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GDR 2434 (CNRS)

Profile decompositions and
applications to Navier-Stokes

Gabriel S. Koch
Abstract

In this expository note, we collect some recent results concerning the appli-
cations of methods from dispersive and hyperbolic equations to the study of
regularity criteria for the Navier-Stokes equations. In particular, these meth-
ods have recently been used to give an alternative approach to the L3,∞ Navier-
Stokes regularity criterion of Escauriaza, Seregin and Šverák. The key tools are
profile decompositions for bounded sequences of functions in critical spaces.

1. Introduction

In the recent paper [12], the author and C. Kenig showed that one can apply a robust
method from nonlinear dispersive (e.g. nonlinear Schrödinger) and hyperbolic (e.g.
nonlinear wave) equations to obtain important regularity results for a parabolic
equation, namely the Navier-Stokes system. The method, which we shall describe
below, is based strongly on the use of “profile decompositions" of bounded sequences
in certain function spaces where the underlying space is Rd. Bounded sequences in
such spaces fail in general to be pre-compact. The profile decompositions allow one to
isolate the defects of compactness, thus allowing one to regain sufficient compactness
to prove the existence of solutions enjoying important minimality properties. The
results in [12] were made possible by the profile decompositions of P. Gérard [10] and
I. Gallagher [6]. Recently in [17], the author adapted the method of S. Jaffard [11]
to construct new profile decompositions for other spaces relevant to Navier-Stokes.
Based on these, in collaboration with Gallagher and F. Planchon (see [9]) we give an
alternative proof of the L3,∞ regularity criterion of Escauriaza-Seregin-Šverák [5], a
special case of which was accomplished in [12].

The paper is organized as follows: in sections 2-4 we give the background, mo-
tivation and main tools for the results which follow; in sections 5-7 we outline the
applications to Navier-Stokes as mentioned above and in section 8 we give some
details of the proof. Finally in the last section we describe the method used by the
author to prove the new profile decompositions which were used to complete the
proofs of the main results.
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2. Background and Motivations
Consider the standard Navier-Stokes equations for incompressible fluids:

(NSE)



ut − ν4u+ (u · ∇)u+∇p = 0

∇ · u = 0

 in R3 × (0, T )

u|t=0 = u0 (∇ · u0 = 0)
A velocity vector field u(x, t) is said to be a solution to (NSE) if there exists an
associated pressure function p(x, t) such that (NSE) is satisfied.

For a “critical space" X = X(R3), we are interested in establishing the following
regularity criterion for Navier-Stokes:

(R)X
{

Suppose u solves (NSE) and satisfies supt∈(0,T ) ‖u(t)‖X <∞
for some T > 0. Then u is smooth on R3 × (0, T ].

To define the notion of critical space, we consider the natural scaling of (NSE). Due
to the invariance of the equation under the transformation u(x, t) 7→ λu(λx, λ2t),
the initial data scale as u0(x) 7→ λu0(λx). We therefore say that a Banach space X
of initial data is a critical space if ‖λu0(λ·)‖X = ‖u0‖X for any u0 ∈ X and λ > 0.
For example, the chain of continuous embeddings

Ḣ
1
2 ↪→ L3 ↪→ Ḃ

−1+ 3
p1

p1,q1

p1 < p2
q1 < q2

↪→ Ḃ
−1+ 3

p2
p2,q2 ↪→ BMO−1 ↪→ Ḃ−1

∞,∞ (2.1)
consists of spaces which are all critical with respect to (NSE).

For X = L3(R3), (R)L3(R3) was verified in the famous paper of L. Escauriaza, G.
Seregin and V. Šverák [5] in the setting of the standard Leray-Hopf weak solutions
(roughly, solutions in L2(R3) satisfying an energy estimate) of (NSE). This is known
as the L3,∞ (i.e., L∞t (L3

x)) Navier-Stokes regularity criterion. To put this in historical
perspective, they establish the “endpoint" of a range of Navier-Stokes regularity
criteria developed around the 1960s (see [18, 22, 23]). These “Ladyzhenskaya-Prodi-
Serrin" conditions for regularity may be characterized (in the global setting) as
follows:

Theorem 1 (LPS). Let p > 3 and choose s so that 3
p
+ 2
s

= 1. Let u be a Leray-Hopf
weak solution to Navier-Stokes on (0, T ) such that u ∈ Lp,s := Lst(Lpx), i.e.,∥∥∥‖u(·, t)‖Lp(R3)

∥∥∥
Ls(0,T )

<∞ .

Then u is smooth and unique on R3 × (0, T ].

The spaces Lp,s are invariant under the Navier-Stokes scaling u(x, t) 7→ λu(λx, λ2t)
and can therefore also be thought of as critical spaces for Navier-Stokes. Note also
that due to the restriction that p > 3, and hence s < ∞, such spaces are “lo-
cally small." That is, for any finite subdomain Q ⊂⊂ R3 × (0, T ), u ∈ Lp,s implies
that ‖u‖Lp,s(Q) → 0 as |Q| → 0. This fact is crucial in the proof of Theorem 1.
At the endpoint of this range, i.e. p = 3 and s = ∞, it is not obvious whether
there is a local smallness that one can take advantage of, which makes the proof
significantly more difficult. In [5], Escauriaza, Seregin and Šverák treat this case,
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but more precisely they show that a solution belonging to L3,∞ actually belongs to
the Ladyzhenskaya-Prodi-Serin space L5,5, which is quite surprising. Their proof,
which is fairly involved, uses a “blow-up procedure" and is concluded using back-
ward uniqueness and unique continuation results for parabolic inequalities, made
possible in part by Carleman-type estimates.

In the papers [12, 9], we give an alternative proof of (R)L3(R3) in the setting of
“mild" solutions (locally smooth solutions satisfying an integral version of (NSE)).
Our proof uses the powerful “critical element" method developed by Kenig and
Merle for dispersive equations (where all solutions are “mild"), see e.g. [13, 14, 15].
The main tool of this method is a “profile decomposition" in a critical space, which
we’ll describe below. Although we conclude in a similar way to the original proof of
(R)L3(R3) in [5], we hope that our proof may appear more transparent and potentially
lead to further advances. Moreover, our result is important as it shows that it is
possible to apply the critical element method in the context of a parabolic equation.

3. Profile Decompositions
The embeddings X ↪→ Y in (2.1) are not compact, as can be seen from the following
simple example: for a fixed non-zero “profile" f ∈ X, we have the bounded sequence
fn(x) := 1

λn
f
(
x−xn
λn

)
, where λn > 0 and xn ∈ R3. If limn→∞ λn ∈ {0,∞} or λn = 1

and |xn| → ∞ and if fn → f̄ in Y along some subsequence, then necessarily f̄ = 0.
This however is impossible since ‖fn‖Y ≡ ‖f‖Y > 0.

More generally, suppose X = X(Rd) is a Banach space such that for some α > 0,
‖ 1
λα
f( · − x

λ
)‖X = ‖f‖X for all λ > 0, x ∈ Rd and f ∈ X (e.g. any space in (2.1)

with α = 1). One can hope to characterize the lack of compactness of an embedding
X ↪→ Y by the following statement, which would show that the above example is
in some sense the only obstacle:
Statement 2 (Profile Decomposition in X). Let {ϕn}∞n=1 be a bounded sequence in
X. Then there exists a sequence of profiles {φj}∞j=1 ⊂ X, and for each integer j ≥ 1
a sequence {(λj,n, xj,n)}∞n=1 ⊂ (0,∞)× Rd of “scales/cores" such that after possibly
passing to a subsequence in n one may write

ϕn(x) =
J∑
j=1

1
(λj,n)α

φj

(
x− xj,n
λj,n

)
+ ψJn(x) (3.1)

for any n, J ∈ N, and the following properties hold:

1. The scales/cores are “orthogonal" in the sense that:

j 6= j′ =⇒ lim
n→+∞

λj,n
λj′,n

+ λj′,n
λj,n

+ |xj,n − xj
′,n|

λj,n
= +∞ ; (3.2)

2. The remainder ψJn is small in the sense that lim
J→∞

(
lim
n→∞
‖ψJn‖Y

)
= 0 ;

3. The profiles and remainders satisfy the following “stability" estimates (for
some τ ≥ 1):

∞∑
j=0

(‖φj‖X)τ ≤ lim
n→∞

(‖ϕn‖X)τ , sup
n,J
‖ψJn‖X . sup

n
‖ϕn‖X .
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The orthogonality condition on the “scales" λj,n > 0 and “cores" xj,n ∈ R3 ensures
that interactions between profiles becomes negligible for large n. Such decomposi-
tions are very useful as the functions φj in the profiles are fixed for all n. Hence often
a limit of the sequence ϕn can be replaced by φj0 for some j0.

Such a statement holds for example for the standard Sobolev embeddings X ↪→ Y
of the form

Ḣs,p(Rd) ↪→ L
dp
d−sp (Rd) (s < d/p)

with α = d
p
−s and τ = p. This was first established1 for p = 2 by P. Gérard [10] using

properties of Hilbert spaces, which in particular established a profile decomposition
for the first embedding in (2.1) and is crucial in the proof of Theorem 6 below.
This was then extended to the non-Hilbert setting p 6= 2 by S. Jaffard [11] using a
different method involving wavelets.

In [17], we proved the following theorems (in the spirit of [11]) which in particular
give profile decompositions for the second and third embeddings in (2.1). Here, we
have limited the more general statements to critical spaces for (NSE):

Theorem 3 (Profile Decomposition in Ld(Rd)). Suppose p, q ∈ (d,∞], d ≥ 2, and
set sp := −1 + d

p
< 0. Then Statement 2 holds with X = Ld(Rd) and Y = Ḃspp,q

(α = 1, τ = d) equipped with norms which are equivalent to the standard ones.

Theorem 4 (Profile Decomposition in Ḃspp,q(Rd)). Suppose 1 ≤ a < p ≤ +∞,
1 ≤ b < b(p/a) ≤ q ≤ +∞, and set sr := −1 + d

r
for r ∈ {a, p}, d ∈ N. Then

Statement 2 holds with X = Ḃsaa,b(Rd) and Y = Ḃspp,q(Rd) (α = 1, τ = max{a, b})
equipped with norms equivalent to the standard ones.

Theorems 3 and 4 are proved using the fact that for many spaces one has a
universal unconditional basis of “wavelets" of the form

(2j)αψ(i)(2jx− k) , (3.3)
where ψ(i) ∈ C∞0 and (i, j, k) ∈ (1, . . . , 2d − 1) × Z × Zd. Since (3.3) has a form
similar to the profiles in (3.1), one can expand a bounded sequence in such a basis,
rearrange the components into groups with comparable scales/cores and pass to
a subsequence (made considerably easier by the fact that we work on lattices) to
achieve the desired result. The norms we use are defined in terms of the wavelet
basis. (See the last section for more details.)

4. The “Critical Element" Method
In a series of recent works [13, 14, 15], C. Kenig and F. Merle developed the method
of “critical elements" which uses profile decompositions to approach the questions of
global existence and “scattering" for nonlinear hyperbolic and dispersive equations
in critical settings. For example, in [15] they prove the following theorem for the 3D
defocusing cubic non-linear Schrödinger equation:

(NLS)


iut + ∆u− |u|2u = 0 in R3 × (0, T )

u|t=0 = u0

1See also [24] where certain cases were treated with slightly weaker results.
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Theorem 5 (Kenig-Merle [15]). Suppose u0 ∈ Ḣ
1
2 and u solves (NLS) on R3 ×

[0, T ∗(u0)), where T ∗(u0) is the maximal time of existence of the solution. Suppose
moreover that |||u||| < ∞, where |||u||| := sup0≤t<T ∗(u0) ‖u(t)‖

Ḣ
1
2
. Then T ∗(u0) =

+∞ and u scatters, i.e. ‖u(t) − L(t)u+
0 ‖Ḣ 1

2
→ 0 as t → +∞ for some u+

0 ∈ Ḣ
1
2 ,

where L(t) is the associated linear solution operator.

Note that (NLS) has the same scaling as (NSE), and Theorem 5 holds in the
(NSE) setting by [5] with u+

0 = 0 (i.e. ‖u(t)‖
Ḣ

1
2
→ 0 as t → ∞, see [7]). We will

momentarily describe how to apply the following method of proof to (NSE).
The proof of Theorem 5 (and its analogues in [13, 14] as well as Theorems 6 and

7 below) can be described as “concentration-compactness" (i.e., profile decomposi-
tions) + “rigidity theorem". It is a proof by contradiction, so we first assume the
theorem is false. The method has three steps as follows:

1. Existence of a “Critical Element": Let Ac < ∞ be the infemum of values
|||u||| of solutions for which the statement of the theorem fails. Then there
exists a solution uc with |||uc||| = Ac, for which the statement fails – that is,
the infemum is attained.

2. Compactness: Up to norm-invariant transformations in space, the set {uc(t)}
satisfies a compactness property (e.g. pre-compactness) in a critical space.

3. Rigidity: The “compactness” of uc together with known results implies that
uc = 0, which is impossible as zero is a global, scattering solution.

Steps 1 and 2 are proved using profile decompositions and are fairly independent of
the specific structure of the equation, while Step 3 typically requires a result specific
to the equation. For example, the Morawetz identity for (NLS) was used in [15] to
complete this step.

5. Critical Elements for Navier-Stokes

In collaboration with C. Kenig [12], we give a critical element proof of (R)
Ḣ

1
2

in the
form of the following theorem which is a consequence of [5]:

Theorem 6. Suppose u0 ∈ Ḣ
1
2 (R3) and u is the associated mild solution to (NSE)

on R3 × [0, T ∗(u0)), where T ∗(u0) is the maximal time of existence of the solution.
Suppose moreover that sup0≤t<T ∗(u0) ‖u(t)‖

Ḣ
1
2
<∞. Then T ∗(u0) = +∞.

As a technical point, we note that the solutions considered in [5] were Leray-Hopf
weak solutions while we consider mild solutions. The reason is that mild solutions
have an integral representation formula and other properties similar to the notion of
solutions of dispersive equations and hence are well-adapted to the critical element
method. In particular, for fixed u0 ∈ Ḣ

1
2 a unique smooth mild solution to (NSE)

exists in the class C([0, T ); Ḣ 1
2 )∩L2((0, T ); Ḣ3/2) (↪→ C([0, T );L3)∩L5,5(R3×(0, T )),

the class of solutions considered in Theorem 7 below, and hence smooth by Theorem
1) for all T < T ∗(u0), so that in this setting the above is equivalent to (R)

Ḣ
1
2
. In

what follows, we’ll say that u is “singular” if T ∗(u0) <∞.
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The main tool we use is the result of I. Gallagher [6], who showed that one could
evolve the Ḣ 1

2 (R3) profile decomposition of Gérard (note that at the time of writing
[12], Theorem 3 was not yet available) by the Navier-Stokes flow when the sequence
ϕn are divergence-free vector fields. Specifically, letting un and Uj be the unique
mild solutions to (NSE) with initial data ϕn and φj respectively and letting wJn be
the heat flow of the error ψJn , one has

un(x, t) =
J∑
j=1

1
λj,n

Uj

(
x− xj,n
λj,n

,
t

λ2
j,n

)
+ wJn(x, t) + rJn(x, t) , (5.1)

for any t such that the sum of profiles is defined (note that profiles are global for
large j due to the stability estimates for (3.1)), where again rJn is a small error for
large J and n. (This is the counterpart of similar results which had been established
in the hyperbolic/dispersive settings, see e.g. [2, 13, 16].) Using this result, we pro-
ceed as above as follows:

Step 1 (Existence of a Critical Element) As in Theorem 5, we consider the
profile decomposition for a sequence of initial data u0,n with associated singular
solutions un satisfying supt ‖un(t)‖Ḣ 1

2
→ Ac < ∞. Due to (5.1), there must be at

least one singular profile Uj0 . Moreover, using (5.1) and the decay result in [7] we
may establish for some such j0 and any t ∈ T ∗(Uj0(0)), an identity of the form

‖un(λ2
j0,nt)‖

2
Ḣ

1
2

=
J∑
j=0

∥∥∥Uj (λ2
j0,nt/λ

2
j,n

)∥∥∥2

Ḣ
1
2

+ ‖wl,Jn (λ2
j0,nt)‖

2
Ḣ

1
2

+ ◦(1) (5.2)

as n, J → ∞ along certain subsequences. This implies that supt ‖Uj0(t)‖
Ḣ

1
2
≤ Ac.

However, since Uj0 is singular, we must have equality and hence uc := Uj0 is a critical
element.

Step 2 (Compactness) Using profile decompositions of initial data of the form
u0,n := uc(tn), one uses (5.2) to show that there exists a sequence sn ↗ T ∗(uc(0))
such that, up to norm-invariant transformations, {uc(sn)} is pre-compact in L3.
Moreover, this compactness implies that the solution tends to zero in L2 on any
bounded subset of R3 as sn → T ∗(u0,c).

Step 3 (Rigidity) Using known “partial regularity results" for NSE (see [4]),
uc is smooth up to the blow-up time as long as one stays outside of a sufficiently
large ball in R3. Step 2 thus implies that uc(x, T ∗(u0,c)) ≡ 0 for |x| ≥ R0 >> 1.
Then applying known backwards uniqueness and unique continuation results (see
e.g. [5] where similar methods were used to complete their theorem) to the equation
for the vorticity of uc, one sees that the vorticity must vanish everywhere which,
along with the fact uc(t) ∈ L3, implies that the solution itself is zero.

It is interesting to note that our proof of Step 3 (which is really an “L3 result")
generalizes an important result of Nečas, Růžička and Šverák [21] ruling out the
“self-similar" solutions conjectured by Leray in [19]. These have the form u(x, t) =

1√
T ∗−tU

(
x√
T ∗−t

)
for some given non-zero U ∈ L3 and T ∗ <∞. Of course, the result

in [5] also implies this result, but Step 3 above is much simpler for that purpose.
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6. An Alternative Proof of the L3,∞ Criterion (R)L3

In collaboration with I. Gallagher and F. Planchon [9], we build on the results above
to give a critical element proof of the following mild solution version of [5]:

Theorem 7. Suppose u0 ∈ L3(R3) and u is the associated mild solution to (NSE)
on R3 × [0, T ∗(u0)), where T ∗(u0) is the maximal time of existence of the solution.
Suppose moreover that sup0≤t<T ∗(u0) ‖u(t)‖L3(R3) <∞. Then T ∗(u0) = +∞.

The main tool which makes such a proof possible is Theorem 3, the profile decom-
position in L3(R3), which was not available at the time of writing [12] and allows
us to establish (5.1) in L3 with remainders small in Ḃspp,q. However one has the ad-
ditional difficulty that L3 lacks the Hilbert structure of Ḣ 1

2 which was used heavily
to establish Step 1 and Step 2 above in [12].

In particular, a statement such as (5.2) is likely untrue in L3, but we can still
show that

‖un(λ2
j0,nt)‖

3
L3 ≥ ‖Uj0(t)‖3L3 + ‖vn(λ2

j0,nt)‖
3
L3 + ◦(1) (6.1)

as n→∞ along some subsequence, where vn(x, t) = un(x, t)− 1
λj0,n

Uj0

(
x−xj0,n
λj0,n

, t
λ2
j0,n

)
.

This is proved using the decay result in [8] along with regularity properties of rJn
and the heat-flow definition of Besov spaces in connection with wJn . This implies
that uc := Uj0 is a critical element as in Step 1 above. For Step 2, we use (6.1) to
show that uc(t) → 0 in distributions as t → T ∗(uc(0)). This is sufficient to apply
Step 3 exactly as above, and the theorem is proved.

7. Minimal Blow-up Initial Data

We briefly mention here the following result appearing as well in [9] as a simple
application of decompositions of the form (5.1), which are proved for the spaces
treated in Theorems 3 and 4 above:

Theorem 8. If there exists a mild solution to NSE starting in any of the critical
spaces X = Ḣ

1
2 (R3), L3(R3) or B

−1+ 3
p

p,q (R3) (1 < p, q < ∞) which develops a
singularity in finite time, then there exists an initial datum leading to a singularity
which has the minimal possible norm in X.

This extends and gives a different proof of a recent result of Šverák and Rusin [25]
for the Ḣ 1

2 case, proved by other methods in the context of weak solutions. Moreover,
due to the Hilbert structure of Ḣ 1

2 , we recover their statement of “compactness" of
the set of minimal blow-up data in Ḣ

1
2 . In L3 and Ḃspp,q, compactness is established

in a weaker sense and the minimality is in terms of the equivalent wavelet norm
used in [17].

8. Details of the Proof

For simplicity, we restrict ourselves here to the Ḣ 1
2 setting. (For details in L3, see the

upcoming work [9].) The key to establishing the critical element and compactness
in the proof of Theorem 6 lies in the following three facts:
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1. The profiles in the Ḣ 1
2 decomposition of Gérard satisfy the following stability

estimate:
∞∑
j=1
‖φj‖2

Ḣ
1
2
≤ sup

n
‖ϕn‖2

Ḣ
1
2
<∞ . (8.1)

In particular, for large enough j the profiles are sufficiently small to generate
global Navier-Stokes solutions.

2. If ‖u0‖L3(R3) is sufficiently small for a divergence-free u0 ∈ Ḣ
1
2 (R3) with asso-

ciated mild solution u, then one has the “energy-type" inequality

‖u(t)‖2
Ḣ

1
2 (R3)

+
∫ t

0
‖∇u(s)‖2

Ḣ
1
2 (R3)

ds ≤ ‖u0‖2
Ḣ

1
2 (R3)

∀ t > 0 .

3. For u0 ∈ Ḣ
1
2 generating a global solution u, one has (see [7]) the decay

‖u(t)‖
Ḣ

1
2
→ 0 as t→ +∞ .

The first fact implies that one can have an at most finite number of profiles
generating solutions with finite maximal times of existence (i.e., which “blow up in
finite time"). Moreover, the number of these must be positive in our case (ϕn = u0,n,
T ∗(u0,n) <∞ as outlined above) due to a property of the decomposition (5.1) that
the lifespans of the solutions un are bounded from below by the lifespan of the
transformed profiles Uj. Specifically, for sufficiently large n, T ∗(u0,n) ≥ λ2

j0,nT
∗(φj0)

for j0 = j0(n) which minimizes the right-hand side. The existence of blow-up profiles
follows from this since we assume that {un} consists of blow-up solutions which
minimize Ac.

For sufficiently large n, one can re-order the profiles in (5.1) so that the first one
has the shortest life-span (due to the finite number of blow-up profiles), and one can
use the above properties to prove the following orthogonality property: for any s in
the (finite) lifespan of U1, we have

A2
c ≥ ‖un(λ2

1,ns)‖2Ḣ 1
2
≥ ‖U1(s)‖2

Ḣ
1
2

+
J∑
j=2

∥∥∥∥∥Uj
(
λ2

1,ns

λ2
j,n

)∥∥∥∥∥
2

Ḣ
1
2

+ ◦(1)

as J and n tend to infinity along subsequences. To prove this, one inserts t = λ2
1,ns

into (5.1), expands ‖un(λ2
1,ns)‖2

Ḣ
1
2

as the square of a sum, and shows (essentially
using (3.2)) that the “cross-terms" are small (while controlling the “tails" by (8.1)).
This inequality implies that sups ‖U1(s)‖

Ḣ
1
2

= Ac, due to the definition of Ac and
the fact that U1 is a blow-up solution. Hence uc := U1 is a critical element, and
moreover the previous inequality also shows that for each j ≥ 2, Uj(τ) is small in
Ḣ

1
2 for some τ > 0 and therefore all other profiles are global solutions by “small

data" results.
To show the compactness, one considers a new “minimizing sequence" of solutions

for Ac with initial data given by u0,n := uc(tn), with tn approaching the blow-up
time of uc. The profile decomposition for this sequence retains the properties of the
original minimizing sequence as above. Then for any fixed T1 in the lifespan of U1
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(the only blow-up profile), one can pick τn > 0 such that (5.1) gives

un(τn)−
1
λ1,n

U1

(
· − x1,n

λ1,n
, T1

)
=

=
J∑
j=2

1
λj,n

Uj

(
· − xj,n
λj,n

,
τn
λ2
j,n

)
+ wl,Jn (τn) + rJn(τn) .

One can essentially use the decay of the global profiles on the right plus the small-
ness of the remainders to show that this tends to zero in L3 as n → ∞ along a
subsequence. Hence the transformational invariance of the L3 norm implies that
one can shift and re-scale un(τn) (by the inverse of the transformation on U1(T1)
above) so that the resulting sequence ũn(τn) approaches U1(T1) in L3 as n → ∞.
Letting sn = tn + τn and noting that un(τn) = uc(sn) yields the result. The fact
that sn approaches the blow-up time of uc follows from the relationship between the
lifespan of the profiles and that of un.

To prove “rigidity," one notices that the proof of the previous step more specifically
gives the following: there exists sn approaching the blow-up time of the critical
element uc, xn ∈ R3 and λn → +∞ such that

1
λn
uc

( · − xn
λn

, sn

)
=: vn −→ v̄

in L3 for some v̄ ∈ L3. Using a change of variables, Hölder’s inequality and a splitting
up of the domain (essentially into a small region and a region tending to infinity
due to the growth of λn on which ‖v̄‖L3 → 0), one can use this to show that for any
ball B ⊂⊂ R3 one has

lim
n→∞

∫
B
|u(x, sn)|2 dx = 0 . (8.2)

The facts that uc ∈ L3,∞ and T ∗ := T ∗(u0,c) <∞ together imply, by known “partial-
regularity" results for Navier-Stokes (see, e.g., [4]), that uc is smooth up to T ∗ outside
a large space-time cylinder. Hence (8.2) implies that uc(x, T ∗) = 0 for |x| ≥ R0 for
some large R0 >> 1. In particular, the vorticity ω := curluc is also zero at time T ∗
outside a large ball. The vorticity satisfies the inequality |ωt−∆ω| ≤ c0(|ω|+ |∇ω|),
and known backwards uniqueness results followed by unique continuation properties
for such a differential inequality show (similarly as in [5]) that ω ≡ 0 on R3×(0, T ∗).
Owing to the divergence-free property of uc, this implies that uc(t) ∈ L3 is harmonic
for each t and hence uc ≡ 0.

This rigidity property (along with global existence for small data) immediately
contradicts the fact that T ∗ <∞, and the theorem is proved.

9. The Wavelet Profile Decomposition Method

In this final section, we give some historical context and describe the method used
by the author to establish profile decompositions in critical Navier-Stokes spaces
such as L3(R3).

In the spirit of such works as [20], [3] and [24], the profile decompositions estab-
lished by Gérard in [10] describe the defect of compactness in the critical Sobolev
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embeddings

Ḣs(Rd) ↪→ Lq(Rd), s > 0, 1
q

= 1
2 −

s

d
> 0 .

For bounded sequences in Ḣs, he establishes a decomposition into profiles with re-
mainders which are small in Lq. His methods rely heavily on the Hilbertian structure
of Ḣs, in particular Plancherel’s Theorem, and he mentions in his introduction that
they are therefore unsuitable for treating the more general embeddings

Ḣs,p(Rd) ↪→ Lq(Rd), 1
q

= 1
p
− s

d
> 0, p > 1 .

Soon afterwards, S. Jaffard [11] established profile decompositions in the general
setting, s > 0 and p > 1, by use of wavelet methods. Only the “stability" properties
are somewhat less specific than those in Gérard’s decompositions, due to the non-
Hilbertian structures. The key tool is the description of Besov spaces and Triebel-
Lizorkin (e.g. Lq, Ḣs,p) spaces using equivalent norms expressed in terms of the
components of functions written in a wavelet basis.

Jaffard’s method is actually quite general, and with a view towards the Navier-
Stokes results mentioned above, the author used similar methods in [17] to establish
decompositions for bounded sequences in Lp(Rd) and the homogeneous Besov spaces
Ḃ
− d
p

+ d
r

r,q (Rd), with remainders small in larger Besov spaces. Of course, when p = d
these are critical spaces for Navier-Stokes (see (2.1)), and as mentioned above the
decompositions in [17] have been applied in that setting to give a critical element
proof of Escauriaza-Seregin-Sverak. These specific cases still do not represent the
full generality of the wavelet method of establishing profile decompositions, and the
author is currently working in collaboration with H. Bahouri and A. Cohen (see [1])
to generalize and simplify the method to treat embeddings between a wide range of
spaces including Besov spaces, Triebel-Lizorkin spaces and others.

In [17], the following critical Sobolev-type embeddings were considered: setting
sp,r := d

r
− d
p
, one has

Lp(Rd) ↪→ Ḃsp,rr,q (Rd), 2 ≤ p < q, r ≤ ∞ (sp,r < 0) (9.1)

and, for any p ∈ [−∞,+∞]\{0},

Ḃsp,aa,q (Rd) ↪→ Ḃ
sp,b
b,r (Rd), 1 ≤ a < b ≤ +∞, 1 ≤ q ≤ r ≤ +∞ . (9.2)

Up to a subsequence, bounded sequences {ϕn} in the smaller source space are shown
to have a profile decomposition of the form

ϕn(x) =
L∑
l=1

(2jln)d/pφl(2j
l
nx− kln) + rLn (x) (9.3)

with {(jln, kln)}∞n=1 ⊂ Z×Zd and remainders small in the larger target space for large
L and n. The orthogonality condition on the scales and cores (compare to (3.2))
takes the form ∣∣∣∣log

(
2(jln−jl

′
n )
)∣∣∣∣+ ∣∣∣∣2(jln−jl

′
n )kl

′

n − kln
∣∣∣∣ −−−→n→∞ +∞ (9.4)

for l 6= l′. In each case the stability property of the profiles in Statement 2 is
established as well (in an appropriate norm).
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The reason for the particular form of these decompositions becomes clear when
one writes functions in these spaces in terms of an unconditional wavelet basis:

f(x) =
∑

aijk · (2j)
d
pψ(i)(2jx− k) ,

where the sum ranges over (i, j, k) ∈ {1, . . . , 2d − 1} × Z × Zd and one has a finite
collection of “mother wavelets" ψ(i) ∈ Cm0 for a fixed, arbitrarily large, m ∈ Z. One
then has a norm for the space (which is equivalent to the usual one) in terms of the
coefficients. For example, one can characterize the Besov spaces by

‖f‖Ḃs
α,β

=
∥∥∥2j(s+d( 1

p
− 1
α

))‖(aijk)‖`α
i,k

∥∥∥
`βj
. (9.5)

The proof relies on two main ingredients. Writing the embedding in either (9.1)
or (9.2) generically as X ↪→ Y , it is noted that one always has Y ↪→ Z where
Z = Ḃ−d/p∞,∞ (and using (9.5) one may write ‖f‖Z = sup |aijk|). The first ingredient
is an “improved Sobolev inequality" of the form

‖f‖Y ≤ C‖f‖αX‖f‖1−αZ

for fixed C > 0 and α ∈ (0, 1). The second ingredient is a decay of “nonlinear wavelet
projections." Abbreviating the wavelet expansion as f = ∑

λ aλψλ one establishes
the following decay property:

sup
‖f‖X≤M

∥∥∥∥ ∑
all but
N largest
|aλ|

aλψλ

∥∥∥∥
Z
−−−→
N→∞

0 ∀ M > 0.

The proof of the profile decomposition can be described roughly as follows. Consider
a bounded sequence {ϕn} ⊂ X. As a first step, one notes that one can use the
unconditionality of the basis to rearrange the components of each function ϕn so
that the coefficients are decreasing in modulus. In an iterative manner, starting with
the largest wavelet components, one “extracts" the components into groups (roughly
“profiles") in a pre-determined way.

The norm of the remainder (the part of ϕn which has not yet been categorized)
in the largest space Z (consisting simply of functions with bounded wavelet coeffi-
cients) decreases while the norm in the smallest space X remains bounded. In fact,
the remainder must tend to zero in Z due to the decay of the nonlinear projections,
and finally the decay of the remainder in the space Y is established by the improved
Sobolev interpolation inequality. In the end (and after passing to appropriate sub-
sequences), each profile is a limit of a sum of wavelet components of ϕn from which
one can “pull out" a common norm-invariant transformation (i.e., scales and cores)
for each n. Moreover, the procedure is orchestrated so that the scales and cores of
distinct profiles will be orthogonal.

The fact that one can pull out a common transformation from a sum of certain
wavelet components comes from the fact that the scales and cores take values on
a lattice, which significantly simplifies the proof. Essentially, one uses the fact that
a bounded sequence in Zn must have a constant subsequence, and this principle
is used to pull out a fixed common transformation after passing to an appropriate
subsequence. The interested reader is referred to [17] for more details.
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