}) + opw(r3), r3 ∈ Sm1+m2−3, (A.9)

where {a1, a2} is the Poisson bracket. Moreover, for bj ∈ Smj , j = 1, 2, both real-
valued, we have
[opw(b1), iopw(b2)] = opw({b1, b2}) + opw(s3), s3 real-valued ∈ Sm1+m2−3. (A.10)

Lemma A.1. Let a ∈ S1 such that a(x, ξ′) ≥ µ〈ξ′〉, with µ ≥ 0. Then there exists
C > 0 such that

opw(a) + C ≥ µ〈D′〉, (opw(a))2 + C ≥ µ2〈D′〉2.

A.2. Pseudo-differential calculus with a large parameter
We let τ ∈ R be such that τ ≥ τ0 ≥ 1. We set λ2 = 1 + τ 2 + |ξ′|2. We define for
m ∈ R the class of symbols S(λm) as the smooth functions on Rn×Rn−1, depending
on the parameter τ such that, for all (α, β) ∈ Nn × Nn−1,

Nαβ(a) = sup
(x,ξ′)∈Rn×Rn−1

τ≥τ0

λ−m+|β||(∂αx∂
β
ξ′a)(x, ξ′, τ)| <∞. (A.11)

The associated operators are defined by (A.2). We can introduce Sobolev spaces and
Sobolev norms which are adapted to the scaling large parameter τ . Let s ∈ R; we
set

‖u‖Hs := ‖Λsu‖L2(Rn−1), with Λs := op(λs)
and

Hs = Hs(Rn−1) := {u ∈ S ′(Rn−1); ‖u‖Hs <∞}.
The space Hs is algebraically equal to the classical Sobolev space Hs(Rn−1), which
norm is denoted by ‖.‖Hs . For s ≥ 0 note that we have

‖u‖Hs ∼ τ s‖u‖L2(Rn−1) + ‖〈D′〉su‖L2(Rn−1).

If a ∈ S(λm) then, for all (k, s) ∈ Z× R, we have
op(a) : Hk(Rxn ;Hs+m)→ Hk(Rxn ;Hs(Rn−1

x′ )) continuously, (A.12)
and the norm of this mapping depends only on {Nαβ(a)}|α|+|β|≤µ(k,s,m,n), where µ :
Z× R× R× N→ N.

For the calculus with a large parameter we shall also use the Weyl quantization
of (A.4). All the formulæ listed in (A.5)–(A.10) hold as well, with Sm everywhere
replaced by S(λm). We use the Gårding inequality as stated in the following lemma.

Lemma A.2. Let a ∈ S(λm) such that Re a ≥ Cλm. Then
Re(opw(a)u, u) & ‖u‖2

L2(R;H
m
2 ),

for τ sufficiently large.

XIII–21



References
[1] S. Alinhac, Non-unicité pour des opérateurs différentiels à caractéristiques com-

plexes simples, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 3, 385–393.

[2] A. Benabdallah, Y. Dermenjian, and J. Le Rousseau, Carleman estimates for
the one-dimensional heat equation with a discontinuous coefficient and appli-
cations to controllability and an inverse problem, J. Math. Anal. Appl. 336
(2007), 865–887.

[3] P. Buonocore and P. Manselli, Nonunique continuation for plane uniformly
elliptic equations in Sobolev spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
29 (2000), no. 4, 731–754.

[4] A.-P. Calderón, Uniqueness in the Cauchy problem for partial differential equa-
tions., Amer. J. Math. 80 (1958), 16–36.

[5] T. Carleman, Sur un problème d’unicité pur les systèmes d’équations aux
dérivées partielles à deux variables indépendantes, Ark. Mat., Astr. Fys. 26
(1939), no. 17, 9.

[6] A. Doubova, A. Osses, and J.-P. Puel, Exact controllability to trajectories for
semilinear heat equations with discontinuous diffusion coefficients, ESAIM Con-
trol Optim. Calc. Var. 8 (2002), 621–661, A tribute to J. L. Lions.

[7] L. Hörmander, On the uniqueness of the Cauchy problem, Math. Scand. 6
(1958), 213–225.

[8] , Linear partial differential operators, Die Grundlehren der mathema-
tischen Wissenschaften, Bd. 116, Academic Press Inc., Publishers, New York,
1963.

[9] , The analysis of linear partial differential operators. IV, Grundlehren
der Mathematischen Wissenschaften, vol. 275, Springer-Verlag, Berlin, 1994,
Fourier integral operators.

[10] O. Yu. Imanuvilov and J.-P. Puel, Global carleman estimates for weak solutions
of elliptic nonhomogeneous Dirichlet problems, Int. Math. Res. Not. 16 (2003),
883–913.

[11] J. Le Rousseau, Carleman estimates and controllability results for the one-
dimensional heat equation with BV coefficients, J. Differential Equations 233
(2007), 417–447.

[12] J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and par-
abolic operators. Applications to unique continuation and control of parabolic
equations, Preprint (2009).

[13] J. Le Rousseau and N. Lerner, Carleman estimates for elliptic operators with
jumps at an interface: Anisotropic case and sharp geometric conditions, in prep.
(2010).

XIII–22



[14] J. Le Rousseau and L. Robbiano, Carleman estimate for elliptic operators with
coefficents with jumps at an interface in arbitrary dimension and application
to the null controllability of linear parabolic equations, Arch. Rational Mech.
Anal. 195 (2010), 953–990.

[15] , Local and global Carleman estimates for parabolic operators with coef-
ficients with jumps at interfaces, Invent. Math, to appear (2010), 92 pages.

[16] N. Lerner, Metrics on the phase space and non-selfadjoint pseudo-differential
operators, Pseudo-Differential Operators, Vol. 3, Birkhäuser, Basel, 2010.

[17] K. Miller, Nonunique continuation for uniformly parabolic and elliptic equa-
tions in self-adjoint divergence form with Hölder continuous coefficients, Arch.
Rational Mech. Anal. 54 (1974), 105–117.

[18] A. Pliś, On non-uniqueness in Cauchy problem for an elliptic second order
differential equation, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.
11 (1963), 95–100.

[19] F. Schulz, On the unique continuation property of elliptic divergence form equa-
tions in the plane, Math. Z. 228 (1998), no. 2, 201–206.

MAPMO, UMR CNRS 6628, Route de Chartres, Université
d’Orléans B.P. 6759 – 45067 Orléans cedex 2 France
jlr@univ-orleans.fr
http://www.univ-orleans.fr/mapmo/membres/lerousseau/

Projet analyse fonctionnelle, Institut de Mathématiques de
Jussieu, UMR CNRS 7586, Université Pierre-et-Marie-Curie (Paris
6), Boîte 186 - 4, Place Jussieu - 75252 Paris cedex 05, France
lerner@math.jussieu.fr
http://www.math.jussieu.fr/~lerner/

XIII–23

mailto:jlr@univ-orleans.fr
http://www.univ-orleans.fr/mapmo/membres/lerousseau/
mailto:lerner@math.jussieu.fr
http://www.math.jussieu.fr/~lerner/

	1. Introduction
	1.1. Carleman estimates
	1.2. Jump discontinuities
	1.3. Notation and statement of the main result
	1.4. Sketch of the proof
	1.5. Explaining the key assumption

	2. Framework
	2.1. Preliminaries
	2.2. Description in local coordinates
	2.3. Pseudo-differential factorization on each side
	2.4. Choice of weight-function

	3. Estimates for first-order factors
	3.1. Positive imaginary part on a half-line
	3.2. Negative imaginary part on the negative half-line
	3.3. Increasing imaginary part on a half-line

	4. Proof of the Carleman estimate
	4.1. The geometric hypothesis
	4.2. Region 0: both roots are positive on the positive half-line
	4.3. Region : only one root is positive on the positive half-line

	5. Necessity of the geometric assumption on the weight function
	Appendix A. A few facts on pseudo-differential operators
	A.1. Standard classes and Weyl quantization
	A.2. Pseudo-differential calculus with a large parameter

	References

