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Journées Équations aux dérivées partielles
Obernai, 11–15 juin 2018
GDR 2434 (CNRS)

Applications of a metaplectic calculus to Schrödinger evolutions with
non-self-adjoint generators

Joe Viola

Abstract

We review the calculus of metaplectic operators and shifts in phase space applied to Gaussian
wave packets. Using holomorphic extensions of this calculus, one can reduce the L2 theory of evolution
equations with non-selfadjoint quadratic generators to symplectic linear algebra. We illustrate these
methods through an application to the quantum harmonic oscillator with complex perturbation ix.

1. Introduction

The goal of this note is to discuss methods of complexifying the metaplectic group and shifts on
phase space to analyze the Schrödinger evolution of certain non-self-adjoint generators. The author
has studied these methods recently (with coauthors) in works like [1], [2], [16], [17]. The methods
are classical, particularly in the case of self-adjoint generators, and the study of non-self-adjoint
operators has seen renewed interest in recent years [15]. The present discussion draws particularly
on classical works like [6], [8], [13], though this is far from a complete list.

We will present these ideas through an application to the evolution corresponding to

P = 1
2((Dx − ivξ)2 + (x− ivx)2) (1.1)

where Dx = −i d
dx and v = (vx, vξ) ∈ R2 is fixed. The generator P is a complex perturbation of

the quantum harmonic oscillator

Q0 = 1
2(D2

x + x2). (1.2)

The operator P is one of the simplest examples of a non-self-adjoint perturbation of a self-adjoint
operator. It has many interesting spectral and pseudo-spectral properties [9], [11] and appears in
the study of hypoelliptic operators as a simple and powerful model [4], [5], [12].

In [2, Prop. 2.23], it is shown that the solution operator

exp(−itP ) : u(x) 7→ U(t, x)

solving {
(−i∂t + P )U(t, x) = 0, t ∈ C,
U(0, x) = u(x)

has a maximal weak extension for t ∈ C, as recalled in Example 4.3. When exp(−itQ0) is compact
on L2(R) (that is, when Im t < 0), the operator exp(−itP ) is also compact, and when exp(−itQ0) is
unbounded on L2(R) (meaning Im t > 0), the operator exp(−itP ) is also unbounded. When Im t <
0, the L2(R) theory of exp(−itP ) (its norm, singular value decomposition, etc.) is known [17]. Our
goal here is to explore the intermediate case t ∈ R and the effect of exp(−itP ) on wave packets,
and through this exploration to discuss some fundamental ideas used in works like [6], [8] and [13].
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To state some results, we introduce a wave packet in dimension one as a Gaussian shifted in
phase space: when w = (wx, wξ) ∈ C2 and τ ∈ C with Im τ > 0, let

gw,τ (x) = exp
(
− i

2wxwξ + iwξx+ i
2τ(x− wx)2

)
. (1.3)

When w ∈ R2,
‖gw,τ‖L2(R) = ‖g0,τ‖L2(R) = (π Im τ)−1/4.

We also recall the symplectic form
σ((x, ξ), (y, η)) = ξy − ηx, (x, ξ), (y, η) ∈ C2

which for (x, ξ), (y, η) ∈ R2 coincides with −(x, ξ) × (y, η), the opposite of the cross product.
Finally, we recall that exp(−itQ0) is associated with its Hamilton flow

Kt =
(

cos t sin t
− sin t cos t

)
, (1.4)

which is simply rotation by the angle −t.
Theorem 1.1. Fix v = (vx, vξ) ∈ R2 and let the shifted harmonic oscillator P be as in (1.1). Also
fix w ∈ R2 and τ = τ1 + iτ2 ∈ C with Im τ > 0; we recall the wave packet gw,τ defined in (1.3).
With Kt the Hamilton flow associated with the harmonic oscillator (1.4), we introduce

u(t) = (ux(t), uξ(t)) = (K−t − 1)v = ((cos t− 1)vx − (sin t)vξ, (sin t)vx − (cos t− 1)vξ).
Then, with norms in L2(R),

‖exp(−itP )gw,τ‖ = e−σ(u(t),w)‖giu(t),τ‖ (1.5)
and

‖giu(t),τ‖
‖g0,τ‖

= exp
(

1
2

(
1
τ2

(uξ(t)− τ1ux(t))2 + τ2ux(t)2
))

. (1.6)

1.1. Discussion
The wave packet analysis of exp(−itP ) both reinforces and significantly sharpens our natural
intuitions concerning this non-self-adjoint operator. To fix ideas, let v = (1, 0) so the operator
being investigated is

P = 1
2(D2

x + (x− i)2)

= Q0 − ix− 1
2 .

For small times, one could guess that ‖exp(−itP )f‖ ≈ ‖exp(−tx)f‖ in L2(R) because evolution
by what remains of the operator, exp(−it(Q0 − 1

2 )), is unitary. One could correctly guess that the
wave packet g(wx,0),τ for τ fixed and wx ∈ R should have norm similar to exp(−twx) for t small
and wx large. A certain number of tricks (such as periodicity and time inversion) are available,
but these are not necessarily applicable to other degree-2 generators.

But we have much more precise information: in this case,
u(t) = (cos t− 1, sin t)

and so
−σ(u(t),w) = wξ(cos t− 1)− wx sin t

which has the geometric interpretation of the magnitude of the cross product between u(t),
which traces a circle counterclockwise around (−1, 0), and w. To illustrate this, we draw
‖exp(−itP )f‖/‖f‖ for f a variety of wave packets. In Figure 1.1, we take gw,i for w ∈ {(0, 0), (3, 0),
(0, 3), (−3, 0), (0,−3)}. In Figure 1.2, various centered Gaussians g0,τ with different “shapes” τ are
considered.

Many of the precise features of the curves in Figures 1.1 and 1.2 can be understood with
elementary geometry. For instance, the norm corresponding to w = (3, 0) decreases because u(t)
starts off in the positive vertical direction which is counter-clockwise from (3, 0), The norm then
increases beyond the norm of the centered Gaussian as t passes π because the vertical component
of u(t) becomes negative, and u(t) is then in the clockwise direction from w.
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Figure 1.1: Logarithmic norm change log(‖exp(−itP )gw,i‖/‖gw,i‖) for t ∈ [0, 2π]
and phase-space centers w = (0, 0), (3, 0), (0, 3), (−3, 0), (0,−3), with markers
◦,×,5, �,4, respectively.
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Figure 1.2: Logarithmic norm change log(‖exp(−itP )g0,τ‖/‖g0,τ‖) for t ∈ [0, 2π]
and centered Gaussians with “shapes” τ = i, 2i, i/2, 1 + i, −1 + i, with markers
◦,×,5, �,4, respectively.

A long list of questions can then be easily answered. If we scale w 7→ λw, does the maximum
norm

sup
t∈R
‖exp(−itP )gλw,τ‖

blow up as λ → ∞? (Almost always, except if w = (0, wξ) and wξ < 0.) How quickly? (Like
ec0λ+O(1) for some c0 ∈ R.) What is the growth rate c0? (If (cos t, sin t) = 1

‖w‖ (wξ,−wx), then

e−σ(u(t),w) = e‖w‖−wξ

which is of leading order as ‖w‖ → ∞.) Is ‖exp(−itP )gλw,τ‖ ever exponentially small? (Yes, if
(cos t, sin t) = − 1

‖w‖ (wξ,−wx), then ‖exp(−itP )gλw,τ‖ becomes exponentially small as λ → +∞
so long as w is not (0, wξ) with wξ > 0.) Are there centered wave packets, meaning w = 0, for
which ‖exp(−itP )g0,τ‖ grows arbitrarily large? (Yes, if t /∈ 2πZ we can take any τ1 6= 0 and
τ2 → 0+.) Can we choose τ such that the evolution of a centered wave packet becomes small? (No,
the exponent in (1.6) is positive.)

1.2. Plan of paper
In Section 2 we recall the calculus of metaplectic operators and shifts in phase space, as well as
the elementary but somewhat involved computation giving the norm of a complex shift of a wave
packet. With these tools in place, we prove Theorem 1.1 in several lines in Section 3. In Section 4
we recall following [1], [2] the general theory of a Bargmann reduction, based on the works of
J. Sjöstrand, which allows us to make a weak definition of exp(−itP ) for a wide variety of degree-2
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generators P . Finally, in Section 5, we recall the implications of this theory for the L2 norm of the
Schrödinger evolution, following [17].

Acknowledgements. The author is supported by the Région Pays de la Loire through the
project EONE (Évolution des Opérateurs Non-Elliptiques).

2. Shifts in phase space and metaplectic operators

We present shifts in phase space and metaplectic operators on L2(Rn) or subspaces thereof. Most
of the material is classical and can be found in, for instance, [7] or [10]. We view these operators
as Schrödinger evolutions

exp(−itA)

for A the Weyl quantization of a homogeneous polynomial a(x, ξ) of degree 1 (shifts) or 2 (meta-
plectic operators). When the symbol a has real coefficients, the operator A is self-adjoint and the
evolution is unitary, but if the symbol is complex-valued, significant complications arise (see, for
instance, the many references in [15]). Throughout one uses symplectic linear algebra, based on
the usual symplectic inner product on C2n,

σ((x, ξ), (y, η)) = ξ · y − η · x. (2.1)

2.1. Shifts

A shift in phase space corresponding to v = (vx, vξ) ∈ R2n is the Schrödinger evolution of the
quantization of

a(x, ξ) = σ((x, ξ), (vx, vξ)) = vxξ − vξx.

For a degree-one polynomial, the Weyl quantization simply takes ξ to Dx = −i∇x. It is straight-
forward to check that, if

Svf(x) = e− i
2 vx·vξ+ivξ·xf(x− vx),

then
∂tStvf(x) = −i(vxDx − vξx)Stvf(x),

confirming that
Sv = exp(−iσ((x,Dx),v)).

If v ∈ R2n, then the shift Sv is an isomorphism of the Schwartz space S (Rn) and therefore its
dual S ′(Rn). Furthermore, these shifts are unitary on L2(Rn).

If v ∈ C2n is not real, then Sv is unbounded on S (Rn). The definition is still well-defined on
any Gaussian, so one may take a maximal definition by having a complex shift act on the wave
packet decomposition, as we describe in Section 4.

2.2. Wave packets

For T ∈Mn×n(C) a symmetric n-by-n matrix, we introduce the centered Gaussian

g0,T (x) = e i
2x·Tx.

(We are, of course, most interested in the case ImT > 0 in the sense of positive definite matrices.)
To change the center of a wave packet in phase space, we simply take the shift by w = (wx, wξ) ∈
C2n,

gw,T (x) = Swg0,T (x) = e− i
2wx·wξ+iwξ·x+ i

2 (x−wx)·T (x−wx).

The complex shift of a wave packet does not necessarily conserve the norm, and in Section 2.4 we
discuss how to find the norm and corresponding real shift by projecting w ∈ C2n to R2n along the
Lagrangian plane associated to g0,T .
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2.3. Calculus for the evolution of shifts
The way the Schrödinger evolution of a wave packet depends on the shape T of the wave packet is
somewhat complicated; for this reason, it is enormously convenient to have a stable wave packet
on hand. Identifying this choice of wave packet is due to [13], which we recall in Section 4.2.
The evolution of the phase-space center, on the other hand, is very simple, and can be largely
understood using two rules.

Commuting shifts contributes a factor depending on the symplectic inner product:
SvSw = e i

2σ(v,w)Sv+w = eiσ(v,w)SwSv.

Commuting shifts past a metaplectic operator composes the shift with the associated canonical
transformation: if the operator K is associated with the canonical transformation K, then

KSv = SKvK. (2.2)
Example 2.1. When the generator is the harmonic oscillator, the so-called Egorov relation (2.2)
may be formally verified by hand, with some difficulty. Suppose that U(0, x) = u(x) and that

(−i∂t + 1
2(D2

x + x2))U(t, x) = 0.

To show that exp(−itQ0)Sw = SKtw exp(−itQ0) for w = (wx, wξ) ∈ R2 and Kt in (1.4), one can
verify that
F (t, x) = e− i

2 (wx cos t+wξ sin t)(−wx sin t+wξ cos t)+i(−wx sin t+wξ cos t)xU(t, x− (wx cos t+ wξ sin t))
also satisfies (−i∂t+Q0)F (t, x) = 0, but the author does not particularly recommend carrying out
the computation even in this simplest of cases.

2.4. Interaction between shifts and the shape of a wave packet
Equivalent shifts for a wave packet gv,T (which are useful when seeking the norm, because a real
shift is unitary) depend on the Lagrangian plane

ΛT = {(ζ, T ζ)}ζ∈Cn
associated with the wave packet. (See [8, Sect. 5.5].) To begin, for any ζ ∈ Cn,

g(ζ,Tζ),T (x) = e i
2 (x−ζ)·T (x−ζ)+iTζ·x− i

2 ζ·Tζ = g0,T (x) (2.3)
because T is symmetric. Therefore if v−w ∈ ΛT , then

gv,T = SwS−wSvg0,T = e i
2σ(v,w)SwSv−wg0,T = e i

2σ(v,w)gw,T .

In particular, we can determine the effect of a complex shift Sv for v = (vx, vξ) ∈ C2n on the
L2 norm of a wave packet. We assume that

v = iu, u = (ux, uξ) ∈ R2n,

because
‖gv,T ‖ = ‖e−iσ(Re v,Im v)SRe vSi Im vg0,T ‖ = ‖gi Im v,T ‖.

Proposition 2.2. Let T = T1 + iT2 ∈ Mn×n(C) be a complex symmetric matrix with T1, T2 real
and T2 positive definite. Let u = (ux, uξ) ∈ R2n. Define

p = uξ − T1ux ∈ R2n.

Then
‖giu,T ‖
‖g0,T ‖

= exp
(

1
2(p · T−1

2 p+ ux · T2ux)
)
≥ 1

with equality only when u = 0.

Proof. We search for a ζ ∈ Cn such that
iu− (ζ, T ζ) ∈ R2n,

since g0,T is invariant under S(ζ,Tζ) and the L2 norm is invariant under a real shift. We write
ζ = ζ1 + iζ2 for ζ1, ζ2 ∈ Rn. Because iux − ζ is real, ζ2 = ux. Because iuξ − Tζ is also real,

uξ = Im(Tζ) = T2ζ1 + T1ux.
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Therefore, recalling that T = T1 + iT2 is symmetric and so T ∗ = T = T1 − iT2,

ζ = T−1
2 (uξ − T1ux) + iux

= T−1
2 p+ iux.

We also have

Tζ = (T1 + iT2)(T−1
2 p+ iux)

= T1T
−1
2 p+ iT1ux + i(uξ − T1ux)− T2ux

= iuξ + T1T
−1
2 p− T2ux.

Since S(ζ,Tζ)g0,T = g0,T by (2.3),

giu,T = SiuS−(ζ,Tζ)g0,T = e i
2σ(iu,−(ζ,Tζ))Siu−(ζ,Tζ)g0,T = e 1

2σ(u,(ζ,Tζ))Siu−(ζ,Tζ)g0,T .

Because iu− (ζ, T ζ) ∈ R2n, the corresponding shift is unitary and

‖giu,T ‖ = |e 1
2σ(u,(ζ,Tζ))|‖g0,T ‖.

We simplify the exponential,

σ(u, (ζ, T ζ)) = σ(u, (ζ, T ζ)− iu) = σ(u, (T−1
2 p, T1T

−1
2 p− T2ux))

= uξ · T−1
2 p− (T1T

−1
2 p− T2ux) · ux = p · T−1

2 p+ ux · T2ux. �

3. Proofs for the shifted harmonic oscillator

Having set up the necessary elements of the metaplectic calculus, the proof of Theorem 1.1 is a
few lines.

Proof of Theorem 1.1. Let Im τ > 0 and w ∈ C2. Since P = SivQ0S−iv,

exp(−itP )gw,τ = Siv exp(−itQ0)S−1
iv Swg0,τ

= exp(−itQ0)SiK−tvS−ivSwg0,τ

= e− i
2σ(K−tv,−v)−σ((K−t−1)v,w) exp(−itQ0)SwSi(K−t−1)vg0,τ .

When t and w are real, exp(−itQ0)Sw is unitary. Having also assumed that v is real,

‖exp(−itP )gw,τ‖ = e−σ((K−t−1)v,w)‖Si(K−t−1)vg0,τ‖.

Defining u(t) = (K−t − 1)v and applying Proposition 2.2 proves Theorem 1.1. �

4. A weak definition of the Schrödinger evolution for supersymmetric degree-2
polynomials

Let P be a degree-two polynomial in (x,Dx) with complex coefficients. If we set out to solve the
Schrödinger evolution problem {

−i∂tU(t, x) + PU(t, x) = 0,
U(0, x) = u(x),

on L2(Rn), we are confronted with several challenges. In the elliptic case we can describe the
spectrum thanks to [13], but the spectrum gives limited information about the evolution equation
in the non-self-adjoint case. We recall the spectral theory in Section 4.1 below.

Another natural approach is to use wave packets as a definition, but the effect on the norm of
decomposition into wave packets, transformation of wave packets, and recomposition is somewhat
unclear. This is greatly simplified by the supersymmetric structure of many quadratic operators,
which allows us to identify a wave packet whose shape (the matrix T ) is stable under the ac-
tion of the operator. We recall this structure in Section 4.2, and we recall associated Bargmann
transformation which allows us to make a weak definition of a Schrödinger evolution in Section 4.3.
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4.1. Spectral theory in the elliptic quadratic case
Let P be an operator given by the Weyl quantization of q(x, ξ), a quadratic form in (x,Dx) =
(x,−i∂x):

Q =
∑

|α+β|=2

1
2qαβ(xαDβ

x +Dβ
xx

α).

(Here, α, β ∈ Nn are multiindices and qαβ are complex numbers.) For example, the Weyl quanti-
zation in dimension one takes

ax2 + bxξ + cξ2

to the operator

ax2 + b

2i

(
x

d
dx + d

dx

)
− c d2

dx2 .

It has long been known [13] that, under certain ellipticity hypotheses such as
lim

|(x,ξ)|→∞
Re q(x, ξ) = +∞,

the spectrum of a non-self-adjoint operator which is a degree-2 polynomial in (x,Dx) can be
explicitly computed. In the case where q is elliptic and quadratic, there is a complete set of
eigenfunctions of the form

fα(x)e i
2x·A+x,

and the (generalized) eigenvalues are a lattice
n∑
j=1

1
i λj

(
αj + 1

2

)
: α ∈ Nn

 .

The values λj are the eigenvalues of the Hamilton map Hq in the upper half-plane {Imλ > 0}. The
Hamilton map may be defined using the sympletic inner product as the unique (complex-)linear
operator such that

q(X) = 1
2σ(X,HqX), ∀ X ∈ R2n

and
1
2σ(X,HqY ) = −1

2σ(HqX,Y ), ∀ X,Y ∈ R2n.

Recalling the linear map J(x, ξ) = (−ξ, x) which defines the symplectic inner product via σ(X,Y ) =
X · JY , the Hamilton map is simply

Hq = −J Hess q
where Hess q is the usual Hessian.

Example 4.1. The harmonic oscillator has symbol

q0(x, ξ) = 1
2(x, ξ) · (x, ξ)

for which the Hessian is the identity matrix. Therefore the Hamilton map is Hq0 = −J, or in other
words rotation by −π/2.

4.2. Supersymmetry
At the heart of J. Sjöstrand’s proof of the spectrum of non-self-adjoint elliptic quadratic operators
is the existence of stable centered Gaussians for the operator and its adjoint. These come from a
decomposition of a quadratic symbol q(x, ξ) as

q(x, ξ) = (ξ − T ∗−x) ·B(ξ − T+x) (4.1)
for B, T+, T− ∈Mn×n(C) matrices with T+, T− symmetric and ImT+, ImT− positive definite. The
Weyl quantization gives

Q = qw(x, ξ) = (Dx − T ∗−x) ·B(Dx − T+x) + µ0 (4.2)
for a constant µ0 ∈ C. Recalling that Dx = −i∂x and gT (x) = exp( i

2x · Tx), it is immediate that
(Q− µ0)gT+ = (Q∗ − µ0)gT− = 0.
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Since formally
Dx − T+x = gT+Dxg

−1
T+
,

we may (with minimal abuse of terminology) say that an operator in the form (4.2) is supersym-
metric.

4.3. Adapted Bargmann transforms
If q(x, ξ) can be expressed as in (4.1), there exists (see e.g. [2, Prop. 3.3] which follows [13]) a
complex symplectic linear transformation B and a matrix M such that, with Hq the Hamilton
map of Q,

BHqB−1 =
(

iM 0
0 −iM>

)
.

Consequently, for X = (x, ξ) ∈ C2n,

q(B−1X) = 1
2σ(B−1X,HqB−1X) = 1

2σ(X,BHqB−1X) = Mx · iξ.

Much as there are metaplectic operators K corresponding to real canonical transformations K
for which

KpwK−1 = (p ◦K−1)w

for the Weyl quantization of symbols p = p(x, ξ), one can find a Bargmann transform B such that,
when Q = qw is the Weyl quantization of q(x, ξ),

BQB−1 = Mx · ∂x + 1
2 trM,

which is the Weyl quantization of Mx · iξ. The operator B is unitary from L2(Rn), but the image
is HΦ(Cn), the space of holomorphic functions on Cn for which

‖f‖2HΦ
=
∫
Cn
|f(x)|2e−2Φ(x) d Rexd Im x

is finite. The function Φ(x) is quadratic and strictly convex. For details in the general case, we
refer the reader to references like [18, Ch. 13], [14, Ch. 12.2] or the computations carried out in [2,
Sect. 3.2].

Example 4.2. For the harmonic oscillator in dimension one, this reduction is accomplished using
the Bargmann transform [3]:

Bf(x) = π−3/4
∫

e− 1
2 (x2+y2)+

√
2xyf(y) dy.

The weight is given by Φ(x) = 1
2 |x|

2 for x ∈ C. For the quantum harmonic oscillator Q0 in (1.2),

BQ0B−1 = x · d
dx + 1

2 ,

and if f̃ = Bf , we have the equivalent definition for the evolution

B exp(−itQ0)f(x) = e− it
2 f̃(e−itx).

In particular, with a change of variables, the fact that exp(−itQ0) is unitary for t ∈ R corresponds
to the fact that Φ(x) = 1

2 |x|
2 is invariant under multiplying x by e−it.

The Bargmann reduction greatly simplifies the spectral theory [13]: the eigenfunctions ofMx·∂x
are monomials, up to a change of variables putting M in Jordan normal form. The Bargmann
reduction also simplifies the Schrödinger evolution, since for a holomorphic function f(x),

F (t, x) = e− it
2 trMf(e−itMx)

is the unique holomorphic solution to{
(−i∂t +Mx · ∂x + 1

2 trM)F = 0,
F (0, x) = f(x).
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The maximal domain D of exp(−itQ) can be easily identified on the Bargmann side:

B(D) =
{
f ∈ HΦ : f(e−itMx) ∈ HΦ

}
By a change of variables, f(e−itMx) ∈ HΦ if and only if f(x) ∈ HΦ(eitMx). This domain coincides
with the graph closure of exp(−itQ) restricted to the generalized functions of Q as described in
Section 4.1.

The Bargmann reduction also reduces the Egorov relation (2.2) to an easily verified change of
variables,

exp
(
−it
(
Mx · ∂x + 1

2 trM
))
S(x0,ξ0)f = S(eitMx0,e−itM>ξ0) exp

(
−it
(
Mx · ∂x + 1

2 trM
))

f

⇐⇒ e− i
2x0·ξ0+iξ0·e−itMxf(e−itMx− x0) = e− i

2 eitMx0·e−itM>ξ0+ie−itM>ξ0·xf(e−itM (x− eitMx0)).

If one perturbs Q = qw via a shift corresponding to v ∈ C2n, the operator

P = SvQS−1
v

corresponds to

BPB−1 = SBv

(
Mx · ∂x + 1

2 trM
)
S−Bv.

For the moment, let ṽ = (ṽx, ṽξ) = Bv. The principal advantage when describing the Schrödinger
evolution is that, since functions on the Bargmann side are holomorphic, there is no doubt about
the (complicated) definition

exp(−itP )f(x) = Sṽ exp
(
−it
(
Mx · ∂x + 1

2 trM
))
S−ṽf(x)

= e− it
2 trM−iṽxṽξ−iṽξe−itM (x−ṽx)+iṽξxf(e−itM (x− ṽx) + ṽx),

only whether the resulting function is inHΦ (that is, square-integrable against e−2Φ(x) dRexdIm x).

Example 4.3. For the classical Bargmann transform in Example 4.2 the corresponding canonical
transformation gives

ĩv = (iṽx, ṽξ) = iBv = i√
2

(vx − ivξ,−ivx + vξ).

With P as in (1.1), we can say that f is in the domain of exp(−itP ) if and only if, when f̃ = Bf ,

e−ṽξ(1−e−it)xf̃(e−it(x− (1− eit)iṽx) ∈ HΦ,

meaning that it is square-integrable against e−|x|2 d Rexd Im x.

5. Geometric formulas for the L2 operator norm

We are now in a position to summarize the results of [17], describing the norm of the Schrödinger
evolution of a degree-2 polynomial in (x,Dx) under a weak ellipticity hypothesis.

Definition 5.1. We say that K : C2n → C2n is a strictly positive linear canonical transformation
in the sense of Melin-Sjöstrand if it is canonical, meaning that it preserves the symplectic inner
product (2.1), and if

iσ(Kz,Kz) > iσ(z, z), ∀ z ∈ C2n\{0}.

If q(x, ξ) : R2n → C is quadratic and supersymmetric, then the weak definition of exp(−iQ),
where Q = qw is the Weyl quantization of q, is compact when acting on L2(Rn) if and only if the
Hamilton flow expHq is strictly positive as a linear canonical transformation. Conversely, if q is
quadratic and if the Hamilton flow expHq is strictly positive, then q is supersymmetric.

In the case where K = expHq is strictly positive, exp(−iQ) is associated with K and the adjoint
exp(−iQ)∗ is associated with K−1. As shown in [6], the operator exp(−iQ)∗ exp(−iQ) is associated
with K−1K which can be shown to correspond to a Schrödinger evolution of quantum harmonic
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oscillator type. The spectrum, and therefore the norm, of such an evolution can be read off from
the eigenvalues of K−1K, and one obtains

‖exp(−iQ)‖L(L2(Rn)) =
∏
{µ1/4 : µ ∈ Spec K−1K ∩ (0, 1)} (5.1)

(where of course the eigenvalues are counted for multiplicity).
A similar analysis can be performed, when Q = qw is the Weyl quantization of a quadratic form

with strictly positive Hamilton flow and v ∈ C2n, for the conjugated operator

P = SvQS−1
v .

Because strict positivity of the Hamilton flow implies that q is non-degenerate, every operator
of the form P = Q + wx · x + wξ · Dx + p0, for (wx, wξ) ∈ C2n and p0 ∈ C, can be written as
P = SvQS−1

v + c0 for some choice of v ∈ C2n and c0 ∈ C.
In a relatively straightforward imitation of the proof of the singular value decomposition for ma-

trices, one can show that there exist real vectors a1,a2 ∈ R2n where the canonical transformations
corresponding to

exp(−iP ) = Sv exp(−iQ)S−1
v

and

Sa2 exp(−iQ)S−1
a1

coincide, meaning that

K(z− v) + v = K(z− a1) + a2, ∀ z ∈ C2n.

Specifically,

a1 = Re v + (Im K)−1(Re K− 1) Im v,

and a2 is given by the same formula with K−1 replacing K and v replacing v.
It is here that the proof for the non-compact case differs from the compact case, and why

Theorem 1.1 is not covered by the analysis in [17]: for real t, the evolution exp(−itQ0) corresponds
to a real canonical transformation Kt in (1.4). One cannot invert Im Kt = 0, of course, which
corresponds to the fact that there is no phase-space center a1 which witnesses the largest norm
of exp(−itP ). Instead, the norm of the evolution of a wave packet goes exponentially quickly to
infinity as the center goes to infinity in certain directions.

In contrast with the case of quadratic generators, equality of canonical transformations is not
equivalent to equality of Schrödinger evolutions: if this were so, a complex perturbation would
have no effect on the L2 norm. But, using the Mehler formula in a computation not dissimilar to
the proof of Proposition 2.2, one can show that

Sv exp(−iQ)S−1
v = e i

2σ(u,v) exp(−iQ)S−1
u = e i

2σ(v,w)Sw exp(−iQ)

whenever u,v,w ∈ C2n are such that the canonical transformations agree,

K(z− v) + v = K(z− u) = Kz + w, ∀ z ∈ C2n,

and as usual Q is the Weyl quantization of a quadratic form with strictly positive Hamilton flow K.
Using this rule and taking advantage of a remarkable amount of available simplification, one

obtains

exp(−iP ) = e i
2σ(v,a2−a1)Sa2 exp(−iQ)Sa1 .

Since real shifts are unitary,

‖exp(−iP )‖L(L2(Rn)) = e− 1
2σ(Im v,a2−a1)‖exp(−iQ)‖L(L2(Rn)),

where the norm ‖exp(−iQ)‖L(L2(Rn)) can be computed as in (5.1).
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