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On 2D Rayleigh-Taylor instabilities

V. Kamotski G. Lebeau

1. Introduction

Consider in the plane the flow in the gravity field of two ideal incompressible fluids of
constant densities p* > 0, with p* # p~. Velocity field satisfies the Euler equation

0
%—l—u-v,ou:—Vp—kpg (1)
divu=0 (2)
pr +div (pu) =0 (3)
with initial data
u(z,0) = u(). (4)

We suppose, that ug(z) satisfies the continuity equation (2), and the assumption
that vorticity wo(x) = rot ug is concentrated on some curve ¥, separating the two
fluids, i.e. we suppose Yy splits the plane into two domains Q% and Q°, in which
the fluids have constant densities p, and p_ respectively. So we have

Wy = 9520 (5)

with € =[] being the jump of the tangent to 3y component of velocity. Applying
the rot operator to (1) we find that vorticity w = d,u¥ — 9,u” is formally constant
along the flow in each subdomain where p is constant :

Ow+u-Vw=0 (6)

Thus for ¢t > 0 one expects the vorticity to remain concentrated on some curve >3,
with a time dependant curve X; separating the two fluids .

This problem is known as the Rayleigh-Taylor instability problem. It has been
shown in [SS85] that in the case of a periodic interface close to a flat line and with
analytic data 2,3, this problem is locally in time well posed. This result of local
analytical well-posedness can be extended to the case of arbitrary analytical initial
data, not necessarily small.
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Considering a related problem of Kelvin-Helmholtz instability, i.e in the case
p+ = p—, g = 0, in [Leb02] and [Wu], it has been proved that the evolution
problem of the vortex sheet is strongly ill-posed in the sense that if {2 does not
vanish, analyticity of the data is a necessary condition to get a local in time solution
with a C1** interface ¥ with o > 0. On the other hand it is well known that 2D
water wave problem (in a sense, it is the case p_ = 0) is well posed in Sobolev spaces.
We shown in this paper, nonetheless, that results on Kelvin-Helmholtz instability
apply to this more involved Rayleigh-Taylor case. The following result holds

Theorem 1.1. Suppose 3 = {(z,t) : = € 3, t € (=T,T)} € C'* with some
a > 0 and 3, is a simple closed curve for all t € (=T,T). Suppose also, that
we LE ((=T,T); L3 (R?)) is a weak solution of (1)-(3), satisfying

loc loc
rot(u) = Q(t, $)dx,;
lim w(t,z,y) =0 (7)

|z,y|—o0
and an assumption, that
deg >0 VY(t,s) co < Qt,s) < 1/co, (8)

then X and €2 are C*° smooth . If moreover, the jump of the tangent to ¥ impulse
w = [puy| = pyu, — p-u— doesn’t vanish, then for eacht, the data X(t) and Q(t)
are analytic in s.

Thus we see, that the Cauchy problem associated with the Rayleigh-Taylor in-
stability is strongly ill posed in the Hadamard sense. We deduce this result from a
stronger local one:

Theorem 1.2. Suppose ¥ = {(z,t): t € (=T,T),x =r(t,s)}
with v(t,s) € C*((=T,T);C***(s)) for some v > 0, > 0. Let U = (=T,T) x
U C R® be a vicinity of (to,r(to, s0)) € B. Suppose u € L2.((—T,T); L}, .(U)) N
CY((=T,T);D'(U)) is a weak solution of (1)-(3), satisfying in U for some Q €
C¥(t;C%(s))

rot u = Q(t, s)dx (9)

then if Q(to, so) # 0, there exist € > 0 such that one has
r e O (|t —to] < &;C®(sg —¢€,80 +€)) and Q(t,s) € CY(|t — to] < &;C>(so —
€,80 +¢)).

We expect that local analyticity in s is true under the hypothesis of the theorem
1.2. The above result shows that there is no hope to solve the local Cauchy problem
associated with the Rayleigh Taylor instability in reasonable spaces, no matter the
sign of p* — p~ and gravity is. This situation is thus different from the water-wave
problem, i.e the evolution of a single fluid with free boundary under gravity, which
corresponds to the limiting case p™ = 0. One should note here that, the condition
pT # 0 is essential in the verification of ellipticity of the local problem. It will be
of great interest to analyse the surface tension effect in the problem in order to get
local solvability in Sobolev spaces.
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In this paper we present mostly sketches of the proofs, referring to [LK04] for
details. We first reduce the problem to an evolution equation on the vortex sheet,
and we distinguish the global and local cases. We then prove the local theorem
1.2. The key point in the proof is to reduce the problem to an elliptic one, using
paradifferential calculus. In order to perform this reduction, we introduce a suitable
local parametrization of the vortex, taking advantage of the galilean invariance of
the problem. We then deduce from the local theorem global smoothness and an-
alyticity under the hypothesis of the theorem 1.1. In all the paper, we work with
Hoélder spaces C¥(t; C®) with non integer values v, a.

2. Reduction to the problem on the vortex sheet

Let u be a weak solution of the Euler equations satisfying the hypothesis of theorem
1.1. Let us introduce (¢, s) — (t,7(t, s)) € R a parametrization of the hypersurface
3, with r € C'** such that [|95(¢, s)|| = 1; the variable s is the arc-length parameter
on the curve ¥;; Let

7(t,s) = %(t, s), v(t,s) = Rxa(7(1,5)) (10)

be the unit tangent and perpendicular vectors to ¥;, where R /s is the /2 rotation
in the plane. The functions 7 and v belong to C'®.
The Biot-Savart law reads in this situation as follows:

wtQ) = Ry [ S0 w@ s )

Let ux be the restriction of u to Q4. The vector fields ug are harmonic in (z,y).
Classical potential theory, and Q2 € L imply that the traces uy|y exist and belongs
to L{°(LP) for any p. Let us denote

Ut s = Ui|2-7— ; U+ n = Ui|z-1/ (12)
The conservation laws div (u) = 0, p; + div (pu) = 0, and rot(u) = (¢, s)dx, imply

(13)
(Oyr - v —uy,) =0 (14)
| =1Q(t,s) (15)

Here, as usual, we use square brackets to denote the jump of a value when
crossing the interface, and angle brackets for the mean value: [f](s) = fi(s,0) —

f=(5,0), (f)(s) = (f+(s,0) + f-(s,0))/2.
Applying the rot operator to the Euler equation, and evaluating the result in
weak formulation we obtain:

sloul =0, (lowlor -+ 3 ot —2))) = bla T (0)

Or-v—u,=0 (17)

[
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We introduce the notations v = (u), w = [pus|. Note, that in complex represen-
tation r = x + iy € C and v denoting the complex conjugate of v

1 Q(t, )
havev(t, s) = ——v.p. : ds'. 18
wehavet(t, s) 5=V P /r(t, S -9 s (18)
In (18) the integral is understood in the sense of the principal value, but in fact

it’s only the normal component that is involved in the singular integral, indeed, for
the tangent one we have the regular representation (7 = Osr, v = i7)

vs(t, s) = L /Im(asr(t7 LULY )ds’ (19)

27 r(t,s) —r(t,s)

We may look at the right-hand side, as an integral operator (depending on ) applied
to €, let us define

-1 0s ! ,
K{r}f = / Im(%)ds. (20)
So (19) now reads as vy = —K€). Next, substituting the latter into identity
1
Q= —(w—[plvs), 21
w (w — [plvs) (21)
we obtain B .
0 Pl — - 292
R 2

which is a solvable equation with respect to ). Indeed, one has the following

Lemma 2.1. Suppose, that r(s) € C'T* with some positive o > 0, then K{r} as
operator C? — CP is a compact one for B < a; moreover, its spectrum allows more
detailed description: o K{r} C (—3, 3].

This result due to |[p]| < 2(p) implies that operator I — %K {r} is an invertible
one, and so

= —M T _ILU)
Q‘<H<mK{0 e (23)

The core of the argument is the analysis of the singular integrals in above ex-
pressions. Let J{z, Q} be the linear operator in 2, depending on z, defined by

Q)

oo (24)

T2 Q) = vp. /
As in [Leb02], the main technical tool that we use is a paralinearization of J, includ-
ing here its 2 dependance. To simplify notation, we state the next lemma without
explicit dependance on ¢t We will always assume that the derivative of z satisfies for

some ¢ > 0
|O\z| > c. (25)

Following [Leb02] we obtain the following result [LKO04]:

VII4



Lemma 2.2. Let o > 0, 0 < 3 < a. Assume that z(\) = z(\) +iy(\) € C'
and Q\) € CP for B >0, Q) € L™ for 3 =0. Let O(\) € C° equal to 1 in the
vicinity of N\o. Then one has

J{z,Q} =T o [DA0z + T HIQ + R, (26)

(2x)?2 Zx

where H s the Hilbert operator:

Hov = V.p./%d)\/ (27)

and R®) € C* near Ay for all
p < o = min(f + da, a + min(1,03)). (28)
This lemma allows us to justify the reduction to the vortex sheet, we have

Lemma 2.3. In assumption of theorem 1.1 the traces u, v, w, <) belong to the space
C¥(t; CH) for every v, s.t v+ p < a and satisfy the system

wy — Oy <w(rt —v) -7+ [p] <%|v|2 - %QQ)) = [plg - T, (29)

Ty V= Uy, (30)

0P gras Ly (31)
() (o)

_ 1 Q(t, s) ,

u(t,s) = 2 VP / ) — (i) ds'. (32)

As for the local problem, i.e. assuming conditions of the theorem 1.2 to be
satisfied, we have, of course, the same equations of motion (29),(30), but expressions
for v change. Let us introduce ¢ € C§°(U) which is equal to 1 in vicinity of V- CC U.
Due to div (u) = 0 we have u = (—3,%, 0,¢) for some p € C¥((=T1,T); D'); with u =
(=00, Dpipt)) one has Apyp = 1ot (@) = Qs + B, with E € C*((=T,T);E'(U \
V) so we get

(_yv l‘)

uly = W * (pQ0s,) + (=0, E,0,E)|p, (33)

where the “error” E is C" in time with values in harmonic functions of (z,y). So
we get

Lemma 2.4. In assumption of theorem 1.2 the traces u,v,w,$2 belong, near ty, so
to the space C¥(t; CY) and satisfy the system

wy — Os (w(rt —v) -7+ [p] (%|v|2 — %QQ)) = [plg - T, (34)

TV = Up, (35)
1

= @(w [o]vs) (36)

3L, 5) = % p / %52; _))%t ‘f)) ds' + E(t,r(t, s)). (37)



Notice that Galilean transformations correspond to preserve t, s, {2 and to move
w, v, to w — [p|V.r,v — V,r — tV where V is a constant real vector. The above
system is invariant with respect to Galilean transformations, except that the error
term F is replaced by £ — V.

3. Regularity of solutions

Benefitting from the above reductions we address now first local and then global
issues.

3.1. Local regularity of a weak solution

Consider a weak solution to the problem (1)-(3) assuming conditions of theorem
1.2 to be satisfied. By a suitable galilean transformation, and using (g, sg) # 0,
we may suppose that the speeds of the flows on the both sides of the interface
are equal in modulus but have different signs in (zo,yo), i.e. v(to,s0) = 0, and
that w is non-vanishing near (o, s9). By Lemma 2.4 there exists A(¢, s), such that
A e Cr(t,CHYy N CH(t,C¥) and

As = w, (38)
A= (a—v)w+[p]U, (39)

with ) 0
a=0or-T, U:§|v|2—§+g.r, (40)

Introducing this new parameter A\ with allows us to reformulate the problem: the
parametrization of the vortex sheet (x(t,A),y(t, \)) satisfies the following system

(we move € to Q%)
{ xt:Fl(x>y) (41)

Yt = F2(x> y)
where the nonlinear first order operators are defined by
Fi(z,y) = v — [plUzy,  Fa(z,y) = v2 — [p]Uys, (42)
here

L /so(x(t, X),y(t N)QULX)

(vp —ivg)(H, ) = dN + E(t, z(t, \), y(t, X13)

omi 2(t,\) — z(t, N)
U(t,\) 1( T+ 3) & + mz + (44)
= — (v . — V5 o< xr
) 2 1 8(1‘% + yi) Ba! 72y
where (71, 72) is the gravity, and 2 satisfies
1
Q= @(1 = [pl(zav1 + yav2)). (45)

We have used notation z(t, \) = x(t, \) + iy(t, A). The error term E(t,z,y) belongs
to Cy(C*(V)) as soon as the cutoff function ¢ € C§°(U) is equal to 1 in vicinity of
VccU.
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Using the lemma 2.2 and the basics of the paradifferential calculus we show, that
(41) is a nonlinear elliptic system and obtain the following result, which implies
theorem 1.2.

Theorem 3.1. Suppose z = z + iy € C(t;Cy7*),Q € C¥(t;CY) near (to, \o)
satisfies the conditions

e VE NN |28 N) — z(EN)| > cd = N, (46)
QU(to. Mo) # 0. (47)
and (z,y) is a weak solution of the system (41) with E € C¥(t; C5%,) near (to, 2(to, Ao))-

Then near (tg, \g) we have

z,y € C(50Y), Qe C¥(t;0F) (48)

3.2. Regularity of a global solution

Let us first address C'*° regularity of a solution to a global problem: the following
theorem takes place:

Theorem 3.2. In assumption of the theorem 1.1 one has 3,2 € C.

Proof. Let us see, what we gain by applying the theorem 1.2 in conditions of theorem
1.1, Let v > 0, > 0 st p+ v < a; by lemma 2.3 we have Q € C¥(t;C*), so
u € C¥(t;D') and we may apply theorem 1.2 with p instead of a. We immediately
obtain r € C*((=T,T); C*) and Q,v,w € C((—T,T);C*>). Using (29), we get
w € CM((=T,T); C*>) Next, recalling that € is solution of the an essentially spacial
integral equation (31), we deduce, that Q € C'™((—T,T); C*), and therefore we
can now apply the local theorem with v + 1 and so by induction we prove the
theorem. 0

Next, applying standard formal series techniques and the estimates close to the
ones in [Leb02] one obtains analyticity property of the global solution.
4. Local time existence of analytic solution

Suppose now, that the interface ¥; is a graph of a periodic function y(z): in other
words 7(s,t) = (x(s),y(x(s),t)), and changing variables in (29),(30) we obtain:

We =0, (o + 10 (302 408) - g2 ) ) =l (49

Y¢ = —YzV1 + V2 (50)

We assumed here, that g = (0,7). The representations (18) take form:

_ —LV y(x,t) — y('r,?t) ' !
niet) = %—p!kx—fﬁ+«maw—yww»5“’”d’ o
1 x—a , ,
vo(z,t) = %v.p/ CE e e —" t))2Q(x ,t) dx’. (52)
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Equations (49)-(52) together with
W = (p)Q+ [p](v1 + yzv2) (53)

properly define an evolution equation, as it was demonstrated in the previous section.

We seek m-periodic analytic solutions to the stated problem. Following [SSBF81]
we fix arbitrary a € (0, 1) and define the scale of Banach spaces By of holomorphic
in by = {z+i¢,z € R/nZ, |(| < s} functions, with the Hélder o norm:

[lls = [lu; Bl := sup u(- +i¢)la (54)
<s

here and further
| fla = |If; CY(R/7Z)| (55)

We will show, that the Cauchy problem is well posed in By, i.e. that for small time
there exists a solution (y, W) € B2, holomorphic in ¢ as well. To do this we will use
an abstract Cauchy-Kovalevski theorem in Nishida’s [Nis77] formulation.

We state the problem formally for the triple (W, y,y.), the equations are (49)-
(52) with an equation for y,, which is obtained by differentiating (50):

Yot = —YzazV1 — YzV1a + V2,z- (56)
In [SSBF81] (Prop. 4.1 and further) was proved

Lemma 4.1. For |Im y,|op,, | Im Fulop, < 5 and ||yulls, |Qs, |75, 1€]|s bounded,

loi{ y} = v{ 2, 3} < CUQ = Qlls + gz = Gulls), i=1,2. (57)

In the right-hand side of the estimate (57) we find s-norm of y,, this explains,
why we had to add (56) to the problem formulation. This lemma insures existence
to the problem in the case p+ = 1 in which [p] = 0 and W = Q. In the general case
we have

V1 + YoV = V(z) = V() {W, y} (58)
Q= W) = oW — Lo (W) (59)

So, all we have to prove to obtain existence of the holomorphic solution is to estimate
vs via W and y, let us prove a weak

Lemma 4.2. Suppose |W ||, ||W||s are bounded and y,§ are in vicinity of some
y) € By and are such that norms of imaginary parts || Im y,||s, || Im §.||s are small
enough (i.e. less then a positive constant depending on the C'™* norms of y and j
on the real azis), then we have

o AW, y} = v AW, GHls < CUW = W + [lye — Fells)- (60)
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Proof. As we have shown in the previous sections for real © € R/7Z we have

-1
v Wdo) = - (1= LK) R W) (61)
(o) (o)

here we used notation f® = f|u, .—o for the restriction to real axis. So, the key
point to prove (60) is to understand the properties of the function 3° — K{y°}
as a mapping C'* — [(C%). This mapping is bounded and Lipschitz. These
properties can be obtained f.e. as a consequence of Lemma 4.1. Next, as we can
restrict ourselves with consideration of vicinity of ¥, so we have an estimate

|(L}%mw0K@%MWMSam&mm&—ﬁm. (62)

And this is already enough to obtain “(60) on the real axis”:
[0l (WO, 5%} = v AW, 5 o < CAWO = WOla + ly — 75la)- (63)
The lemma statement is a small perturbation consequence of (63). O
So, the final result is

Theorem 4.3. For all initial data yo, Wy € By, such that || Im yo .5, and || Im yo.|s,
are sufficiently small, there exists a constant 3 s.t. for |t| < (s — s) the system

has a unique solution (W,y) € B2, which is a holomorphic function of t.

Remark. A similar result was obtained in [SS85], but in a slightly different frame-
work: although a more general problem was considered in [SS85], nevertheless the
final result was obtained in assumption of relative smallness of initial data, which
we have managed to avoid due to lemmas 4.2 and 2.1.

References

[Bon81] J.-M. Bony. Calcul symbolique et propagation des singularités pour les
équations aux dérivées partielles non linéaires. Ann. Sci. Fc. Norm.
Sup., IV série, 14:209-246, 1981.

[Leb02]  G. Lebeau. Régularité du probleme de Kelvin-Helmholtz pour I’équation
d’Euler 2d. ESAIM: COCYV, 08:801-825, 2002.

[Wu] Sijue Wu Recent progress in mathematical analysis of vortex sheets. Pro-
ceedings of the International Congress of Mathematicians, Vol. 111 (Bei-
jing, 2002), 233-242, Higher Ed. Press, Beijing, 2002.

[LK04]  G. Lebeau. and V. Kamotski On 2D Rayleigh-Taylor instabilities. to
appear in Asymptotic Analysis , 2004

[SS85]  C. Sulem and P.L. Sulem. Finite time analyticity for the two- and
three-dimensional Rayleigh- Taylor instability. Trans. Am. Math. Soc.,
287(1):127-160, 1985.

VII-9



[SSBF81] C. Sulem, P.L. Sulem, C. Bardos, and U. Frisch. Finite time analyticity
for the two and three dimensional Kelvin-Helhmoltz instability. Comm.
i Math. Phys., 80:485-516, 1981.

[Nis77] ~ T. Nishida. A note on a theorem of Nirenberg. J. Differ. Geom., 12:629—
633, 1977.

VII-10



