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Journées Équations aux dérivées partielles
Obernai, 11–15 juin 2018
GDR 2434 (CNRS)

Some variants of the focusing NLS equations

Éric Dumas

Abstract

The focusing cubic NLS is a canonical model for the propagation of laser beams. In dimensions 2
and 3, it is known that a large class of initial data leads to finite time blow-up. Now, physical
experiments suggest that this blow-up does not always occur. This might be explained by the fact that
some physical phenomena neglected by the standard NLS model become relevant at large intensities
of the beam. We derive from Maxwell’s equations some known variants of NLS and propose some
new ones, providing rigorous error estimates for all the models considered. These notes result from
the work [9], in collaboration with D. Lannes and J. Szeftel.

1. Introduction

The cubic, focusing, nonlinear Schrödinger equation in space dimension d, given by

i∂τv + ∆v + |v|2v = 0, τ > 0, x ∈ Rd, (1.1)

is a canonical model for the propagation of laser beams. It is locally well-posed in H1 = H1(Rd)
for d = 1, 2, 3 (cf. [10]): when v0 ∈ H1, there exists 0 < T ≤ +∞ and a unique solution v ∈
C([0, T ), H1) to (1.1) with v(0) = v0. Then, either T = +∞, and the solution is global, or T < +∞,
and the solution blows up in finite time, i.e. limτ↑T ‖∇v(t)‖L2 = +∞.

The NLS equation (1.1) also admits the following (formal) conservation laws:

L2 − norm: ‖v(τ)‖2L2 = ‖v0‖2L2 ;

Energy: E(v(τ)) = 1
2

∫
|∇v(τ, x)|2dx− 1

4

∫
|v(τ, x)|4dx = E(v0);

Momentum: Im
(∫
∇v(τ, x)v(τ, x)dx

)
= Im

(∫
∇v0(x)v0(x)dx

)
.

Moreover, a large group of symmetries leaves the equation invariant: if v solves (1.1), then for all
(λ0, τ0, x0, β0, γ0) ∈ R+

∗ × R× Rd × Rd × R, so does

(τ, x) 7→ u(τ, x) = λ0v(λ2
0τ + τ0, λ0x+ x0 − β0t)ei

β0
2 ·(x−

β0
2 τ)eiγ0 . (1.2)

The scaling symmetry u(τ, x) = λ0v(λ2
0τ, λ0x) leaves the homogeneous Sobolev space Ḣsc(Rd)

invariant, where sc = d
2 − 1.

Referring to conservation of the L2 norm by the flow, (1.1) is said to be L2−subcritical if
sc < 0, L2−critical if sc = 0 and L2−supercritical if sc > 0. Thus, (1.1) is L2−subcritical if d = 1,
L2−critical if d = 2, and L2−supercritical if d ≥ 3. In the subcritical case, global existence (in
C([0,∞), L2)) holds for arbitrarily large data in L2. It turns out that in this case, global existence
(in C([0,∞), H1)) also holds for arbitrarily large data in H1, due to the conservation of mass
and energy. In the critical and supercritical cases however, there exist stable finite time blow-up
dynamics. This has been known since the 60ies using global obstructive arguments based on the
virial identity (see e.g. [18]).
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There is however a discrepancy between the blow-up results predicted by (1.1) and physical
observations. Indeed, while the blow-up signifies a break-down of the solution v, physical observa-
tions show in many cases that lasers begin to focus according to the scenarios associated to (1.1)
but depart from this behavior slightly before the focusing time. The reason advanced by physicists
is that some physical phenomena that have been neglected to derive (1.1) become relevant at high
intensities, and therefore near focusing. This phenomenon is called filamentation: defocusing phys-
ical phenomena are triggered at high intensities and halt the collapse of the beam. This interplay
between diffraction, self-focusing, and defocusing mechanisms allow for the beam to propagate
along several times the focusing distance and the resulting structure is called filament.

Many variants of (1.1) have been derived in optics to take into account these additional physical
phenomena and reproduce the filamentation mechanism. In many cases, it is a mathematical
open problem to prove whether these additional terms prevent focusing or not, and a fortiori to
understand the modification of the dynamics induced by them.

Rather than adding as usual ad hoc modifications to (1.1) in order to take new physical effects
into account, we have chosen to rigorously derive such modifications from Maxwell’s equations.
We indicate the advantage of each model, as well as some of the most physically relevant open
mathematical problems that these modified equations raise and that are natural milestones towards
the understanding of filamentation.

These notes are structured as follows: in Section 2, we give an abstract setting adapted to the
high frequency framework for Maxwell’s equations. In Section 3, we derive successively various
asymptotic models. Finally, in Section 4, we explain how to get a more complete model, taking
into account ionization of the medium in which light propagates.

2. Maxwell’s equations and abstract formulation

Maxwell’s equations. The Maxwell equations in a non magnetizable medium are a set of two
equations coupling the evolution of the magnetic field B to the electric induction D,{

∂tB + curlE = 0,
∂tD− 1

µ0
curlB = 0,

(2.1)

where D is given in terms of the electric field E and the polarization P — modeling the way the
dipole moment per unit volume depends on the strength of the electric field — by the relation

D = ε0E + P, (2.2)
and where the positive constants ε0 and µ0 denote the electric permittivity and magnetic perme-
ability in vacuum. The evolution equations (2.1) go along with two constitutive laws,

∇ · D = 0, ∇ · B = 0. (2.3)

Remark 2.1.

(i) In the description above, we assume absence of electric charge and current density in the
medium. These will be added to the model in order to take into account ionization phenom-
ena in Section 4.

(ii) In the sequel, we shall consider the Cauchy problem associated with (2.1)–(2.3). Since the
constitutive laws (2.3) are propagated by the evolution equations if they are initially satisfied,
we shall omitt them.

Polarization. There exist various ways to describe the polarization P. We use here a simple
and natural model called “nonlinear anharmonic oscillator”, according to which the polarization
is found by solving the second order ODE

∂2
t P + Ω1∂tP + Ω2

0P−∇VNL(P) = ε0bE, (2.4)
where b ∈ R is a coupling constant and Ω0,Ω1 > 0 are frequencies, and where VNL accounts for
nonlinear effects. When such effects are neglected, the description (2.4) goes back to Lorentz [16]
and expresses the fact that electrons are bound to the nucleus by a spring force. Nonlinearities
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have been added to this description by Bloembergen [5] and Owyyoung [17] and the mathematical
investigation of their influence was initiated by Donnat, Joly, Métivier and Rauch [8, 11] (see
also [14]).

Remark 2.2. In order for the electromagnetic field to interact with matter, the frequency of
the field (i.e. of the laser beam) has to be tuned so that it is of the same order as the electronic
eigenfrequency Ω0 in (2.4).

Typical examples for VNL are

(i) cubic nonlinearity:

VNL(P) = a3

4 |P|
4, and therefore ∇VNL(P) = a3|P|2P;

(ii) cubic/quintic nonlinearity:

VNL(P) = a3

4 |P|
4 − a5

6 |P|
6, and therefore ∇VNL(P) = a3|P|2P− a5|P|4P;

(iii) saturated nonlinearity: there exists a function Vsat : R+ → R, with V ′sat and s 7→ V ′′sat(s)s
bounded on R+ and such that

VNL(P) = 1
2Vsat(|P|

2), and therefore ∇VNL(P) = V ′sat(|P|2)P;

for instance, one can take

Vsat(r) = a3

2
r2

1 + 2a5
3a3

r
,

in which case ∇VNL(P) = a3|P|2P − a5|P|4P + h.o.t, and is thus the same at the origin as
in (ii) above, up to higher order terms (seventh order terms here).

Remark 2.3. It is easy to show that, replacing the nonlinearity |v|2v in NLS (1.1) by V(v), with
V saturated as in (iii) above, one gets a global solution v ∈ C([0,∞), L2) for each initial data
v0 ∈ L2. In the case of a cubic focusing / quintic defocusing nonlinearity (replacing in (1.1) |v|2v
by a3|v|2v − a5|v|4v, with a3, a5 > 0), one also gets global solutions (in H1; see [9] for the case
d = 2, and [19] for the case d = 3). It is in fact conjectured (but not proved) that these solutions
depend almost peridodically on time (see [9], Section 4.1.1, and references therein).

Scaling and abstract formulation. Laser experiments described here correspond to high-
frequency regimes. This means that a small parameter ε > 0 naturally shows up: the ratio of the
duration of an optical cycle (i.e. the inverse of the laser frequency) over the duration of the pulse
(typically measured by the time the optical power is at least half-maximum). Introducing this
small parameter, and after nondimensionalization (for details, see the Appendix of [9]), Maxwell’s
equations can be put under the following form for all the nonlinearities considered above,

∂tB + curlE = 0,

∂tE− curlB + 1
ε

√
γQ] = 0,

∂tQ] + ε1+pω1Q] − 1
ε (√γE− ω0P]) = ε γ

ω3
0

(
1 + f(εq|P]|2)

)
|P]|2P],

∂tP] − 1
εω0Q] = 0,

(2.5)

where γ, ω0, ω1, p and q are positive constants, while f is a smooth function vanishing at the
origin. These equations have the form

∂tU +A(∂)U + 1
ε
EU + ε1+pA0U = εF (ε,U), (2.6)

where U is a Rn (n ≥ 1) valued function depending on the time variable t and the space variable
x ∈ Rd (d ≥ 1),

U : (t, x) ∈ R× Rd → Rn.
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The operator A(∂) is defined as

A(∂) =
d∑
j=1

Aj∂j ,

where ∂j is the differentiation operator with respect to the j-th space coordinate. The matrix A0
has size n× n, and p is a positive number. The following assumption is made on the matrices Aj
and E, and on the nonlinearity F .

Assumption 2.4.

(i) The matrices Aj (j = 1, . . . , d) are constant coefficient n×n, real valued, symmetric matrices.

(ii) The matrix E is a constant coefficient n× n, real valued, skew symmetric matrix.

(iii) There exists a smooth mapping f : R+ → R vanishing at the origin, a real number q > 0,
a quadratic form Q : Cn 7→ R+ and a trilinear symmetric mapping T : (Cn)3 → Cn (with
T (Rn × Rn × Rn) ⊂ Rn) such that

∀ U ∈ Cn, F (ε, U) =
(
1 + f

(
εqQ(U))

)
T (U, Ū , U).

Remark 2.5. There exist of course situations where the leading order of the nonlinearity is not
cubic (it can be quadratic for non centro-symmetric crystals for instance) or not of this form; since
we are interested here in deriving variants of the standard cubic nonlinear Schrödinger equation,
we restrict ourselves to this framework for the sake of simplicity.

The Cauchy problem and the profile equation. We shall consider initial conditions corre-
sponding to laser pulses, i.e. fast oscillating wave packets slowly modulated by an envelope. The
evolution equation (2.6) being of semilinear nature, it is natural to work with some Banach algebra
in view of a resolution by Picard iterations. Thus, we assume

U|t=0 = u0(x)ei k·x
ε + c.c., u0 ∈ B = Ht0(Rd)n, (2.7)

where k ∈ Rd is the (spatial) wave-number of the oscillations.
The space Ht0(Rd)n is stable by translations in Fourier space, so that with u0 ∈ B in (2.7) we

get U|t=0 ∈ B. Furthermore, when t0 > d/2, B = Ht0(Rd)n is a Banach algebra in the sense that
∀ f, g ∈ B, f · g ∈ B and |f · g|B . |f |B |g|B ,

and by Moser’s inequality, the mapping F from Assumption 2.4 acts on B and is locally Lipschitz:
uniformly with respect to ε ∈ (0, 1],

∀ f ∈ B, F (f) ∈ B and |F (ε, f)|B ≤ C(|f |B)|f |B ,
∀ f, g ∈ B, |dfF (ε, ·)g|B ≤ C(|f |B)|g|B .

For all k ∈ N, we also define
B(k) = {f ∈ B, ∀ α ∈ Nd, ∀ |α| ≤ k, ∂αf ∈ B} = Ht0+k(Rd)n.

Remark 2.6. Another possible choice for the Banach algebra B is the so-called Wiener algebra
W (Rd)n := {f ∈ S ′(Rd)n, |f |B := |f̂ |L1 < ∞}, which is better adapted than Ht0(Rd)n to handle
short pulses, see [6, 15]. In this case, the Lipschitz property holds for analytic nonlinearities F
(see [12, Theorem 8.6]).

Due to Assumption 2.4, the Cauchy problem for the (semilinear, symmetric hyperbolic) sys-
tem (2.6), with initial data (2.7) and t0 > d/2, has a unique local-in-time solution. However, the
size of the data in Hs is of the order ε−s, and the existence time of the corresponding solution
may shrink to zero as ε goes to zero. We shall use a non-singular representation of the initial data
and solution to circumvent this difficulty and make a first step towards an asymptotic description
of the solution. Precisely, we seek a solution U to the initial value problem (2.6)–(2.7) given by
means of a profile U ,

U(t, x) = U

(
t, x,

k · x− ωt
ε

)
, (2.8)
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with U(t, x, θ) periodic with respect to θ and for any ω ∈ R. Then U solves (2.6)-(2.7) provided
that U solves the Cauchy problem associated with the profile equation{

∂tU +A(∂)U + i
εL(ωDθ,kDθ)U + ε1+pA0U = εF (ε, U),

U|t=0(x, θ) = u0(x)eiθ + c.c..
(2.9)

Here, we used the notation

L(ωDθ,kDθ) = −ωDθ +A(k)Dθ + E

i
, (2.10)

with Dθ = −i∂θ and A(k) =
∑d
j=1Ajkj .

Thanks to the Lipschitz property of the nonlinearity and its size ε, a standard iteration procedure
and fixed-point argument provides a solution U ∈ C([0, T/ε];Hk(T;B)) to (2.6)-(2.7) for all k ≥ 1,
where

Hk(T;B) =
{
f =

∑
n∈Z

fne
inθ, |f |Hk(T,B) <∞

}
(2.11)

and with |f |2Hk(T,B) =
∑
n∈Z(1 + n2)k|fn|2B . For k ≥ 1, Hk(T, B) is a Banach algebra, on which

the evolution operator S(t) associated to the linear part of (2.9),

S(t) = exp
(
−tA(∂)− i

ε
tL(ωDθ, kDθ)

)
,

is unitary, thanks to point (i) and (ii) of Assumption 2.4. Hence, we get

Theorem 2.7. Let t0 > d/2. Under Assumption 2.4, there exists T > 0 such that for all 0 < ε ≤ 1
there exists a unique solution U ∈ C([0, T/ε];B) to (2.6)-(2.7). Moreover, for any given ω ∈ R,
one can write U under the form

U(t, x) = U

(
t, x,

k · x− ωt
ε

)
,

where U solves the profile equation (2.9).

Note that the above argument provides a bound
sup

0≤t≤T/ε
|U(t)|B ≤ C(T, |u0|B),

which induces an L∞ bound, since t0 > d/2. But Theorem 2.7 does not give information about
the propagation of the initial oscillations. In the sequel, we investigate this point.

3. Asymptotic models

Here, we derive various approximations to the solutions provided by Theorem 2.7, filterring os-
cillations, then getting simpler (scalar, then local) equations, and also refining the description to
capture extreme behaviors.

3.1. The slowly varying envelope approximation
The slowly varying envelope approximation (SVEA) consists in writing the profile U under the
form

U(t, x, θ) ∼ uenv(t, x)eiθ + c.c. (3.1)
with an envelope uenv possibly depending on ε, but not through fast oscillations, which will be
ensured by the boundedness of ∇uenv.

Plugging this approximation into the profile equation (2.9) and keeping only the first harmonic
in the Fourier expansion yields easily (writing u = uenv),

∂tu+A(∂)u+ i

ε
L(ω,k)u+ ε1+pA0u = εF env(ε, u),

where
F env(ε, u) = 1

2π

∫ 2π

0
e−iθF (ε, ueiθ + c.c.) dθ. (3.2)
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Example 3.1. With F (u) = |u|2u, one gets F env(u) = (u · u)u+ 2|u|2u.

Denoting D = −i∇, we observe that

A(∂) + i

ε
L(ω,k) = A(∂) + i

ε
(−ω Id +A(k))

= i

ε
(−ω Id +A(k + εD))

:= i

ε
L(ω,k + εD),

where the last notation is of course consistent with (2.10).
As a consequence of these computations, we see that in order for (3.1) to hold, it is necessary

that u = uenv satisfies the Cauchy problem associated with the envelope equation{
∂tu+ i

εL(ω,k + εD)u+ ε1+pA0u = εF env(ε, u),
u|t=0 = u0.

(3.3)

Now, following the same lines as in the proof of Theorem 2.7, we are able to construct solution uenv
to this problem which is bounded in B = Ht0(Rd)n. Taking t0 > d/2 + 1, we get the boundedness
of ∇uenv. However, the approximation (3.1) may fail because of the following mechanisms:

• The singular part of the linear term in (3.3) creates fast oscillations with frequencies ω −
ωj(k), where the ωj(k) stand for the eigenvalues of L(0,k).

• The nonlinearity creates other oscillations that may resonate with the linear propagator.

There is one way to avoid the catastrophic effects of these two scenarios. Choosing ω = ωj(k)
for some j and assuming that, up to O(ε) terms, the initial envelope u0 is contained in the
corresponding eigenspace prevents the creation of oscillations by the linear propagator. This is
the polarization condition. The nonlinearity will however create harmonics of the main oscillation
k ·x−ωj(k)t and it is necessary to make a non resonance assumption. What is called characteristic
variety in the assumption below is the set CL ⊂ Rd+1 defined as

CL = {(ω′,k′) ∈ R1+d, detL(ω′,k′) = 0}.

Let us also recall that we assumed that the nonlinearity is under the form

F (ε, U) =
(
1 + f

(
εqQ(U))

)
T (U, Ū , U),

with f(0) = 0, Q a quadratic form and T a trilinear symmetric mapping. If U is a monochromatic
oscillation, the nonlinearity εF (ε, U) creates third harmonic with size O(ε), a fifth harmonic (if
f ′(0) 6= 0) with size O(ε1+q), etc. The non-resonance condition stated below holds for the (2k+3)-
th harmonics, for all k ≥ 0 such that kq < 1 (the contribution of higher harmonics is small enough
to be controlled even if it is resonant).

Assumption 3.2. The characteristic variety CL and the frequency/wave number couple (ω,k)
satisfy:

(i) There exist m functions ωj ∈ C∞(Rd\{0}) (j = 1, . . . ,m) such that

CL\{0} =
m⋃
j=1

{
(ωj(k′),k′), k′ ∈ Rd\{0}

}
;

up to a renumbering, we assume that (ω,k) = (ω1(k),k).

(ii) There exists a constant c0 > 0 such that

inf
k′∈Rd

|ω − ωj(k′)| ≥ c0, j = 2, . . .m.

(iii) (Non resonance assumption) One has ±(2k + 3)(ω,k) /∈ CL, for all k ≥ 0 such that kq < 1,
with q from Assumption 2.4.
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Notation 3.3. We denote by πj(k) (j = 1, . . . ,m) the eigenprojectors of the eigenvalues ωj(k) of
A(k) + 1

iE; in particular, we have

L(0,k) = A(k) + 1
i
E =

m∑
j=1

ωj(k)πj(k).

Example 3.4. For Maxwell’s equations, it is shown in Appendix B of [9] that Assumption 3.2 is
satisfied with m = 7 in dimension d = 3, for ω 6= 0. Explicit expressions for the eigenprojectors
πj(k) are also provided in this appendix.

Theorem 3.5. Let t0 > d/2, and u0, r ∈ B(1). Let Assumptions 2.4 and 3.2 be satisfied and
assume that u0 = π1(k)u0 + εr. Then

(1) There exist T > 0 and, for all ε ∈ (0, 1], a unique solution u ∈ C([0, T/ε];B(1)) to (3.3) with
initial condition u0, and

sup
0≤t≤T/ε

|u(t)|B(1) ≤ C(T, |u0|B(1)).

(2) There exists ε0 > 0 such that for all 0 < ε < ε0, the solution U to (2.6) provided by
Theorem 2.7 exists on [0, T/ε] and

|U−USV EA|L∞([0,T/ε]×Rd) ≤ εC(T, |u0|B)(1 + |∇u0|B),

where USV EA(t, x) = u(t, x)ei k·x−ωt
ε + c.c..

Main steps of the proof.

Step 1. Existence and bounds of the solution u to (3.3) are established by a fixed point argument
as in Theorem 2.7.

Step 2. We decompose u as

u = u1 + uII , with uII =
m∑
j=2

uj ,

and where uj = πj(k + εD)u (see Notation 3.3).

Step 3. Thanks to the assumption that ω = ω1(k) one gets from the equation obtained by applying
π1(k + εD) to (3.3) that |∂tu1(t)|B is uniformly bounded on [0, T/ε] (with a bound depending on
|∇u0|B ; for details, see [6, Lemma 2]).

Step 4. Using a non-stationary phase argument (on the semigroup formulation) relying on point (ii)
of Assumption 3.2 and the bound on ∂tu1 established in Step 3, and taking advantage of the Lip-
schitz property of the nonlinearity, we get that 1

ε |uII(t)|B remains uniformly bounded on [0, T/ε].

Step 5. Using the non-resonance condition (iii) of Assumption 3.2, one can show that the third and
higher harmonics created by the nonlinearity remain of order O(ε). More precisely, the solution
U ∈ H1(T;B) to (2.9) provided by Theorem 2.7 can be written as

U(t, x, θ) = Uapp(t, x, θ) + εV (t, x, θ),

where Uapp(t, x, θ) = u(t, x)eiθ + c.c., and V remains bounded (with respect to ε) in C([0, T/ε];
H1(T;B)n).

Step 6. Since U(t)− Uapp(t) = εV (t), it follows from the above that

sup
t∈[0,T/ε]

|U(t)− Uapp(t)|H1(T;B) ≤ εC(T, |u0|B)(1 + |∇u0|B + |r|B),

and the theorem follows therefore from the observation that
|U−USV EA|L∞([0,T/ε]×Rd) ≤ sup

t∈[0,T/ε]
|U(t)− Uapp(t)|H1(T;B). �
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3.2. The Full Dispersion model

As a by-product of the proof of Theorem 3.5, we infer an approximation with the same precision,
via the solution of an equation with a scalar transport part: setting

uFD = π1(k + εD)uenv,

which is nothing but the u1 term from the previous subsection, we have the same result as Theo-
rem 3.5, replacing USV EA by UFD, where

UFD(t, x) = uFD(t, x)ei
k·x−ωt

ε + c.c.,

and u = uFD solves the Cauchy problem associated with the full dispersion equation,{
∂tu+ i

ε (ω1(k+εD)−ω)u+ ε1+pπ1(k+εD)A0u = επ1(k+εD)F env(ε, u),
u |t=0(x) = u0(x).

(3.4)

This “full dispersion” model is related to the so-called “unidirectional pulse propagation equation”
used in nonlinear optics [4, 13].

3.3. The nonlinear Schrödinger (NLS) equation

Another way of simplifying the equation defining the envelope of the approximate solution consists
in approximating the pseudodifferential operators ω1(k+εD) and π1(k+εD) involved in (3.4) by
differential operators: using Taylor expansions,

i

ε
(ω1(k + εD)− ω) = cg · ∇ −

i

2∇ ·Hk∇+O(ε2),

π1(k + εD) = π1(k) +O(ε),

where cg = ∇ω1(k) and Hk stands for the Hessian of ω1 at k. Neglecting the O(ε2) terms in (3.4)
we define the NLS approximation u = uNLS as the solution to{

∂tu+ cg · ∇u− ε i2∇ ·Hk∇u+ ε1+pπ1(k)A0u = επ1(k)F env(ε, u).
u |t=0(x) = u0(x)

(3.5)

We then get easily (see [6, 15]) the following justification of the NLS approximation.

Corollary 3.6 (Schrödinger approximation). Under the assumptions of Theorem 3.5, one has for
all u0 ∈ B(3) such that u0 = π1(k)u0,

(1) There exists T > 0 and, for all ε ∈ (0, 1], a unique solution u ∈ C([0, T/ε];B(3)) to (3.5)
with initial condition u0.

(2) There exists ε0 > 0 and cNLS > 0 such that for all 0 < ε < ε0, the solution U to (2.6)
provided by Theorem 2.7 exists on [0, T/ε] and

|U−UNLS |L∞([0,T/ε]×Rd) ≤ εC(T, |u0|B)(1 + |∇u0|B + cNLS |u0|B(3)),

where UNLS(t, x) = u(t, x)ei k·x−ωt
ε + c.c.

Remark 3.7. We assumed here that the polarization of the initial condition is exact (i.e. r = 0
in Theorem 3.5) for the sake of simplicity; indeed, the solution remains polarized along π1(k) for
all times and computations on real physical models are much easier.

Example 3.8. In the frequent case where ω1( · ) has a radial symmetry, and writing with a slight
abuse of notation ω1(k) = ω1(k), with k = |k|, (3.5) boils down to

∂tu+ ω′1(k)∂zu− ε
i

2
ω′1(k)
k

∆⊥u− i
ε

2ω
′′
1 (k)∂2

zu+ ε1+pπ1(k)A0u = επ1(k)F env(ε, u),

with (0z) the direction of the wave number k and ∆⊥ = ∂2
x+∂2

y the Laplace operator in transverse
variables.
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3.4. The NLS equation with improved dispersion relation

A more accurate model. The term cNLS |u0|B(3) in the error estimate of Corollary 3.6 is due
to the bad frequency behavior of the Schrödinger equation when the envelope of the oscillations
ceases to be well localized in frequency. This is for instance the case for short pulses, chirped
pulses ([6, 7, 15]), and near a focusing point. To describe such extreme situations, the standard
NLS approximation does a poor job, and this is why various variants have been derived in physics
(e.g. [3]).

The dispersion relation ω1( · ) of (2.6) is approximated by the second order polynomial

ωNLS(k′) = ω1(k) + cg · (k′ − k) + 1
2(k′ − k) ·Hk(k′ − k). (3.6)

For Maxwell’s equations and in dimension d = 1, Figure 3.1 shows that this dispersion relation is
very poor when k′ is not close to k.

Figure 3.1: One component of the characteristic variety of Maxwell’s equation
(solid) and the dispersion relation corresponding to the Schrödinger approximation
(left) and improved Schrödinger (right).

The idea introduced in [6] is to replace the linear part of the Schrödinger approximation by a
linear operator that differs from the linear part of the Schrödinger approximation by O(ε2) terms
only, but whose dispersion relation is far better.

More precisely, we consider an approximation under the form

Uimp(t, x) = uimp(t, x)ei
k·x−ωt

ε + c.c., (3.7)

where u = uimp solves the Cauchy problem associated with the nonlinear Schrödinger equation
with improved dispersion relation,

(
1− iεb · ∇ − ε2∇ ·B∇

)
∂tu

+ cg · ∇u− ε i2∇ ·
(
Hk + 2cg ⊗ b

)
∇u+ ε2C3(∇)u

+ ε1+pπ1(k)A0u = επ1(k)F env(ε, u),
u |t=0(x) = u0(x),

(3.8)

where b ∈ Cd, B ∈ Md×d(R) and C3(∇) is a third order homogeneous differential operator. We
assume moreover that

B is symmetric positive, b ∈ Range(B), and 4− b · (B−1b) > 0 (3.9)

(note that even though B−1b is not unique when B is not definite, the scalar b ·(B−1b) is uniquely
defined). These assumptions ensure that the operator (1− iεb · ∇ − ε2∇ ·B∇) is invertible. This
new model allows one to replace (3.6) by

ωimp(k′) = ω1(k) +
cg · (k′ − k) + 1

2 (k− k′) · (Hk + 2cg ⊗ b)(k′ − k)− C3(k′ − k)
1 + b · (k′ − k) + (k′ − k) ·B(k′ − k) .
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A good choice of b, B and C3 allows a much better approximation of ω1( · ), as shown in Figure 3.1
for Maxwell’s equation in dimension d = 1, where Padé approximant can be used.

Exactly as for Corollary 3.6 we get the following result, where the only difference in the error
estimate with respect to Corollary 3.6 is the constant cimp (with is much smaller than cNLS for
good choices of b, B and C). We refer to [6] for the proof and numerical validations of this model
for the approximation of short pulses and chirped pulses.

Corollary 3.9 (Schrödinger approximation with improved dispersion). Under the assumptions of
Theorem 3.5, one has, for all u0 ∈ B(3) such that π1(k)u0 = u0,

(1) There exists T > 0 and, for all ε ∈ (0, 1], a unique solution u ∈ C([0, T/ε];B(3)) to (3.8)
with initial condition u0.

(2) There exists ε0 > 0 and cimp > 0 such that for all 0 < ε < ε0, the solution U to (2.6)
provided by Theorem 2.7 exists on [0, T/ε] and

|U−Uimp|L∞([0,T/ε]×Rd) ≤ εC(T, |u0|B)(1 + |∇u0|B + cimp|u0|B(3)),

where Uimp(t, x) = u(t, x)ei k·x−ωt
ε + c.c..

Example 3.10. In the framework of Example 3.8, i.e. if ω1(k) = ω1(k) with k = |k| and k = kez,
(3.8) can be written

(1− iεb · ∇ − ε2∇ ·B∇)∂tu+ ω′1(k)∂zu− ε
i

2
(ω′1(k)

k
∆⊥ + ω′′1 (k)∂2

z

)
u

− iεω′1(k)b · ∇∂zu+ ε2C3(∇)u+ ε1+pπ1(k)A0 = επ1(k)F env(ε, u).

A promizing model in extreme situations. This more precise model concerning the disper-
sion relation may also be useful to describe the exact solution to Maxwell’s equations in extreme
cases, when the standard NLS model predicts blow-up of the approximate solution UNLS .

The nonlinear Schrödinger equation with improved dispersion relation has the typical form
iPε∂tu+ ∆u+ |u|2σu = 0, (3.10)

with Pε = 1−
∑k
j=1 ∂

2
xj , taking into account the off-axis variation of the group velocity (or space-

time focusing, see [4]). The case k = d corresponds to full off-axis variation, whereas k < d is
partial off-axis variation. In [9], we proved that in the cubic case σ = 1 with full off-axis variation,
in dimension d = 2 or 3, the Cauchy problem associated with (3.10) is globally well-posed in
H1(Rd); thus, taking off-axis variation into account may prevent from blow-up.

This result has been extended by Antonelli, Arbunich and Sparber in [1], using the unknown
v = P

1/2
ε u, for which (3.10) reads

i∂tv + P−1
ε ∆v + P−1/2

ε (|P−1/2
ε v|2σP−1/2

ε v) = 0.
Balancing regularization by P−1

ε in the first k variables and dispersive properties of the propagator
S(t) = eitP

−1
ε ∆ in the other directions, they obtain global existence of the solution in the case of full

off-axis variation, in any dimension d, for σ ≤ 2/(d− 2)+; in the case of partial off-axis variation,
they show the following:

Theorem 3.11 ([1, Theorem 1.1]). Let d > k ≥ 0 and

• either k ≤ 2 and 0 ≤ σ < 2
d−k ,

• or k > 2 and 0 ≤ σ ≤ 2
d−k .

Then for any u0 ∈ L2(Rd−kx′′ ;H1(Rkx′)), there exists a unique global in-time solution u ∈ C(Rt;
L2(Rd−kx′′ ;H1(Rkx′))) to (3.10) with u(0) = u0. Furthermore, this solution depends continuously on
the initial data and satisfies ‖P 1/2

ε u(t, · )‖L2 = ‖P 1/2
ε u0‖L2 for all t ∈ R.

Thus, they get global existence of the solution u to (3.10) even in cases σ > 2/d, which are
supercritical for the standard NLS, as soon as partial off-axis variation (k > 0) occurs.
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3.5. The NLS equation with frequency dependent polarization

Another possible modification of the NLS model (3.5) consists in improving the rough approxima-
tion π1(k + εD) ∼ π1(k) + O(ε). Indeed, when the description of the envelope of the laser pulse
requires a broad band of frequencies as in the situations mentioned in Section 3.4, the variations
of the polarization term π1(k + εD) in front of the nonlinearity in (3.4) become important and
should be taken into account. We therefore make the following approximation,

π1(k + εD) ∼ (1− iεb · ∇ − ε2∇ ·B∇)−1[π1(k) + επ′1(k) ·D − iε(b · ∇)π1(k)
]
,

where b and B are the same as in the NLS approximation with improved dispersion (3.8). In
particular, if b = 0 and B = 0 (standard NLS), then the above approximation coincides with the
first order Taylor expansion

π1(k + εD) = π1(k) + επ′1(k) ·D.

The general formula has the same accuracy as this Taylor expansion as ε→ 0. The corresponding
approximation is given by

Upol(t, x) = upol(t, x)ei
k·x−ωt

ε + c.c., (3.11)
where u = upol solves the Cauchy problem associated with the nonlinear Schrödinger equation with
frequency dependent polarization,

(
1− iεb · ∇ − ε2∇ ·B∇

)
∂tu

+ cg · ∇u− ε i2∇ ·
(
Hk + 2cg ⊗ b

)
∇u+ ε2C3(∇)u+ ε1+pπ1(k)A0u

= ε
[
π1(k) + επ1(k)π′1(k) ·D − iε(b · ∇)π1(k)

]
F env(ε, π1(k)u)

u |t=0(x) = u0(x),

(3.12)

where b, B and C3(∇) are the same as in (3.4).
Contrary to all the previous models, the nonlinearity in (3.12) is a derivative nonlinearity. It

turns out, as already mentioned, that the operator
(
1 − iεb · ∇ − ε2∇ · B∇

)
in front of the time

derivative plays a smoothing role allowing the control of one or several first order derivatives. If the
first order derivatives involved in the nonlinearity are all controlled by this smoothing operator,
then the nonlinearity remains semilinear in nature. If not, the nonlinearity is rather quasilinear; this
is probably responsible for the self-steepening effect which may lead to “optical schocks” (see [4]).

In fact, the component −iε(b · ∇)π1(k)F env(ε, π1(k)u) of the nonlinearity is always semilinear
in this sense. This is not the case for the component επ1(k)π′1(k) ·DF env(ε, π1(k)u) that may be of
quasilinear nature, in which case a symmetry assumption (satisfied by Maxwell’s equations (2.5))
is needed on the nonlinearity to ensure local well-posedness.

Assumption 3.12. For all v ∈W 1,∞(Rd)n and u ∈ L2(Rd)n such that π1(k)u = u, one has

∀ 1 ≤ j ≤ d, <
(
π1(k)π′1(k) · ejdvF envDju, u

)
≤ Cst|v|W 1,∞ |u|2∗,

where ej is the unit vector in the j-th direction of Rd, dvF env is the derivative at v of the mapping
u 7→ F env(ε, u), and

|u|2∗ =
(
u, (1− iεb · ∇ − ε2∇ ·B∇)u

)
.

The approximation furnished by (3.12) is justified by the following corollary. The difference in
the estimate with respect to Corollary 3.9 is just a better nonlinear constant, denoted Cpol to
insist on this point. Also, the local well-posedness for a time scale of order O(1/ε) does not follow
the same lines as in the proof of Theorem 2.7 and must be established. We can show that such a
local well-posedness result holds if u0 ∈ Hs+1(Rd)n with s > t0 + 1, controlling a natural energy
associated to (3.12), namely Es(u), given for all s ≥ 0 by

Es(u) = 1
2
(
(1− iεb · ∇ − ε2∇ ·B∇)Λsu,Λsu

)
= 1

2 |Λ
su|2∗,

where Λ = (1 + |D|2)1/2. Under the assumptions (3.9) on B and b, Es(u)1/2 defines a norm
that controls uniformly the Hs-norm. Assumption 3.12 ensures that it also controls first order
derivatives in the direction b · ∇. This leads (see [9] for details) to
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Corollary 3.13 (Schrödinger approximation with frequency dependent polarization). Let the
assumptions of Theorem 3.5 be satisfied, as well as Assumption 3.12. Then for all u0 ∈ B(3) such
that π1(k)u0 = u0, one has

(1) There exists T > 0 and, for all ε ∈ (0, 1], a unique solution u ∈ C([0, T/ε];B(3)) to (3.12)
with initial condition u0.

(2) There exists ε0 > 0 and cimp > 0 such that for all 0 < ε < ε0, the solution U to (2.6)
provided by Theorem 2.7 exists on [0, T/ε] and

|U−Upol|L∞([0,T/ε]×Rd) ≤ εCpol(T, |u0|B)(1 + |∇u0|B + cimp|u0|B(3)),

where Upol(t, x) = u(t, x)ei k·x−ωt
ε + c.c..

Example 3.14. In the framework of Examples 3.8 and 3.10, we can check that v(t, x, z) =
u(εt, x, z − ω′1(k)t) solves

(1− iεb · ∇ − ε2∇ ·B∇)∂tv −
i

2

(
ω′1(k)
k

∆⊥ + ω′′1 (k)∂2
z

)
v + εpπ1(k)A0v

=
[
π1(k) + επ′1(k) ·D − iε(b · ∇)π1(k)

]
F env(ε, π1(k)v).

It is an open question to get a precise description of the abovementioned “optical shock” phe-
nomenon. In [2], Arbunich, Klein and Sparber have addressed this question, in particular from the
numerical point of view. The typical form of (3.12) is

iPε∂tu+ ∆u+ (1 + iδ · ∇)|u|2σu = 0, (3.13)
with the same notations as in (3.10), and for some δ ∈ Rd. In [2], the authors show that in
dimension d = 2, in the cubic case σ = 1, for partial off-axis variation of the group velocity
(k = 1), when the derivative of the nonlinearity is parallel to the regularization (corresponding
to Assumption 3.12), solutions to the Cauchy problem associated with (3.13) are global in time
(Theorem 6.3). They present numerical evidences, in the case of derivative of the nonlinearity in
the orthogonal direction, of blow-up in the absence of off-axis variation, whereas the L∞-norm of
the computed solution stabilizes when partial off-axis variations are present.

4. Ionization processes

The main mechanism at stake in laser filamentation is certainly the local ionization of the medium:
once a powerful self-focusing laser beam reaches high enough intensities, it ionizes the medium
around itself. It leaves behind a narrow channel of plasma, hereby causing local defocusing that
prevents blowup. We propose here a description of this light-matter coupling, and exhibit the kind
of asymptotic models deduced from the methods presented in the previous section.

Taking current density into account, Maxwell’s equations (2.1) have to be replaced with{
∂tB + curlE = 0,
∂tD− 1

µ0
curlB = −J,

(4.1)

where the current density J has the form
J = Je + Ji, (4.2)

and Je and Ji are respectively the free electron and ionization current densities.

Free electron current density. Partial ionization of the material medium by the laser gener-
ates free electrons, with charge qe(= −1.6× 10−19C). This induces a free electron current density
Je = qeρeve, where ρe is the electron density, and ve is the electron velocity. We propose a rela-
tion between the current density Je and the electric field E that fits with the usual slowly varying
envelope approximation, but which may used in Maxwell’s equations (4.1), namely

Je = q2
e

ωlme
H
(

kl

k2
l
·D
)

(ρeE),
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where me is the electron mass, kl the laser wavevector, kl = |kl|, and H is the regularization of
the Hilbert transform given by the Fourier multiplier

H(Dz) =
√

2 iDz

(1 +D2
z)1/2 . (4.3)

Then, the evolution of the electron density ρe is given by a source term S representing external
plasma sources. Taking into account photo-ionization and collisional ionization, but neglecting
electron recombination (see for instance [3] for richer models), we have

S = W (I)(ρnt − ρe) + σ

Ui
ρeI,

where the intensity is I = |E|2 and ρnt is the constant density of neutral species. In the regime
considered here, ρe is negligible compared to ρnt and the photo-ionization rate W (I) takes the
form

W (I) = σKI
2K ,

for some constant coefficient σK > 0 and with K > 1 the number of photons needed to liberate
one electron. The collisional ionization cross-section σ depends on the laser frequency, and Ui is
the ionization potential. Summing up, we get the following expression for the free electron current
Je and ρ = ρe, {

Je = q2
e

ωlme
H
(

kl
k2

l
·D
)

(ρE),
∂tρ = σKρnt|E|2K + σ

Ui
ρ|E|2.

(4.4)

Ionization current density. It is also necessary to take into account losses due to photo-
ionization. We introduce a ionization current density Ji such that Ji ·E represents the energy lost
by the laser to extract electrons (per time and volume unit). More precisely, Ji ·E is equal to the
energy necessary to extract one electron (given by the ionization potential Ui) multiplied by the
number of electrons per time and volume unit (given by ∂tρ). Using the second equation of (4.4),
this gives

Ji · E = UiσKρnt|E|2K + σρ|E|2.

Therefore, we take
Ji =

(
UiσKρnt|E|2K−2 + σρ)E. (4.5)

After nondimensionalization, the set of equations (4.1)-(4.2)-(2.4)-(4.4)-(4.5) becomes

∂tB + curlE = 0,

∂tE− curlB + 1
ε

√
γQ] = −εH

(
ε k
k2 ·Dx

)
(ρE)− εc0

(
c1|E|2K−2 + c2ρ

)
E,

∂tQ] + ε1+pω1Q] − 1
ε (√γE− ω0P]) = ε γ

ω3
0

(
1 + f(εq|P]|2)

)
|P]|2P],

∂tP] − 1
εω0Q] = 0,

∂tρ = εc1|E|2K + εc2ρ|E|2,

(4.6)

with the same notations as in (2.5).
It is then possible to derive a slowly varying envelope approximation and all the previous NLS

approximations as in the non-ionized case. We simply indicate the general form of the equations
extending (3.12) when taking ionization into account, with the same notations as in (3.10):{

iPε∂tu+ ∆u+ ε(1 + iδ · ∇)[(|u|2−ρ)u+ ic(α1|u|2K−2u+ α2ρu)] = 0,

∂tρ = εα1|u|2K + εα2ρ|u|2.
(4.7)

For such a system, it is easy to prove existence of the approximate solution (say in Hs, for s > d/2)
up to times O(1/ε), but it would be desirable to identify coefficients yielding global solutions. This
is still an open question.
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