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Description of the ground state for a model of two-component
rotating Bose–Einstein condensates.

Etienne Sandier

Abstract

In the joint work with Amandine Aftalion [3], we describe the ground states of a rotating
two-component Bose–Einstein condensate in two dimensions. In the regime we consider, both a one-
dimensional interface between the two components, and zero-dimensional interfaces (vortices) are
present and contribute to the energy. The difficulty is that the two contributions are not of the same
order, and to show that they somehow decouple requires a precise localisation of the line energy.

1. Introduction

Two component Bose–Einstein condensates are one of the simplest examples of increasingly com-
plex atomic systems for which experimental realization has become possible in recent years. From
a mathematical point of view, they generalize two types of models describing phase transitions.
The first one is the two-phase models of Modica–Mortola type [12] in which two phases are sepa-
rated by an perimeter-minimizing interface of codimension 1. The second-one is the models with
quantized vortices as the Ginzburg–Landau model of superconductivity or models of superfluids
or single-component Bose–Einstein condensates.

Each of these two types of models is by now well understood from a mathematical point of
view, see [1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15]. One can, from this understanding, build an
intuition for what the ground states in the model we study should behave like, at least for rotation
speeds which are not too high. However it is mathematically not so simple to rigourously validate
this intuition and it requires, in particular, to prove in a precise quantitative way that almost
minimizers of Modica–Mortola type energy functionals have their energy concentrated near the
interface. We report here on joint work with Amandine Aftalion [3] where this analysis is carried
out.

A two component Bose–Einstein condensate (BEC) is described by two complex valued wave
functions u1 and u2 minimizing the following energy functional:

EΩ
ε,δ(u1, u2) =

2∑
j=1

ˆ
D

1
2 |∇uj − iΩx

⊥uj |2 +
ˆ
D

Wε,δ(|u1|2, |u2|2) dx (1.1)

where

Wε,δ(|u1|2, |u2|2) = 1
4ε2 (1− |u1|2)2 + 1

4ε2 (1− |u2|2)2 + δ

2ε2 |u1|2|u2|2 −
1

4ε2

= 1
4ε2 (1− |u1|2 − |u2|2)2 + (δ − 1)

2ε2 |u1|2|u2|2.
(1.2)

Minimization is with respect to (u1, u2) belonging to the space

H =
{

(u1, u2) : uj ∈ H1(D,C),
 
D

|uj |2 = αi, j = 1, 2
}
, (1.3)

where
ffl
D
u denotes the average of u over D and α1 + α2 = 1.
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The parameters δ, ε and Ω are positive: Ω is the angular velocity corresponding to the rotation
of the condensate, x⊥ = (−x2, x1). We are interested in studying the behavior of the minimizers in
the limit when ε is small, describing strong interactions, also called the Thomas–Fermi limit. We
focus on the regime where (δ− 1) is small. More precisely, we let ε̃ = ε/

√
δ(ε)− 1 and we assume

that, as ε→ 0,
ε� ε̃� 1.

We need also to assume that the rotation is not too large. We have fairly precise results for
Ω = Ω(ε) such that Ω(ε) � 1/ε̃, and more partial results for higher rotations, but in this report
we will assume that for some β > 0 there holds

Ω = β|log ε̃|,

which is the case where the phenomenology is richest.

2. The case without rotation

The case where Ω = 0 was studied for instance in [6], and can be cast in the framework of
P.Sternberg’s generalization [15] of the analysis of Modica–Mortola [12] to two-well potentials of
vector functions. We outline it below, writing Fε for the energy with Ω = 0.

The potential Wε defined on R2
+ has exactly two minimum points a = (1, 0) and b = (0, 1). We

may define the distance from x ∈ R2
+ to a as the energy needed to connect a to x:

dε(x, a) = inf
{ˆ 0

−∞

1
2 |γ
′(t)|2 +Wε(γ(t)) dt

∣∣∣∣ γ : R− → R2, lim
−∞

γ = a, γ(0) = x

}
.

Similarly the distance from x to b is defined as

dε(x, b) = inf
{ˆ +∞

0

1
2 |γ
′(t)|2 +W (γ(t)) dt

∣∣∣∣ γ : R+ → Rn, lim
+∞

γ = b, γ(0) = x

}
,

while we let

dε(a, b) = inf
{ˆ +∞

−∞

1
2 |γ
′(t)|2 +W (γ(t)) dt

∣∣∣∣ γ : R+ → Rn, lim
−∞

γ = a, lim
+∞

γ = b

}
.

Then we let

dε(x) =


dε(x, a) if dε(x, a) < dε(a, b)/2,
dε(a, b)− dε(x, b) if dε(x, b) < dε(a, b)/2,
dε(a, b)/2 otherwise.

The co-area formula then yields the following:

Proposition 2.1 ([15]). We have, for any u : D → R2
+,

Fε(u) ≥
ˆ dε(a,b)

0
perD ({x ∈ D | dε(u(x)) < t}) dt, (2.1)

where perD(A) denotes the perimeter of A in D, i.e. the length of ∂A ∩D if ∂A is a sufficiently
nice curve.

This lower-bound is the central tool of the analysis: it allows to prove that, as ε → 0, almost-
minimizers {uε}ε of Fε over H are bounded in BV , and then converge modulo subsequences
weakly in BV to a limit of the form aχD1 + bχD2 . The mass constraint built into the definition of
H translates to the fact that |D1| = α|D| and D2 = (1− α)|D|. Then, passing to the limit in the
above lower-bound yields

lim inf
ε→0

Fε(uε)
mε

≥ perD(D1), where mε = dε(a, b).

An upper bound can be constructed by modifying near the interface the function aχD1 + bχD2 ,
by using as the transition profile a minimizer in the infimum defining dε(a, b). Both bounds together
yield the following result,
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Proposition 2.2. Let {uε}ε be almost minimizers of Fε, i.e. such that Fε(uε) ' minH Fε as ε→ 0.
Then any sequence {ε} converging to zero has a subsequence (not relabeled) which converges weakly
in BV and strongly in L1 to a limit of the form aχD1 +bχD2 , where |D1| = α1|D| and D2 = α2|D|
is a partition of D with minimal interface length perD(D1). Moreover, minH Fε ' mε perD(D1)
and mε ' m0/ε̃ as ε→ 0.

A crucial step in our analysis will be to make this statement quantitative, and to show that the
energy of almost-minimizers concentrate in a neighbourhood of the interface.

3. The case with a single component

As long as the rotation speed Ω is not too large, the minimizers of EΩ
ε,δ are actually almost-

minimizers of Fε, or more precisely if (u1,ε, u2,ε) are minimizers of EΩ
ε,δ, then (ρ1,ε, ρ2,ε) are almost

minimizers of Fε, where ρ1,ε = |u1,ε| and ρ2,ε = |u2,ε|. Then modulo a subsequence (ρ1,ε, ρ2,ε)
converges to aχD1 + bχD2 , and it is reasonable to expect that in D1, where ρ1,ε is close to one and
ρ2,ε is close to zero, the behaviour will be that of a single component BEC, and similarly in D2.

Let us summarize the analysis of single-component BEC’s with rotation (see the account in [1]
or [14]), which is also very similar to that of type II superconductors in the Ginzburg–Landau
model of superconductivity (see [13] and the references therein). Let us concentrate on u1,ε in
D1, the analysis of u2,ε in D2 is exactly symmetrical. According to the aforementionned works,
u1,ε : D → C is described in terms of its vortices, which may defined in several ways, but can
loosely be described as follows: they are points ai around which u1,ε has the behaviour of the map

x→ fε(|x− ai|)
x− ai
|x− ai|

, where fε(|x|) = min(1, |x|/r).

What is meant here by “the behaviour” is that the energy of u1,ε in a small ball around ai is at
least π log(1/rε), to leading order, and that curl ρ2

1,ε∇ϕ1,ε, where ϕ1,ε is the phase of u1,ε (which is
not globally defined), is well approximated by 2π

∑
i δai . An important fact, which will be crucial

for us, is that the energy π log(1/rε) is accounted for by the variations of the phase of u1,ε.
The order of magnitude of rε needs to be known only approximately if we are interested to the

energy of a vortex at leading order, since it enters a log. For now, let us admit that replacing rε
by ε̃ will give us an accurate enough estimate. We will justify this below.

To summarize this one-component sketch of an analysis, we let µ1,ε = 2π
∑
i δai be the vortex

measure for u1,ε and
j1,ε = ρ2

1,ε(∇ϕ1,ε − Ωx⊥),
so that curl j1,ε ' µ1,ε − 2Ω. We denote Vη a η-neighbourhood of the interface ∂D1 ∩D, and D1,ε
be the complement in D1 \ Vη of the vortex balls. Then we have

EΩ
ε,δ(u1,ε, u2,ε, D1 \ Vη) ≥ 1

2‖µ1,ε‖|log ε̃|+ 1
2

ˆ
D1,ε

|j1,ε|2 + l.o.t., curl j1,ε ' µ1,ε − 2Ω.

In this lower-bound, the first term accounts for the energy inside the vortex balls while the second
one accounts for the energy outside of the balls.

It is noteworthy that both terms take only into account the energy of the phase ϕ1,ε. To be
more precise, ∇u1,ε = (∇ρ1,ε + iρ1,ε∇ϕ1,ε)eiϕ1,ε , so that

|∇u1,ε − iΩx⊥u1,ε|2 = |∇ρ1,ε|2 + ρ2
1,ε|∇ϕ1,ε − Ωx⊥|2.

Only the second term is involved in the above lower-bound so that we may write, dividing the
previous lower-bound by Ω2, remembering that Ω = β|log ε̃|, and passing to the limit as ε→ 0,

lim inf
ε→0

1
Ω2

ˆ
D1\Vη

ρ2
1,ε|∇ϕ1,ε − Ωx⊥|2 ≥ 1

2β ‖ curl j1 + 2‖+ 1
2

ˆ
D1\Vη

|j1|2, (3.1)

where j1 is the limit as ε→ 0 of j1/Ω.
The proof of (3.1) for minimizers (u1,ε, u2,ε) of EΩ

ε,δ follows and uses similar results for the
Ginzburg–Landau functional or single component BEC’s. There is however one point which we
left unjustified that is specific to this model and which requires specific arguments.

Claim. The vortex radius rε can be taken to be ε̃ when computing the lower bound.
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4. The main result

Putting together Proposition 2.2 and (3.1) we obtain the lower-bound for EΩ
ε,δ(u1,ε, u2,ε). The

matching upper-bound follows from a construction which combines a one-dimensional interface
and the insertion of vortices, while preserving the mass constraints. We arrive at the following
result. Define

`α = min
ω⊂D
|ω|=α|D|

perD(ω). (4.1)

Theorem 4.1. Assume D is a smooth bounded domain in R2 and that α ∈ (0, 1). Assume that
ε̃ = ε/

√
δ − 1 is such that ε̃→ 0, ε̃� ε as ε→ 0. Let uε = (u1,ε, u2,ε) denote a minimizer of EΩ

ε,δ

(where Ω = β|log ε̃| for some β > 0) under the constraint 
D

|u1,ε|2 = α,

 
D

|u2,ε|2 = 1− α. (4.2)

Then (|u1,ε|, |u2,ε|) subsequentially converges weakly in BV to (χωα , χωcα), where ωα is a mini-
mizer of perD(ω) under the constraint |ω| = α|D|.

Moreover, let

j1,ε = (iu1,ε,∇u1,ε)− Ωx⊥|u1,ε|2, j2,ε = (iu2,ε,∇u2,ε)− Ωx⊥|u2,ε|2,

then (j1,ε/Ω, j2,ε/Ω) converges weakly in L2 to (j1,β , j2,β), where

j1,β = argmin
div j=0

Jβ(j, ωα), Jβ(j, ωα) = 1
2

ˆ
ωα

|j|2 + 1
2β

ˆ
ωα

|curl j + 2| ,

and j2,β is defined similarly, replacing ωα by ωcα. Moreover

minEΩ
ε,δ = mε`α + Ω2

(
min

div j=0
Jβ(j, ωα) + min

div j=0
Jβ(j, ωcα)

)
+ o(|log ε̃|2). (4.3)

A further decription of minimizers is obtained by studying the minimizers of Jβ , as in [13, 14].
It is found that for these minimizers the measure curl j + 2 (which we recall corresponds to a
limiting density of vortices) is a constant density on a subset of either ωα or D \ ωα. The density
is constant equal to 2 but the subset expands as β increases.

5. Localisation of the line energy

In this section we focus on the proof of the claim we have made, namely that the radius of the
vortex cores can be taken to be ε̃ in our analysis. What this means really is that |log rε| ' |log ε̃| as
ε→ 0, i.e. that the vortex energy is accurate to leading order if we replace rε by ε̃. Of course the
important thing to prove is the lower-bound part of this statement. Once it is proved a construction
allows to obtain a matching upper-bound in a straightforward way.

This means we need to bound from above the radius of the vortex core. For this we use Proposi-
tion 2.1. The idea is the following: a vortex core in D1 is a small inclusion where (ρ1,ε, ρ2,ε) ' (0, 1)
while outside the vortex core one has (ρ1,ε, ρ2,ε) ' (1, 0). Therefore the cost of such a core in terms
of Fε is of the order of rε ×mε if rε is its radius. In fact Proposition 2.1 implies that the vortex
cores in D1 have radius rε bounded as follows

rε ≤ Cε̃Fε(ρ1,ε, ρ2,ε, D1),

where we have used the estimate mε ' m0/ε̃.
The only a-priori bound we have for Fε(ρ1,ε, ρ2,ε, D1) is stated in (4.3) and is proved by the

construction of a test-function. It is of the order of 1/ε̃ hence is useless since it leads to bounding
rε by a constant. However, inspecting (4.3), we see that the leading order in the energy is the
interface energy mε`α, which is localized to leading order near the interface. If we could prove it
is localized up to a constant near the interface, then the energy Fε in D1 \ Vη would be bounded
above by CΩ2, i.e. C|log ε̃|2, for any η-neighbourhood Vη of the interface. Then we would deduce
that rε ≤ Cε̃|log ε̃|2, and then that

|log rε| ≥ |log ε̃|(1− o(1)).
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In fact a localization up to |log ε̃|2 or even |log ε̃|p for any p would be sufficient. What we prove is
the following.

Theorem 5.1. Let D be a bounded smooth domain in R2 and α ∈ (0, 1). Denote by {ε} a sequence
of real numbers tending to 0. Let {(ρ1,ε, ρ2,ε)}ε be such that

Fε(ρ1,ε, ρ2,ε) ≤ mε`α + ∆ε, ρ2
1,ε + ρ2

2,ε ≤ 1 + Cε̃, (5.1)

where `α is defined in (4.1). Then, assuming ∆ε � mε`α as ε→ 0, there exists a subsequence (not
relabeled) {ε} such that {(ρ1,ε, ρ2,ε)}ε converges to (χωα , χωcα), where ωα is a minimizer of (4.1).

Moreover writing γα = ∂ωα ∩D, for any η > 0 there exists C > 0 such that if ε is small enough
(depending on η) and Vη is an η-neighbourhood of γα we have

Fε(ρ1,ε, ρ2,ε, D \ Vη) ≤ C(∆ε + |log ε̃|). (5.2)

The proof of this result occupies the rest of this section. It is based on the lower-bound (2.1)
for Fε(ρ1,ε, ρ2,ε) which we can localise in Vη. Then we prove the equivalent of the above Theorem
for the minimisation of perimeter, i.e. that for almost-minimizers of (4.1), the interface is located
in a neighbourhood of a minimal interface, except maybe for an amount of length bounded by a
constant times the excess length. This would be sufficient if, in (2.1), we knew that

{x ∈ D | dε(u(x)) < t}

is a competitor in (4.1), i.e. has measure α|D| for every t ∈ (0,mε).
Of course this is not the case, hence a quantitative statement in this direction needs to be

proved, which is precisely the following

δAε := |{x ∈ D | C|log ε̃| < dε(u(x)) < mε − C|log ε̃|}| ≤ Cε̃(|log ε̃|+ ∆ε). (5.3)

First we introduce some notation. We let u = (ρ1,ε, ρ2,ε) and we define

γt = {x ∈ D | dε(u(x)) = t}, v(t) =
 
γt

2Wε(u(x))
|∇(dε ◦ u)(y)| d`(y), a(t) =

ˆ
γt

d`(y)
|∇(dε ◦ u)(y)| ,

where d` denotes the line element on the curve γt.
We have, using the coarea formula, and letting Iε = [C|log ε̃|,mε − C|log ε̃|],

δAε =
ˆ
t∈Iε

a(t) dt.

It can be shown that Wε(u) ≥ (Cε̃)−1 min(dε(u),mε − dε(u)). Therefore

a(t) ≤ 1
2
ε̃

t
|γt|v(t),

where |γt| denotes the length of the curve γt. It follows that

δAε ≤
1
2

ˆ
t∈Iε

ε̃

t
|γt|v(t) dt (5.4)

On the other hand, using again the coarea formula,

Fε(u) = 1
2

ˆ
D

|∇u|2 +
ˆ
D

Wε(u)

≥
ˆ mε

0

ˆ
γt

1
2
|∇u|2

|∇(dε ◦ u)| + Wε(u)
|∇(dε ◦ u)| d` dt.

Using Jensen’s inequality and the fact that |∇dε ◦ u| ≤ |∇dε(u)||∇u| =
√

2Wε(u)|∇u|, we have
 

|∇u|2

|∇(dε ◦ u)| ≥
( 

|∇(dε ◦ u)|
|∇u|2

)−1
≥ 1
v(t) .

It follows that

Fε(u) ≥
ˆ mε

0

|γt|
2

(
v(t) + 1

v(t)

)
dt.
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We may then substract mε`α and obtain, in view of the hypothesis of the theorem
∆ε ≥ Fε(u)−mε`α

≥
ˆ mε

0

|γt|
2

(
v(t) + 1

v(t)

)
dt−mε`α − Cε̃

≥
ˆ
t∈Iε

|γt|
2

(
v(t) + 1

v(t)

)
− `α dt− C|log ε̃|.

(5.5)

Let δ(t) = |γt|
2

(
v(t) + 1

v(t)

)
− `α. We wish to bound from above the integrand in (5.4), possibly

in terms of δ(t). We distinguish several cases, C denotes a generic constant independant of ε.

• If `α ≤ |γt|v(t)/4 then δ(t) ≥ |γt|v(t)/2 and therefore, using the fact that t ≥ C|log ε̃|, if ε
is small enough then

ε̃

t
|γt|v(t) ≤ v(t) ≤ Cε̃δ(t).

• If |γt|v(t) ≤ 4`α then, since `α is independent of ε,
ε̃

t
|γt|v(t) ≤ C ε̃

t
.

It follows, in view of (5.5) and since Iε = [C|log ε̃|,mε − C|log ε̃|], that

δAε ≤ Cε̃
ˆ
t∈Iε

1
t

+ δ+(t) dt ≤ Cε̃
(
|log ε̃|+ ∆ε +

ˆ
t∈Iε

δ−(t) dt
)
. (5.6)

It remains to bound the last integral on the right-hand side. For this we note that, since δ(t) ≥
|γ(t)| − `α, we have

δ−(t) ≤ (`α − |γ(t)|)+ .

But `α − |γt| ≤ `α − `β , where β = |{dε ◦ u < t}|/|D|, in view of the definition (4.1). Since the
isoperimetric profile function α→ `α is lipschitz we deduce that

`α − |γt| ≤ C |α|D| − |{dε ◦ u < t}|| .
It is not hard to show that there exists t0 such that |α|D| − |{dε ◦ u < t0}| ≤ Cε̃|log ε̃|, therefore
for any t ∈ Iε we have

δ−(t) ≤ C |α|D| − |{dε ◦ u < t}||
≤ |α|D| − |{dε ◦ u < t0}||+ ||{dε ◦ u < t0}| − |{dε ◦ u < t}||
≤ Cε̃|log ε̃|+ δAε.

(5.7)

Together with (5.6) we deduce that
δAε ≤ Cε̃ (|log ε̃|+ ∆ε + δAε) ,

which implies (5.3) if ε̃ is small enough.

6. Conclusion

In the above analysis, a precise study of the energy without rotation allowed us, using the existing
knowledge on the Ginzburg–Landau model of superconductivity or on single component BEC’s, to
describe ground states of a model for two-component BEC with rotation. In a suitable asymptotic
regime, the problem reduces to first a partition problem for the domain which determines the
subdomains occupied by each component, and then a separate analysis on each subdomain where
only one component is present.

This picture is valid as long as the interface energy dominates the vortex energy. For rotations
of the order of or higher then 1/ε̃ this is no longer true and then we are only able to determine
the leading order vortex energy for minimizers, but not to determine wether components remain
in subdomains determined by a minimal partition problem.

Another interesting question is wether the localisation of the interface energy, which involves an
error of order |log ε̃| is optimal. Even for the Modica–Mortola functional this is an open question,
even though very precise results of Murray–Leoni ([11]) exist on the value of the minimal energy.
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