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Dispersive and Strichartz estimates for the wave
equation in domains with boundary

Oana Ivanovici

Abstract

In this note we consider a strictly convex domain Q € R? of dimension d > 2
with smooth boundary 9 # () and we describe the dispersive and Strichartz
estimates for the wave equation with the Dirichlet boundary condition. We
obtain counterexamples to the optimal Strichartz estimates of the flat case;
we also discuss the some results concerning the dispersive estimates.

1. Introduction

The dispersive type estimates called "Strichartz inequalities" measure the size and
dispersion of solutions of the linear wave equation on a manifold (€2, g), with (pos-
sibly empty) boundary 9§

(02 — Ayu(t,x) =0, z€Q
uw(0,z) = up(x), Ou(0,x) = uy(z), (1.1)
u(t,z) =0, x € .

Here A, denotes the Laplace-Beltrami operator on 2.

In order to be able to perturb such equations to nonlinear equations, it is cru-
cial that we have some efficient way to control the "size" of solutions to the linear
problems in terms of the size of the initial data. Of course, one has to quantify this
notion of size by specifying a suitable function space norm; it turns out that for
equations like nonlinear wave, the mixed norms LY LZ are particularly useful.

Regarding solutions of the homogeneous linear equation, a basic homogeneous
local estimate says that, on any smooth Riemannian manifold without boundary,
solutions of the wave equation (1.1) satisfy (for 7' < co)

[ull ooy 0) < CT( [voll s () + ‘|u1HHﬁ*1(Q)> ; (1.2)

where, if d denotes the dimension of the manifold, we have § = d(5 — %) — % (which

is a scale invariant condition) and where the pair (¢,r) is wave-admissible, i.e. it

satisfies
2 d—1 d-1
< -

S [@dan#B320) (1.3)
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When equality holds in (1.3) we say that the pair (¢, r) is sharp wave-admissible.
Here H” denotes the L? Sobolev space over €. If this holds for T = oo we say
there are global Strichartz estimates. Such inequalities were long ago established for
Minkowski space (flat metrics) and can be generalized to any (€2, g) because of the
local character of the estimate (finite propagation speed).
Outside the admissibility range (1.2) does not hold, as can be seen from A.W.Knapp’s

counterexample: consider the solution to (1.1) in R+ with initial data equal to the
indicator function of the set {} < [¢] < 2,p'?|¢'| < 1, = (&, &)}

L e B hlg ) p(n g e,

where 3 € C$°((1,2)), p € C°((0,1)). For t ~ 1, it "lives" on {|2'| < hY2 |t — 21| <
h}. This example provides the highest possible concentration of Euclidian waves and
computing the ratio forces (1.3) to hold.

Strichartz estimates admit many variations. One which is particularly close to
eigenfunction estimates is the squarefunction estimate, which says that, in the
boundaryles case, the solution to (1.1) satisfies

el 2oy 20,y < Cr (ol s ey + Nl sor-1¢0y ) (1.4)

where §(p) = max(d(1/2—1/p)—1/2,%2(1/2—1/p)). The exponent p = p, := %
(at which the estimates change) is critical in dimension d, since all the other bounds
follow easily from it (by Sobolev if p > p; and by interpolation with the trivial L?
energy estimate if 2 < p < py). The estimate (1.4) implies eigenfunction estimates
since, if one takes (ug,u;) = (ey,0) where ey(x) is an eigenfunction with eigenvalue
A, then, since u(t, ) = cos(t\) ex(z) in this case, it follows that the estimate (1.4) for
T = 1 implies the eigenfunction estimate ||ex||zra) < CA®9)||ey]|r2(q). A slightly
more involved argument shows that it also implies corresponding bounds for the
spectral projection operators, and hence (1.4) is sharp on every Riemannian manifold
without boundary. This argument can also be reversed, in that estimates for the
spectral projection operators imply estimates like (1.4).

The main motivation for the above types of Strichartz estimates comes from ap-
plications to harmonic analysis and the study of nonlinear dispersive equations.
Estimates like (1.4) can be used to prove LP multiplier theorems in harmonic analy-
sis, while estimates like (1.2) can be used to prove existence theorems for nonlinear
wave equations.

In order to prove such estimates we usually reduce the analysis to the case of a
spectrally localized wave by using a Littlewood-Paley decomposition to frequencies
5~ 2% and write u &~ Y,_o-« up, where supp(@n(t,.)) C {|¢] ~ £}. For, we let
Y € Cg°(R \ {0}) be compactly supported in the interval (1,2). We introduce the
operator ¢(—h?A,) using the Dynkin-Helffer-Sjéstrand formula [4] and refer to [15],
[4] or [10] for a complete overview of its properties (see also [2] for compact manifolds
without boundaries). Given ¥ € C°(R) we have

D(=128) = = [ B + 28, L),

where dL(z) is the Lebesque measure on € and ) is an almost analytic extension

of .
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A classical way to prove Strichartz inequalities is to use dispersive estimates. If

we denote by eV ~2ed the linear wave flow in the flat space, it satisfies the following
dispersive inequality:

(2 8g) ™Y 55 s oy ooy < O~ min{L, (/1) 7). (L5)

The Strichartz estimates then follow by interpolation between (1.5) and the energy
bounds, together with the standard squarefunction estimate which allows to recover
bounds on wu.

The aforementioned results for R¢ and manifolds without boundary have been un-
derstood for sometime. Fuclidean results go back to R.Strichartz’s pioneering work
[20], where he proved the particular case ¢ = r for the wave and Schrodinger equa-
tions. This was later generalized to mixed L{L” norms independently by J.Ginibre
and G.Velo [6] and H.Lindblad and C.Sogge [14], following earlier work by L.Kapitanski
[11]. The remaining endpoints were finally settled by M.Keel and T.Tao [12]. In the
case of manifolds without boundary, by finite speed of propagation it suffices to
work in coordinate charts and to establish estimates for variable coefficients opera-
tors in R?. For operators with C1! coefficients, Strichartz estimates were shown by
H.Smith [17] (see also the work of D.Tataru [21] for C* coefficients of the metric): a
necessary and sufficient condition for sharp Strichartz estimates to hold is to impose
the metric to have at least two bounded derivatives.

As far as the dispersive estimates are concerned, they do not hold anymore on
bounded domains. Indeed, suppose that (€2, g) is a compact manifold and that the
dispersive estimate (1.5) holds true with Aga replaced by Ay and for |¢t| < T, T > 0.

It follows that the kernel of the operator which to ug associates 1)(—h?Aga)e™V ~Brdqy
would belong to L>®(Q x Q) C L*(Q x ), the last inclusion being a consequence of
the compactness of 2. Such an operator, on the other hand, is of Hilbert-Schmidt
type, therefore it is compact. On the other hand, the application

L*(Q) 3 ug — eV 2y, € L*(Q)

is an isometry of L?*() and cannot be compact unless the dimension of L*(Q) is
finite, which is obviously a contradiction.

Even though the boundaryless case has been well understood for some time,
obtaining results for the case of manifolds with boundary has been surprisingly
elusive. For manifolds with smooth, strictly geodesically concave boundary, because
of the R.Melrose and M.Taylor parametrix for the Dirichlet wave equation, the
theory for this setting was also established by H.Smith and C.Sogge in [18]. If the
concavity assumption is removed, however, the presence of highly-multiply reflected
geodesics and their limits, the gliding rays, prevent the construction of a similar
parametrix. Besides the case involving concave boundaries mentioned before, there
were no sharp estimates until quite recently.

One technique which has potential applications in these kind of problems consists
in doubling the metric across its boundary to produce a boundaryless manifold with
a special type of Lipschitz metric. In [19] H.Smith and C.Sogge used it together with
wave packets techniques in order to prove sharp square function estimates (and hence
spectral projection estimates) of the form (1.4) where now §(p) = max(2(1/2—1/p)—
1/2,2(1/2—1/p)) in dimension d = 2. These are always sharp for compact domains
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in R? because of the existence of Rayleigh whispering gallery modes. Note that these
bounds are worse than the corresponding ones for the boundaryles case. However,
the works by H.Smith and D.Tataru show that there is no hope to obtain sharp
dispersive estimates using this approach, since the metric is not smooth enough.

The statement of the propagation of singularities of solutions to (1.1) has two main
ingredients: locating singularities of a distribution, as captured by the wave front set,
and describing the curves along which they propagate, namely the bicharacteristics.
Both of these are closely related to an appropriate notion of "phase space", in which
both the wave front set and the bicharateristics are located. On manifolds without
boundary, this phase space is the standard cotangent bundle.

In the case of a non-empty boundary, for the problems we are interested in the
main difficulties arise from the behavior of the singularities near the boundary. In
the interior of the domain, these singularities propagate, according to a result du to
L.Hormander, along optical rays. The study of the propagation of singularities near
the boundary was essentially made by R.Melrose and J.Sjostrand who introduced the
notion of "generalized bicharacteristic rays". The simplest case, corresponding to the
classical geometrical optic’s laws, consists of points for which the flow is transverse
to the boundary (called hyperbolic points). Some difficulties may appear near the
points where the rays are tangent to the boundary. The diffractive points are those
through which passes an optical ray without being deviated. To describe completely
the propagation we should also mention the rays which live on the boundary only,
called gliding rays, which are limits of highly-multiply reflected rays.

One feels that for (1.1) the types of Strichartz estimates that are possible should
reflect the geometry of (£2,¢g) and especially its boundary. As mentioned above,
for the problems we are interested in the main difficulties arise from the complex
propagation pattern near the boundary.
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Figure 2.1: Scale invariant Strichartz estimates obtained by [1] for d = 2,3

2. Results on manifolds with boundaries

2.1. Strichartz estimates

Besides the case involving concave boundaries mentioned before, there were no sharp
estimates until quite recently. In [3], N.Burq, G.Lebeau and F.Planchon were able to
use the square function estimates from [19] to prove Strichartz estimates without loss
for solutions of (1.1) for the admissible pair (d = 3,q = 5,7 = 5) that allowed them
to show that there is global existence for the H!-critical nonlinear wave equation
for domains in R3.

Shortly after this, M.Blair, H.Smith and C.Sogge obtained in [1] optimal Strichartz
estimates for triples which satisfy:

L,d_d_g L@l 1 <y,
2 )

q r

(2.1)

The strategy in [1] consists in doubling the manifold 2 along its boundary to
produce a boundaryless manifold with a special type of Lipschitz metric (with
codimension-1 singulairities). The study of the general wave equation for general
Lipschitz metrics has already been developed by H.Smith [17] and D.Tataru [21] by
introducing new wave-packet techniques and is particularly useful in the study of
eigenfunctions estimates (a recent example is give by the work [19]).

The main observation in [1] is that one can construct parametrices over large
time intervals when moving to directions which are not tangential to 0€2. Precisely,
for directions of angle # one can construct a parametrix on intervals of time of size
0, yielding to a 6-depending loss in the Strichartz estimates. On the other hand,
since such directions live in a small volume cone in the frequency set, one obtains a
gain in these estimates for non-sharp admissible indices (¢, 7) due to the frequency
localization. Requiring this gain to annihilate the loss coming from summing up over
6! intervals of time yields the restriction on the range of indices (d, g, r) in (2.1).

Remark 2.1. The restrictions on the indices in [1] are naturally imposed by the
local nature of the paramerix construction in [19]. In dimension d > 3 the result is
certainly not optimal (Lebeau’s applications give larger sets of admissible indices),
and this is a consequence of the fact that in higher dimensions the approach in [1]
does not allow to describe the dispersion effect in the d — 2 tangential variables.
Moreover, by doubling the metric one cannot see more than one reflection while
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= = loss of at least 1/6(1/4—1/r) derivatives
B - o isunavoidable  (O.L ('08.°09))
= sharp Strichartz (M.Blair,H.Smith, C.Sogge (’08))

= GAP to be filled...

1/q d=2 1/q

5/12
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1/4 1/2 1/ 1/4 1/2 1

Figure 2.2: Counterexample to the Strichartz estimates inside a
bounded domain [8, 9]

Lebeau’s description of the wave front set of u, in [13] (see also a forthcoming work
in collaboration with F.Planchon) show precisely that the worst situation in the
dispersion appears after the second reflection of the wave on the boundary.

One of the results discussed in this paper is work in the opposite direction: we
show by explicit computations that the (local in time) Strichartz estimates (1.2) for
the wave equation suffer losses when compared to the usual case ) = R?, at least for
a subset of the usual range of admissible indices (1.3) and this is due to micro-local
phenomena such as caustics generated in arbitrarily small time near the boundary.
Precisely, the main results in [8, 9] state that if (1.2) holds for sharp admissible
pairs then one must have r < 4 and also place a lower bound on the Sobolev index
that it would be required. We proved the following:

Theorem 2.2. Let Q C R be a reqular and bounded domain, (d,q,r) be a sharp

wave admissible exponent with r > 4 and let § = d(% — %) — %. Then the quotient

el zago.),Lr (@) (2.2)

‘|uOHH./6+%(i7%)(Q) + HUl "Hﬂ+%(%*%)*1(ﬂ)

takes arbitrarily large values for suitable initial data (ug,uy) of (1.1), i.e. a loss of
at least é(i — %) derivatives is unavoidable in the Strichartz estimates for the linear
wave flow.

Remark 2.3. Unfortunately, yet there is a gap between the negative results from this
counterexample and the known positive results from [1]. From (2.2) we can deduce

for instance that the scale-invariant Strichartz estimates fail for %+% > %, whereas

the results in [1] state that the Strichartz estimates (1.2) hold if 2 + 1 < 1. This
concise statement shows one explicit gap in our knowledge that remains to be filled.

Remark 2.4. A very interesting and natural question would be to determine the
sharp range of exponents (g, r) for the Strichartz estimates in any dimension d > 2;
to prove such sharp results we need to understand first the types of concentration
phenomena that can occur for eigenfunctions. For instance, the above counterex-
ample seems to us to be optimal, since after many explicit computations involving
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eigenmodes localized at different (small, frequency depending) distances away from
the boundary we always obtained losses at most like in (2.2); in particular, at least in
the 2D Friedlander’ model domain it seems not possible to improve the construction
in [8].

Remark 2.5. The result is striking because of the following reason: for quite a long
while people tended to feel that (1.2) should hold when the boundary is assumed to
be concave for all exponents satisfying the admissibility condition (1.3) (excluding
the forbidden endpoints when d = 2,3). In this case the singularities stay close to
the boundary and can reflect on the boundary large number of times. Thus one
might guess that stronger focusing may occur near the boundary. Indeed, such a
focusing does occur and as a consequence of it the pointwise decay estimates for
solutions to the wave equation fail, as do the estimates (1.4).

While the Rayleigh whispering gallery modes easily rule out (1.4) with v(p) as in
the boundaryless case, they do not rule out the aforementioned Strichartz estimates.
Since the Rayleigh waves seemed to have the maximum amount of concentration and
they did not saturate (1.2), people felt that the latter should hold for all admissible
exponents. Here we give a short review on WGM:

1

2.1.1. Whispering gallery modes

In mathematical terms, the WGM can be described by some eigenfunctions of the
Laplace operator inside the unit disk, whose gradients are almost tangent to the
boundary. Indeed, let (e, ,,) be a complete system of (nonnormalized) eigenfunctions
on the unit disk given by

en,m(ﬁ 9) = einejn<)\n,m7n)a Jn()\n,m) = 07 ()\n,m)m /7

where 7,0 are polar coordinates, J,, is the nth Bessel function and ), ,, the mth
positive zero of J, (A, is the frequency of e, ,,). The Bessel function can be

defined as r
Jn(z) — 7/ 6i(zsin9+n9)d9
0

27
and solves the differential equation 2%J/ + zJ! + (2* — n?)J, = 0, which follows
from separation of variables when the eigenvalue equation for A is written in polar
coordinates.

I Peking, near a famous historical memorial, the Temple of Heaven, there is a miraculous stone
wall, which forms an almost closed cylinder. The "miracle" consists in the fact that sounds uttered
in low voice in one of the directions along the wall return back after some time to the person who
uttered them. It seems that somebody invisible behind the back of the person pronounce the same
sounds by the person’s voice.

The modern physical explanation of this effect was proposed by Rayleigh as early as over a
century ago. He explained the effect on the basis of his own observations made in an ancient
gallery located under the dome of St. Paul’s Cathedral in London. This gave the name "whispering
gallery waves" for these waves. He found that the sound "clutches" to the wall surface and "creeps'
along it. The concave surface of the dome does not allow the beam cross section to expand as fast
as during propagation in free space. While in the latter case the beam cross section increases and
the radiation intensity decreases proportionally to the square of the distance from a source, the
radiation in the whispering gallery propagates within a narrow layer adjacent to the wall surface.
As aresult, the sound intensity inside this layer decreases only direct proportionally to the distance,
i.e. much slower than in the free space (see also [16]).

XI-7



Because the treatment of the transversal part is independent of the geometry of
the boundary, one would expect that only eigenfunctions make trouble with gradi-
ents almost tangential to the boundary. For the e, ,, this means that the ratio of
angular frequency n to radial frequency (which depends monotonically on A, ,, and
therefore on m) should be big and thus m small. In fact, after collecting some facts
on the asymptotic behavior of Bessel functions one can see the eigenfunctions which
correspond to tangent waves are those with m = 1 that we denote f,, = e, 1. The cor-
responding eigenfunction’s asymptotic is given by A1 2~ .00 74+ an'/? +0(n=%/3),
a > 0. In contrast, the oscillation of the e, is purely radial and the estimates (1.4)
and (1.2) are easily verified directly. D.Grieser [7] showed that a Bessel eigenfunction

[ of eigenvalue A satisfies
1

2 1
1Alle@) = A3 a2,
which contradicts the above estimate (1.4) for d = 2 for 6 < p < 8 . Grieser’s
counterexample involves the classical Rayleigh whispering gallery modes, which have
L? mass that is concentrated in a ~ A\~2/3 neighborhood of the boundary. This is a
greater concentration than the ~ A\~1/2 concentration around stable elliptic orbits
in the boundaryless case, and hence the LP estimates on manifolds with boundary
must be worse than those in the boundaryless case.
As far as the Stricartz estimates are concerned, in [8] we proved the following

Proposition 2.6. Restricted to the gallery modes {€™J,,(An.o7) }nez, the wave flow
exp (it\/—A,) satisfies sharp dispersive/Strichartz estimates.

Here we used the asymptotic behavior J,(A,17) =~ ¢(A*3(1 —7)), n =~ X and that
if the initial data writes as a superposition of whispering gallery modes
f(7“> 9) = Z eing‘]TL()‘n,lr)?
neX,2]

then applying the wave flow yields

exp (z’t@)f ~ p(N3(1 = 7)) 3 pin(6—t) —iatnl/3

n€eN,2]

Remark 2.7. Tt is worth noticing that applying the semi-classical Schrodinger evo-
lution shows that a loss of derivatives is unavoidable for the Strichartz estimates.
However, while dealing with the wave operator, this strategy fails as the gallery
modes satisfy the usual Strichartz estimates.

Remark 2.8. The result in [8, 9] is related to earlier work of Gilles Lebeau [13] and
involves conormal cusp waves. In the next section we will give a brief idea of the
proof of the counterexample and show the similitudes with G.Lebeau’s announced
approach in [13]. The last section of this note will be entirely devoted to G.Lebeau’s
announced result, whose detailed proof is available in a forthcoming work in collab-
oration with Fabrice Planchon.

2.2. Dispersive estimates

G.Lebeau was the first who described in [13] the dispersive estimates on small time
intervals for the solutions of (1.1) inside a strictly convex domain (€2, g) of dimension
d > 2. He considered the equation (1.1) with initial data (ug,u1) = (d4,0), where
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Figure 2.3: Scale-invariant Stricharz estimates obtained from Theo-
rem 2.9

a € () is a point sufficiently close to the boundary and announced the following
result [13][Theorem 1.1]:

Theorem 2.9. If u, denotes the solution to (1.1), then there exists T > 0, C' > 0
s.t. for every h € (0,1] and t € (0,T] the solution u, satisfies

[W(hDy)u(t, )| S h~min(1, (h/t) 7 +1). (2.3)

Recall that if w,ge = (27)7¢ [ cos(t|¢])e!®=¢d¢ is the Green function in the
Euclidian space, i.e. it solves (1.1) in R? with the same data, the classical dispersive
estimates reads as follows

[t ra(ts )|l Loemay S hd min{1, (h/t)%}.

The estimate (2.3) means that, compared to the dispersive estimate in the free space,
there is a loss of a power of 1/4 of h/t inside a strictly convex domain, and this is
due to micro-local phenomena such as caustics generated in arbitrarily small time
near the boundary. A main point of the proof consists in a detailed description of
the "sphere" of center a and radius ¢, i.e. the set of points of {2 which can be reached
following all the optical rays starting from a of length ¢.

Lebeau’s announced result is optimal for the dispersion and this is due to the
presence of swallowtail type singularities in the wave front set of u,, as we will
show in the last part of this note. Notice that it still an open problem to determine
the (scale-invariant) admissible indices (d, ¢, ) in the Strichartz estimates. A con-
sequence of (2.3) would be the validity of the Strichartz estimates for (1.1) for the
range of indices (d, ¢, r) satisfying

1 d—2 1,1 1
S G e VG
q ( 2 + 4)(2 r)
As a remark, even if in dimension d = 2 the range of admissible indices for which
sharp Strichartz hold has been recently generalized in [1], in dimension d > 3 the
result in Theorem 2.9 greatly improves the range of indices for which sharp Strichartz

do hold.
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Figure 2.4: Improved range of indices for which the Strichartz esti-
mates hold for d = 3

g
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Figure 2.5: Improved range of indices for which the Strichartz esti-
mates hold for d =4

3. Sketch of the proofs

3.1. Choice of a suitable model domain

We consider here the Friedlander’s model domain of the two-dimensional half-space
Q = {(z,y)lz > 0,y € R} with Laplace operator given by A, = 92 + (1 +
x)0; and we denote by p(t,z,y,7,£,1m) = & + (1 + 2)n* — 7° the symbol of the
wave operator [J = 92 — A, . The characteristic set of [J is the closed conic set
{(t,z,y, 7,&,n)|p(t,x,y,7,&,n) = 0}, denoted Char(p). We define the semi-classical
wave front set W Fj,(u) of a distribution u on R? to be the complement of the set
of points (p = (t,z,y),( = (7,&,1)) € R? x (R*\ 0) for which there exists a symbol
a(p,¢) € S(RP) such that a(p, () # 0 and for all integers m > 0 the following holds

la(p, AD)ullz> < ch™
Let p = p(0), ¢ = ((0) be a bicharacteristic of p(p, (), i.e. such that (p, () satisfies

dp 0Op dC dp

T =__r 0 0)) =0. 3.1

o= do= 9y p(p(0),¢(0)) (3.1)
Assume that the interior of € is given by the inequality v(p) > 0, in this case
v(p = (t,z,y)) = x. Then p = p(0), ¢ = ((0) is tangential to R x 9 if

() =0, 5(p(0)) =0 32
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Model domain

Disk

We say that a point (p, () on the boundary is a gliding point if it is a tangential

point and if in addition
2

A (p(0)) < 0. (3.3)

This is equivalent (see for example [5]) to saying that (p,() € T*(R x 02) \ 0 is a
gliding point if

p(pa C) = 07 {pv 7}|(P:C) = 07 {{p,’Y},pH(p,C) > 07 (34)

where {.,.} denotes the Poisson braket. We say that a point (p,() is hyperbolic
if z = 0 and 72 > 7%, so that there are two distinct nonzero real solutions £ to
E+0+x)*-12=0.

Remark 3.1. It is clear that, together with metric inherited from the A,, € becomes
a strictly convex domain: in fact, after the change of variables x = 1 —r, y = 0,
one can easily see that A, becomes equal, modulo first order terms, to the operator
92 + 503 inside the unit disk {r < 1}.

3.2. The counterexample - Sketch of the proof of Theorem
2.2

The key feature of the manifold leading to the counterexample is the strict geodesic
convexity of the boundary, i.e. the presence of highly-multiply reflected rays. The
particular manifold studied in[8] is one for which the eigenmodes can be explicitly
expressed in terms of Airy’s function, and the phase for the oscillatory integrals to
be evaluated have precise form: the counterexample is constructed, essentially, as a
superposition of traveling cusp solutions to the wave equation (1.1).

The eigenfunctions of A, can be written as e Ai(|n|*3z—wy ), where the Dirichlet
condition dictates that —wy, be the zeroes of the Airy function Ai(—wy) = 0. Rewrit-
ing the mode in the form e Ai(|n|?3(z — a)), the eigenvalue is A, := |n|(1 + a)"/?,
which means that such a wave moves with velocity (1 + a)'/? in the tangential
direction y. The associated eigenfunction reads as

/eit’\“eiW’Ai(nQ/?’(m —a))dn. (3.5)
n

Imposing the Dirichlet boundary condition at this level yields a condition on the
parameter a, precisely, a must depend in this case on some zeros wy of the Airy
function. A simple computation shows that such a wave "lives" essentially in the
regime of the whispering gallery modes (since, if it is localized at frequency %, one
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can easily see that it will remain essentially supported in a neighborhood of size
h*/3 of the boundary), therefore, in view of Proposition 2.6, it will satisfy sharp
estimates.
To construct waves that do not disperse requires superimposing waves with the
same value of a. If one ignores the boundary condition for the moment, the super-
12

position of such waves over a range 1 € [;, 7] would give, as can be seen by the

asymptotic of the Airy function, a solution living in an h-neighborhood of the cusp
y—(1+a)?t ==%la—z|?? x€|0,d. (3.6)

Indeed, this follows by performing stationary phase arguments in the integral defin-
ing the wave (3.5), where we have expressed the Airy function in terms of its integral
formula

/ 6m(y—t<1+a>1/2+£(r—a)+§)dgdn_ (3.7)
&m

We denote by ® the phase function in (3.7). Then the Lagrangian manifold associ-
ated to the phase function ® (which contains the wave front set W Fj, of this wave)
is given by

Ao = {(t,z,y,7 = 0,9, = 0,® = ns,n = 9,9)|0,® = 0,0,® = 0} C T*R*\ 0.
(3.8)
Let 7 : Ag — R3 be the natural projection and let ¥ denote the set of its singular
points. The points where the Jacobian of dm vanishes lie over the caustic set, thus the
fold set is given by 3 = {¢ = 0} and the caustic is defined by 7(¥) = {z+ (1 — ;—z) =
0} ={z =a}.
Remark 3.2. The motivation of this construction comes from the fact that near
the caustic set m(X) one notices the cusp type singularity (3.6) for which one can
compute explicitly the L"(£2) norms. The key observation is that if the parameter a
is very small this cusp type parametrix provides a loss in the Strichartz estimates
(which increases when a gets smaller). In particular, if a could be chosen to be
~ h%3, then the associated loss would involve the optimality of the work [1] and

the gap between the positive results and the counterexample given by Theorem 2.2
would be filled.

Therefore the goal is to construct a similar solution (with a cusp type singularity)
that satisfies boundary conditions at x = 0, while taking a as small as possible
depending on h. Rather then attempt to deal with the zeroes of the Airy function,
the boundary condition are met by taking a superposition of localized cusp solutions,
each term in the sum being chosen to cancel off the boundary value of the previous
term. The relation between amplitudes will be dictated by the billiard ball maps.
Roughly speaking, the billiard ball maps 6+ : T*(R x 9Q) — T*(R x 99), defined
on the hyperbolic region, continuous up to the boundary, smooth in the interior,
are defined at a point of T*(R x 02) by taking the two rays that lie over this point,
in the hypersurface Char(p), and following the null bicharacteristic through these
points until you pass over {z = 0} again, projecting such a point onto 7%(R x 02) (a
gliding point being "a diffractive point viewed from the other side of the boundary”,
there is no bicharacteristic in 7*(R x 02) through it, but in any neighborhood of a
gliding point there are hyperbolic points).

In our model case the analysis is simplified by the presence of a large commutative
group of symmetries, the translations in the tangential and time variables (y, t), and
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the billiard ball maps have specific formulas

2 8 72 T2 T
0y, t,n,T) = (y:l:4 T oy 2 32 tF4(—= —1 1/2,7],7'). 3.9
( ) (772 ) 3(772 ) (772 ) ; (3.9)

The composite relation (Ag|,_,)°" can be obtained using the graphs of the iterates
(6%)", namely
72 8 72 72 T
() (y, t,m,7) = (yi4n(2—1)1/2in(2—1)3/2,t:|:4n(2—1)1/2,77,7). (3.10)
1 31 Ul U
All these graphs, of the powers of 6%, are disjoint away from 7(X) and in order
to find microlocal representations of the associated Fourier integral operators it is
necessary to find a parametrization of each. We see that

4 72
+tr + -n(— — 1)%¥2,
yn T+3n(772 )

are parametrizations of Ag|,_,, thus the iterated Lagrangians (Ag|,_,)°" are parametrized
by

2

4 T 3/2
yn +tr + gnn(ﬁ —1)%%

and the corresponding phase functions associated to (Ag)°™ will be given by

4 72 3/2

1/2 S Y
=y —t(1 +a)¥ +€(x—a)+§+§na/).

Therefore we shall construct a parametrix for (1.1) under the form

N .
Un(t,z,y) = > upt,z,y), up(t,z,y) = /eﬁq’"gﬁ(t,é,n)dndé,
n=0

where ¢, = ¢ + %nna?’/ 2 are the phase functions defined above such that Ag, =
(Ag)°™ and where the symbols g;' are chosen such that on the boundary the Dirich-
let condition to be satisfied. At z = 0 the phases have two critical, non-degenerate
points, thus each u} writes as a sum of two trace operators, Tracey(uj}), local-
ized respectively for y — (1 4+ a)'/?t + %nazg/2 near i%na:g/z, and in order to ob-
tain a contribution Op2(h™) on the boundary we chose the symbol g7'*! such that
Trace_(g) + Trace, (g;t") = Op2(h*). This is possible by Egorov theorem, iff
N < a®?/h.

Moreover, if at t = 0 one considers symbols localized in a small neighborhood
of the caustic set, then one can show that the respective "pieces of cusps' propa-
gate until they reach the boundary but short after that their contribution becomes
Op2(h®), since as t increases, ¢ takes greater values too and thus one quickly quits
a neighborhood of the Lagrangian Ag (where £ = a — ) which contains the semi-
classical wave front set W F},(uy,). This argument is valid for all u}, hence we would
like to take advantage of the fact that at a given time ¢ we have nontrivial contribu-
tions coming from no more than two successive cusps so that we can estimate the
L4([0,1], L™ (€2)) norm of the sum U}, to be of the size of the sum of the norms of each
uy. We will be able to do this if we impose the symbols g; to have compact sup-
ports in a fixed-sized neighborhood of 7(X) uniformly with respect ton € {0, .., N'}.
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Figure 3.1: Propagation of the cusp: preserving ray optics picture
requires a > h'/?

Indeed, this last condition is crucial since, after the reflection on the boundary, the
n-th piece of cusp uj will continue to give a nontrivial contribution on a time inter-
val directly proportional to the size of the support of gj. If these supports become
larger with n, then uj starts to interact with other cusps around and we are not
allowed to use the almost orthogonality of the supports in time anymore.

Under these assumptions, if we denote I, the time interval (of size y/a) on which
uy is essentially supported and let J,, C I, be smaller intervals chosen so that for
t € J, there is only the cusp u} which has a nontrivial contribution, then we have
the following;:

[LATRTRPTSE=D Oy M DOUAURI A
=3 [, bt ML ot

= Nal/QHuh( »-)qu(g)

= ||y (0, )% 0-
Remark 3.3. These last conditions on the symbols, together with the assumption of
finite time (which implies that N x the size of the support in time I,, of u}' should

be equal to one) allows to estimate the number of reflections N and gives a lower
bound for the parameter a as follows:

1
a>h'? and N~ _—.

7

Since we were looking for the smallest possible values of a we take a ~ h'/? and
compute the L"(2) norm of the initial cusp u). We obtain the following estimates,
uniformly with respect to t € Jy C I

e If 2 <r <4 then

bt Mm@y p-33-1) (3.11)
[[un (0, )l L2
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o If » > 4 then

ln(, Mm@ -s3-1+2-1) (3.12)
[[un (0, )22 (0

Since B(d = 2,q,r) = %(% — %), with (gq,r) sharp admissible, is the order of the

Sobolev space for which the Strichartz estimates hold in the free space, we notice
that for » > 4 we have obtained in (3.12) a lower bound of hP2ar+5Gi=2) and
therefore (since all the functions are spectrally localized at frequency %) we deduce
that a loss in the Stricharz estimates (compared to the free case) of at least §(+ — 1)
derivatives must occur. On the other hand, the estimate (3.11) simply says that for

2 < r < 4 the above contruction doesn’t contradict the estimates of the free space.

Remark 3.4. We conjecture that for 2 < r < 4 there are no losses in the Strichart
inequalities inside a strictly convex domain. This a consequence of the proof of
Theorem 2.9 that will be sketched in the next section together with some refined
computations involving the Pearcey type integrals. This is a work in progress in
collaboration with Fabrice Planchon.

Remark 3.5. Notice that like in the Knapp’s counterexample, this construction in-
volves wave packets of size h'/?; this localization will also play an essential role in
the proof of Theorem 2.9.

3.3. The dispersive estimates - Sketch of the proof of Theo-
rem 2.9

This last section is devoted to the proof of Theorem 2.9 which has been announced
in [13]. Precisely, in [13] Gilles Lebeau sketched the main steps of the proof and gave
a full description of the geometry behind. However, many details are missing and
therefore, our forthcoming work in collaboration with Fabrice Planchon is intended
to complete the analytical part of G.Lebeau’s result.

While working in this direction, the first thing to understand is the type of con-
centration phenomena such as caustics that may occur near the boundary. What are
caustics? Caustics are envelopes of light rays that appear in a given problem. At
the caustic point the intensity of light is singularly large, causing different physical
phenomena. An example of a caustic is given in Picture 3.2, where the caustic is
the smooth curve 7(X) corresponding to x = a. Each ray is tangent to the caustic
at a given point. If one assigns a direction on the caustic, it induces a direction on
each ray. Each point outside the caustic lies on a ray which has left the caustic and
also lies on a ray approaching the caustic. Each curve of constant phase has a cusp
where it meets the caustic.

Mathematically, caustics could be characterized as points were usual bounds on
oscillatory integrals are no longer valid. Oscillatory integrals with caustics have
enjoyed much attention: it is well known that their asymptotic behavior is governed
by the number and the order of their critical points which are real. Let us recall
some background about them. Let us consider an oscillatory integral

1

un(z) = W/Cei“z@g(z,g, hde, zeR:L CeR, he(0,1]. (3.13)
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Figure 3.2: The caustic for the swallowtail catastrophe.

We assume that ® is smooth and that ¢(., h) is compactly supported in z and in .
If there are no critical points of the map ¢ — ®(z, (), so that 9,® # 0 everywhere
in an open neighborhood of the support of g(.,h), then the repeated integration
by parts shows that |uj(z)| = O(hY), for any N > 0. If there are non-degenerate
critical points, where 9,® = 0 but det@?jgk@) # 0, then the method of stationary
phase applies and gives ||uy(2)||L~ = O(1). It follows that as long as all critical
points are non-degenerate, u,(z) € L"(R?), 2 < r < oo, with the norms bounded
uniformly in A € (0, 1].

If there are degenerate critical points, known as caustics, then ||u(z)||z~ is no
longer uniformly bounded. The order of a caustic k is defined as the infimum of &’

so that ||up(2)||ze = O(h™).

Remark 3.6. For example, the phase function ®r(z,() = %—3 + 21( + 25 corresponds
to a fold with order k = %. It turns out that the phase function which appears
in the proof of Theorem 2.2 and corresponds to a cusp, homogeneous in 7, writes
under the form n(% + 21€ + z2). This is the reason why the loss we obtained there is
precisely of % derivatives. Notice that the canonical form of a cusp type singularity
is given by a phase function which is a polynomial of degree 4, namely of the form
do(2,() = % + 21% + 25 + 23 whose order is k = %; its associated integral is called
the Pearcey’s function. This integral plays a crucial role in the proof of Theorem
2.9 together with the swallowtail integral (which is an oscillatory integral with four
coalescing saddle points) whose canonical form is given by a polynomial of degree
5, (I)S(Z7<) = % + Zl% + 22% + Z3< + z4.

The caustic surface of the swallowtail is defined by the condition that two or more
real saddle points are equal. In the event that two simple saddle points undergo
confluence when z — zp, then the uniform asymptotic behavior of (3.13) contains
terms involving the Airy function and its derivatives multiplied by powers of h3ts,
If three simple saddles coalesce as z — zp, then the uniform asymptotic behavior of
(3.13) can be described by terms containing the Pearcey function and its first-order
derivatives, each multiplied by a power of h=3+1. The swallowtail enters in picture
when four simple saddle points of (3.13) undergo confluence as z — z.

Let us now mention the main ideas of the proof of Theorem 2.9. The first step
consists into a decomposition in wave packets depending on the number of reflections
on the boundary. It turns out that it will be sufficient to prove the estimates (2.3)
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for the following initial data:

1 i
e | A ) dedn,

where 1, p are smooth functions Compactly supported in a neighborhood of 1 and 0,
respectively, ¢ € C’°°( 2),p € C"X’( 2, 5) If the initial distance a to the boundary

is sufficiently small, namely a < hz, we proceed like in [13], writing a parametrix
u for (1.1) and using the fact that the essential support of the Fourier transform
@ remains small, together with the elementary estimate [13][(2.24)]. In order to
construct the parametrix u we use the FBI transform for ¢ close 0 so that we can
describe the wave before the reflection on the boundary; we then solve the Airy
equation explicitly with data on the boundary given by the trace of @ on 02. We
repeat this construction a number of times N ~ ﬁ We obtain a parametrix of the
form

Uo(xa y) =

Un(t,z,y) = Zuntxy

with ' ¢
Uun(t, 2, y) Z/eﬁ”%“’””’y’% (z,y,t, &) (n)p(h~ 1/2(5 2))dédn,

where 1), p are smooth functions essentially supported in a neighborhood of 1 and
0, respectively. The symbols g are chosen so that u, to have almost orthogonal
supports in time and so that the Dirichlet condition to be satisfied. For a > hz
we study the asymptotic behavior of the parametrices u,,. We have the following
Lemma, which is the equivalent of [13][Lemma 3.7]:

Lemma 3.7. For every n € {1,.., N}, the phase ¢,, has saddle points of order at
most 3; for each n € {1,..,N} there exists a unique time t = tg,, for which ¢,(t)
has a critical point s of order 3. Fort # tg,, the phase ¢n(t) has only critical points
of order at most 2. Moreover, for each n we have 16a(n —1)n < t%’n < 16an(n+1).

From the above Lemma it follows, using Arnold’s classification, that ¢, is a
Pearcey type integral with order i. Writing the asymptotic expansion of w,(f) near

tsn, we deduce that a loss of i powers of thJ is unavoidable in the L norm of wu,,.

Theorem 3.8. The loss ofi poOwWers of% in the dispersive estimates (2.3) is optimal
in any dimension d > 2.

Indeed, the optimality follows from the fact that there is a swallowtail type sin-
gularity in the wavefront set W F},(u,,) for each n € {1,.., N}. This loss occurs only
from the dispersion in the normal variable z, therefore is enough to prove the result
in dimension d = 2.

Remark 3.9. In the first picture of Section 3.3 we can see the propagation of the
wavefront set of Uy; the second picture is a zoomed version of the first one and
shows in detail the formation of the swallowtail singularity for packets moving to
directions tangent to the boundary.
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Figure 3.3: Propagation of the wavefront
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Figure 3.4: The formation of a swallowtail singularity just after the
first reflection (zoomed image)

References

1]

Matthew D. Blair, Hart F. Smith, and Christopher D. Sogge. Strichartz es-
timates for the wave equation on manifolds with boundary. to appear in
Ann.Inst. H. Poincaré, Anal.Non Liréaire.

Nicolas Burq, Patrick Gérard, and Nicolay Tzvetkov. Strichartz inequalities
and the nonlinear Schrédinger equation on compact manifolds. Amer. J. Math.,
126(3):569-605, 2004.

Nicolas Burq, Gilles Lebeau, and Fabrice Planchon. Global existence for energy
critical waves in 3-D domains. J. Amer. Math. Soc., 21(3):831-845, 2008.

E. B. Davies. The functional calculus. J. London Math. Soc. (2), 52(1):166-176,
1995.

Gregory Eskin. Parametrix and propagation of singularities for the interior
mixed hyperbolic problem. J. Analyse Math., 32:17-62, 1977.

J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equa-
tion. In Partial differential operators and mathematical physics (Holzhau, 1994),
volume 78 of Oper. Theory Adv. Appl., pages 153-160. Birkhauser, Basel, 1995.

XI-18



[7] Daniel Grieser. [ bounds for eigenfunctions and spectral projections of the
Laplacian near concave boundaries. Thesis, UCLA, 1992. http://www.staff.
uni-oldenburg.de/daniel.grieser/wwwpapers/diss.pdf.

[8] Oana Ivanovici. Counter example to Strichartz estimates for the wave equation
in domains, 2008. to appear in Math. Annalen, arXiv:math/0805.2901.

[9] Oana Ivanovici. Counterexamples to the Strichartz estimates for the wave equa-
tion in domains II, 2009. arXiv:math/0903.0048.

[10] Oana Ivanovici and Fabrice Planchon. Square function and heat flow estimates
on domains, 2008. arXiv:math/0812.2733.

[11] L. V. Kapitanskii. Some generalizations of the Strichartz-Brenner inequality.
Algebra © Analiz, 1(3):127-159, 1989.

[12] Markus Keel and Terence Tao. Endpoint Strichartz estimates. Amer. J. Math.,
120(5):955-980, 1998.

[13] Gilles Lebeau. Estimation de dispersion pour les ondes dans un convexe.

In Journées “Equations aux Dérivées Partielles” (Evian, 2006). 2006. see
http://www.numdam.org/numdam-bin/fitem?id=JEDP_2006___ A7 _O.

[14] Hans Lindblad and Christopher D. Sogge. On existence and scattering with
minimal regularity for semilinear wave equations. J. Funct. Anal., 130(2):357—
426, 1995.

[15] Francis Nier. A variational formulation of Schrodinger-Poisson systems in di-
mension d < 3. Comm. Partial Differential Equations, 18(7-8):1125-1147, 1993.

[16] A.N. Oraevsky. Whispering-gallery waves. Quantum Electronics, 32(5):377-400,
2002.

[17] Hart F. Smith. A parametrix construction for wave equations with C'** coeffi-
cients. Ann. Inst. Fourier (Grenoble), 48(3):797-835, 1998.

[18] Hart F. Smith and Christopher D. Sogge. On the critical semilinear wave equa-
tion outside convex obstacles. J. Amer. Math. Soc., 8(4):879-916, 1995.

[19] Hart F. Smith and Christopher D. Sogge. On the L? norm of spectral clusters
for compact manifolds with boundary. Acta Math., 198(1):107-153, 2007.

[20] Robert S. Strichartz. Restrictions of Fourier transforms to quadratic surfaces
and decay of solutions of wave equations. Duke Math. J., 44(3):705-714, 1977.

[21] Daniel Tataru. Strichartz estimates for second order hyperbolic operators with
nonsmooth coefficients. III. J. Amer. Math. Soc., 15(2):419-442 (electronic),
2002.

UNIVERSITE DE NICE SOPHIA-ANTIPOLIS, LABORATOIRE J.A.DIEUDONNE,
PARC VALROSE 06108 Nice CEDEX 02 FRANCE
Oana.Ivanovici@math.unice.fr

XI-19


http://www.staff.uni-oldenburg.de/daniel.grieser/wwwpapers/diss.pdf
http://www.staff.uni-oldenburg.de/daniel.grieser/wwwpapers/diss.pdf
mailto:Oana.Ivanovici@math.unice.fr

	1. Introduction
	2. Results on manifolds with boundaries
	2.1. Strichartz estimates
	2.1.1. Whispering gallery modes

	2.2. Dispersive estimates

	3. Sketch of the proofs
	3.1. Choice of a suitable model domain
	3.2. The counterexample - Sketch of the proof of Theorem 2.2
	3.3. The dispersive estimates - Sketch of the proof of Theorem 2.9

	References

