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Wavelet transform modulus: phase retrieval and scattering

Irène Waldspurger

Abstract

We discuss the problem that consists in reconstructing a function from the modulus
of its wavelet transform. In the case where the wavelets are Cauchy wavelets, all analytic
functions are uniquely determined by this modulus. Additionally, although it is not uniformly
continuous, the reconstruction operator enjoys a form of local stability. We describe these two
results, and give an idea of the proof of the first one. To conclude, we present a related result
on a more sophisticated operator, based on the wavelet transform modulus: the scattering
transform.

1. Introduction

The wavelet transform of a signal is a complex-valued function, computed from the signal by
convolving it with a family of filters called “wavelets”. Since its introduction in the late eighties,
it has become an essential tool for various data analysis tasks. Indeed, the wavelet transform of
a signal is often much easier to interpret than the signal itself. This is notably the case for audio
signals, with the additional peculiarity, in this case, that, most of the time, only the modulus of
the wavelet transform is used; the phase is discarded, because it does not seem to be useful.

The reason for this fact is that, apparently, the modulus alone accurately models human percep-
tion: it empirically seems that two audio signals have almost the same wavelet transform modulus
if and only if they seem almost identical to a human listener [4, 10]. This is not true when the
phase is kept: two signals that “sound” identical can have wavelet transforms with significantly
different phases.

To give a more formal content to this observation, we propose to study the following problem:

To what extent is it possible to recover a function f ∈ L2(R) from its wavelet
transform modulus?

More specifically, we ask the following two questions: is any function f uniquely determined from
its wavelet transform modulus? Can we describe all pairs of functions (f, g) such that f and g have
“almost” the same wavelet transform modulus?

This problem belongs to a family of inverse problems called phase retrieval problems, that consist
in recovering an element in a complex vector space from the modulus of linear measurements. Phase
retrieval problems are known to be difficult to study: given a specific linear measurement operator,
it is in general not possible to determine whether any element can be uniquely recovered, or which
pairs of elements yield measurements with very similar modulus. Apart from cases where the
linear operator is random (with a simple distribution), the main situation that is relatively well
understood is when the linear operator is the Fourier transform, and the function to be recovered
is compactly supported. It is indeed known that, when d = 1, no compactly supported function
in L2(Rd) is uniquely determined from the modulus of its Fourier transform (except trivial ones)
[1], and it is possible to describe all pairs of functions with the same Fourier transform modulus.
When d ≥ 2, almost all functions become uniquely determined, but not all [5]. A similar analysis
can be done for the fractional Fourier transform [7].
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In the case of the wavelet transform, for a specific family of wavelets (“Cauchy wavelets”), a
precise analysis happens to be possible, and the result is quite different from the Fourier case.
All (analytic) functions in L2(R) are uniquely determined by their wavelet transform modulus.
Additionally, we can describe, at least partially, the pairs of functions whose wavelet transform
modulus are very close.

The aim of this article is to present these results, then to discuss an operator related to, but
more sophisticated than the wavelet transform: the scattering transform. The scattering transform
is a cascade of wavelet transform modulus, organized in layers; since its introduction in [8], it has
proven a valuable tool for difficult and diverse data analysis tasks. Ideally, we would like to extend
to the scattering transform the analysis that we can do for the wavelet transform modulus. The
result that we present in this article is only a first step towards this goal: it describes a relation
between the decay of the scattering coefficients of a function along the layers, and the decay of
the Fourier transform of the function. In particular, it shows that scattering coefficients of even
moderately regular functions decay exponentially fast, thus suggesting that further analysis of the
scattering transform should focus on the first layers only.

Section 2 contains the definition of the wavelet transform and Cauchy wavelets. In Section 3, we
prove that two analytic functions with the same Cauchy wavelet transform modulus are (almost)
equal. In Section 4, we give a description of pairs of functions whose wavelet transform modulus
are very similar. The decay of scattering coefficients is discussed in Section 5.

This review article is based on [9] and [13].

2. Definitions

If f is a function in L1(R), we define its Fourier transform by

∀ω ∈ R, f̂(ω) =
∫
R
f(t)e−iωtdt.

Let L2
+(R) be the set of square-integrable analytic functions:

L2
+(R) = {f ∈ L2(R) such that for a.e. ω ≤ 0, f̂(ω) = 0}.

2.1. Wavelets and wavelet transforms
An element ψ of L1(R) ∩ L2

+(R) is a wavelet if∫
R
ψ(t)dt = 0.

(The assumption that ψ is analytic is useless for most of the following definitions, but will simplify
some.)

From a fixed wavelet ψ (the mother wavelet), we can define a whole family of wavelets (ψj)j∈Z:

∀t ∈ R, ψj(t) = 2−jψ(2−jt). (2.1)

The wavelet transform associated to this family is the operator W defined as

W : L2(R) → (L2(R))Z
f → (f ? ψj)j∈Z.

It is a linear operator. Provided that the wavelets satisfy a so-called Littlewood-Paley condition,
its restriction to L2

+(R) is continuous and invertible; its pseudo-inverse has an explicit expression,

W † : (L2(R))Z → L2
+(R)

(hj)j∈Z →
∑
j hj ? ψ̃j ,

where (ψ̃j) is the dual wavelet family:

∀j ∈ Z,∀ω ∈ R, , ˆ̃ψj(ω) = ψ̂j(ω)∑
k∈Z
|ψ̂k(ω)|2

if ω ≥ 0

= 0 if ω < 0.
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Figure 2.1. (A) Mother wavelet, in the Fourier domain (Cauchy wavelet, defined
with p = 4). (B) Family of wavelets defined from this mother wavelet.

In this article, in addition to the wavelet transform itself, we will often consider its modulus,
|W | : L2(R) → (L2(R))Z

f → (|f ? ψj |)j∈Z.
In applications, the mother wavelet ψ is usually chosen so that its Fourier transform is well-

localized, and reaches its value of maximal amplitude around 1 (see Figure 2.1a). The family of
wavelets can then be understood as a family of band-pass filters (whose j-th filter has a charac-
teristic frequency equal to 2−j), and the wavelet transform as a decomposition in (overlapping)
frequency bands.

2.2. Cauchy wavelets
The Cauchy wavelet family is defined by applying Equation (2.1) to the following mother wavelet:

∀ω ∈ R, ψ̂Cauchy(ω) = ωpe−ω if ω ≥ 0
= 0 if ω < 0,

where p > 0 can be any real parameter, that we assume fixed for the whole article.
We call Cauchy wavelet transform the wavelet transform associated to this family, and denote

it by WCauchy. Its modulus is correspondingly denoted by |WCauchy|.

3. Uniqueness for Cauchy wavelets

In this section, we consider the following problem:

Is any f ∈ L2(R) uniquely determined from |WCauchy|f = (|f ? ψCauchy
j |)j∈Z?

The main result of this section is that any analytic function f is uniquely determined by its
Cauchy wavelet transform modulus, up to multiplication by a complex unitary number. We state
it in Paragraph 3.1, and give an idea of its proof in Paragraph 3.2.

3.1. Uniqueness theorem
We first note that, for any function f ∈ L2(R) and any φ ∈ R,

|WCauchy|(eiφf) = |eiφ| |WCauchy|f = |WCauchy|f.
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It is then hopeless to try to exactly recover functions from their wavelet transforms modulus: we
can at best hope to reconstruct them up to a global phase.

Second, we observe that for any functions f, g ∈ L2(R) whose Fourier transforms are equal on
R+, since Cauchy wavelets are analytic, f and g have the same wavelet transform, and hence the
same wavelet transform modulus.

To avoid this source of non-uniqueness, we restrict our analysis to analytic functions f ∈ L2
+(R),

and we have the following theorem.
Theorem 3.1. Let f, g ∈ L2

+(R) be such that
|WCauchy|f = |WCauchy|g.

There exists φ ∈ R such that
f = eiφg.

In audio applications, the functions that we encounter are not analytic, but real-valued. Fortu-
nately, we can extend our theorem from analytic functions to real-valued ones.
Corollary 3.2. Let f, g ∈ L2(R) be real-valued. Let g+ be the analytic part of g, that is,

∀ω ∈ R, ĝ+(ω) =
{

2ĝ(ω) if ω ≥ 0,
0 if ω < 0.

If
|WCauchy|f = |WCauchy|g,

then there exists φ ∈ R such that
f = Re

(
eiφg+

)
.

3.2. Proof sketch of Theorem 3.1
The proof of Theorem 3.1 crucially relies on a particular property of Cauchy wavelets: the Cauchy
wavelet transform of a function f ∈ L2(R) is the restriction to a set of horizontal lines of (a variant
of) the holomorphic extension of f to the complex upper half plane. This property allows us to
apply to our problem classical harmonic analysis techniques, as has also been done in [1, 7].

More specifically, if we denote by H the Poincaré half-plane,
H = {z ∈ C,=(z) > 0},

then, for any f ∈ L2
+(R), we can define a holomorphic function

F : H → C
z → 1

2π
∫
R ω

pf̂(ω)eiωzdω. (3.1)

When f is sufficiently regular, and p is an integer, F is the holomorphic extension to the Poincaré
half-plane of the p-th derivative of f (up to multiplication by ip).
Proposition 3.3. Let f ∈ L2

+(R) be any analytic function. We define F as in Equation (3.1).
Then,

∀j ∈ Z,∀x ∈ R, f ? ψCauchy
j (x) = 2jpF (x+ i2j).

Using the previous proposition, we can rephrase our problem in terms of holomorphic functions.
Indeed, let f, g ∈ L2

+(R) be two functions. Let F,G be defined as in Equation (3.1). From the
proposition, the following two properties are equivalent:

(1) |WCauchy|f = |WCauchy|g;

(2) ∀j ∈ Z,∀x ∈ R, |F (x+ i2j)| = |G(x+ i2j)|.

With standard tools from harmonic analysis, notably the decomposition into Blaschke products, it
can be shown that, when two holomorphic functions F,G : H→ C (satisfying a simple condition)
have the same modulus on at least two horizontal lines, they are equal up to a global phase. This
proves Theorem 3.1. More details can be found in [9].
Remark 3.4. From our numerical experiments, we expect Theorem 3.1 to hold for relatively
general families of wavelets, and not only for the Cauchy family. However, since Proposition 3.3
only holds for Cauchy wavelets, the proof does not extend to more general families.
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4. Local stability for Cauchy wavelets

In the previous section, we have seen that any analytic function is uniquely determined by its
Cauchy wavelet transform modulus, up to a global phase. In applications, we never have an exact
knowledge of the modulus, so we also need to understand which signals have “almost equal” wavelet
transform modulus (instead of “exactly equal”).

In this section, we first describe a method to construct pairs of functions with almost the
same wavelet transform modulus (Paragraph 4.1). This method consist in multiplying the wavelet
transform of an arbitrary function by “slow-varying” phases. Then we prove a partial converse
result: any two functions with almost the same wavelet transform modulus have wavelet transforms
that are equal up to multiplication by “slow-varying” phases, except around points where the
modulus is small (Paragraph 4.2).

As in the previous section, we assume the wavelets to be Cauchy. The construction described
in the first paragraph does not necessitate it, but the converse statement does.

4.1. Functions with almost identical wavelet transform modulus
First, let us see how to construct functions f, g ∈ L2

+(R) such that

|| |WCauchy|f − |WCauchy|g||2 � 1 but inf
φ∈R
||f − geiφ||2 & 1.

Here, we have defined || |WCauchy|f − |WCauchy|g||2 by

|| |WCauchy|f − |WCauchy|g||22 =
∑
j∈Z
|| |f ? ψCauchy

j | − |g ? ψCauchy
j | ||22.

Let us fix any function f ∈ L2(R) such that ||f ||2 = 1. Let us choose functions (φj)j∈Z ∈(
C1(R,R)

)Z, such that (j, t) ∈ Z× R→ φj(t) varies “slowly”: for some ε > 0,

∀j ∈ Z, 2j ||φ′j ||∞ < ε and ||φj − φj+1||∞ < ε.

We set

g = W †
((

(f ? ψCauchy
j )eiφj

)
j∈Z

)
=
∑
j∈Z

(
(f ? ψCauchy

j )eiφj

)
? ψ̃Cauchy

j .

Let us recall that W † is the pseudo-inverse of W , and (ψ̃Cauchy
j )j∈Z is the family of dual wavelets

(Equation (2.1)).
Because (j, t)→ φj(t) varies slowly, the multiplication by (j, t)→ (eiφj(t)) approximately com-

mutes with the operator WW †, so for any j ∈ Z,

g ? ψCauchy
j ≈ (f ? ψCauchy

j )eiφj ⇒ |g ? ψCauchy
j | ≈ |f ? ψCauchy

j |. (4.1)

More precisely,
|| |WCauchy|f − |WCauchy|g||2 = O(ε). (4.2)

However, unless the function (j, t) ∈ Z×R→ φj(t) is approximately constant on a subset of Z×R
where most of the norm of (f ? ψCauchy

j )j∈Z is concentrated,

inf
φ∈R
||f − geiφ||2 is of the order of 1. (4.3)

To summarize, we have seen that the wavelet transform of any function f , multiplied by slow-
varying phases, is approximately equal to the wavelet transform of another function g (Equation
(4.1)). Functions f and g may not be approximately equal, but they have almost the same wavelet
transform modulus (Equations (4.2) and (4.3)).

4.2. Local stability theorem
Conversely, when functions f, g ∈ L2

+(R) have almost the same wavelet transform modulus,
WCauchyg is approximately equal to WCauchyf up to multiplication by slow-varying phases, ex-
cept maybe in regions where WCauchyf has values close to zero.
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Theorem 4.1 (Simplified version of [9, Thm 5.1]). .
Let f, g ∈ L2

+(R) be two non-zero analytic functions. For any j ∈ Z, we define

Nj = max
(
||f ? ψCauchy

j ||∞, ||g ? ψCauchy
j ||∞

)
.

Let ε, c ∈]0; 1[ such that c ≥ ε be fixed. Let M > 0 be fixed. We assume that, for some j0 ∈ Z,

sup
x∈[−M2j0 ;M2j0 ]

∣∣ |f ? ψCauchy
j0

(x)| − |g ? ψCauchy
j0

(x)|
∣∣ ≤ εNj0 ; (4.4a)

sup
x∈[−M2j0 ;M2j0 ]

∣∣ |f ? ψCauchy
j0+1 (x)| − |g ? ψCauchy

j0+1 (x)|
∣∣ ≤ εNj0+1; (4.4b)

and

inf
x∈[−M2j0 ;M2j0 ]

min
(
|f ? ψCauchy

j0
(x)|, |g ? ψCauchy

j0
(x)|

)
≥ cNj0 ; (4.5a)

inf
x∈[−M2j0 ;M2j0 ]

min
(
|f ? ψCauchy

j0+1 (x)|, |g ? ψCauchy
j0+1 (x)|

)
≥ cNj0+1. (4.5b)

Then

sup
x∈[−M

2 2j0 ; M
2 2j0 ]

∣∣∣∣∣f ? ψ
Cauchy
j0+2

f ? ψCauchy
j0+1

(x)−
g ? ψCauchy

j0+2

g ? ψCauchy
j0+1

(x)

∣∣∣∣∣ ≤ A
(
Nj0−1

Nj0+1

)4/3
εα, (4.6)

where A is a constant that depends only on c, and α is a constant that depends only on M , and is
strictly positive when M is large enough.

At first sight, it might not be obvious why Equation (4.6) implies what we previously said: if
|WCauchy|f ≈ |WCauchy|g, then WCauchyf ≈WCauchyg up to multiplication by slow-varying phases,
in regions of Z× R where WCauchyf does not take values close to zero.

But observe that, when Equations (4.4a) and (4.4b) are satisfied for all values of j, and not only
for j = j0, j0+1, then, provided that Equations (4.5a)-(4.5b) hold for all j ∈ {j0−1, j0, . . . , j0+K},
for some K ∈ N∗, Equation (4.6) tells us that

∀j ∈ {j0, . . . , j0 +K − 1},
f ? ψCauchy

j+1

f ? ψCauchy
j

≈
g ? ψCauchy

j+1

g ? ψCauchy
j

;

⇒ phase
(
f ? ψCauchy

j

g ? ψCauchy
j

)
≈ phase

(
f ? ψCauchy

j+1

g ? ψCauchy
j+1

)
. (4.7)

Combining these approximate equalities from j = j0 to j = j0 +K − 1, we get

phase
(
f ? ψCauchy

j0

g ? ψCauchy
j0

)
≈ phase

(
f ? ψCauchy

j0+K

g ? ψCauchy
j0+K

)
. (4.8)

Hence, from Equation (4.7), (j, t) → phase
(
f?ψCauchy

j

g?ψCauchy
j

(t)
)

varies slowly in j when j stays in

{j0, . . . , j0 +K − 1}.
It also varies slowly in t, at least when j = j0: f ?ψCauchy

j0+K and g?ψCauchy
j0+K have lower characteristic

frequencies than f ? ψCauchy
j0

, and satisfy Equation (4.5a), so phase(f ? ψCauchy
j0+K /g ? ψCauchy

j0+K ) varies
slowly, compared to f ? ψCauchy

j0
and g ? ψCauchy

j0
. Equation (4.8) then implies that

phase
(
f ? ψCauchy

j0

g ? ψCauchy
j0

)
varies slowly compared to f ? ψCauchy

j0
, g ? ψCauchy

j0
.

Related results can be found in [2] and [6].
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5. Scattering transform

For complex data analysis tasks, more sophisticated representations than the wavelet transform
modulus are generally required. Towards this goal, [8] has introduced the scattering transform,
that is computed by iteratively applying to a function several wavelet transform modulus.

Our long-term goal is to study the same question for the scattering transform as we did for
the wavelet transform modulus: to what extent is it possible to reconstruct a function from its
scattering transform? Since this question is a priori difficult, we simply present a first step in this
direction: we show that there is a relation between the decay of the Fourier transform of a signal,
and the decay of its scattering transform.

Paragraph 5.1 contains the definition of the scattering transform. The main result is in Para-
graph 5.2. In this section, we do not need to assume that the wavelets are Cauchy wavelets. We
do not even need them to be analytic anymore.

5.1. Definition

Let us assume that a family of wavelets (ψj)j∈Z, as defined in Section 2, is fixed, as well as some
J ∈ Z. Let us also fix some low-pass filter φJ ∈ L1(R)∩L2(R), that is, a function with real positive
values, such that ∫

R
φJ(t)dt = 1.

Let us now consider any function f ∈ L2(R). The 0-th order scattering coefficient of f is defined
as

f ? φJ .

Intuitively, f ? φJ is a “blurred” version of f . It is insensitive to small modifications of f (notably
small deformations), which is good for applications, but does not contain much information about
middle or high frequencies of f . We recover this information by computing, in addition to f ?φJ , the
wavelet transform modulus of f : |W |f = (|f ? ψj |)j∈Z. Since we are only interested in recovering
the high-frequency content of f , we discard the components corresponding to frequencies lower
than 2−J , which yields a truncated wavelet transform modulus (|f ? ψj |)j≤J .

If we convolve all functions of this latter set with the low-pass filter, we obtain the 1st order
scattering coefficients of f :

(|f ? ψj | ? φJ)j≤J .

Because of the convolution with φJ , these coefficients are also robust to small deformations of f ,
and, compared to the 0-th order coefficients, they contain some information on the middle and
high frequencies of f .

Iterating this process leads to the following definition, illustrated by Figure 5.1.

Definition 5.1. Let
P = {(j1, . . . , jk), k ∈ N, j1 ≤ J, . . . , jk ≤ J}.

For any p = (j1, . . . , jk) ∈ P, we call k the length of p, and denote it by |p|.
Let f ∈ L2(R) be any function.
For any p = (j1, . . . , jk) ∈ P, we define, if |p| > 0,

S[p]f = | . . . ||f ? ψj1 | ? ψj2 | · · · ? ψjk
| ? φJ ,

and, if |p| = 0,
S[p]f = f ? φJ .

The scattering transform of f is
Sf = (S[p]f)p∈P .

Since its introduction in [8], the scattering transform has found successful applications in, for
example, audio genre, visual textures or medical data classification [3, 11, 12].
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|f ? ψJ−2| |f ? ψJ−1| |f ? ψJ |

||f ? ψJ | ? ψJ−1| ||f ? ψJ | ? ψJ |

f ? φJ

...

|f ? ψJ−2| ? φJ

|f ? ψJ−1| ? φJ

|f ? ψJ | ? φJ

...

||f ? ψJ−1| ? ψJ | ? φJ
...

||f ? ψJ | ? ψJ−1| ? φJ

||f ? ψJ | ? ψJ | ? φJ

...

... ...

...

......

Figure 5.1. Schematic representation of the scattering transform of a function
f ∈ L2(R).

5.2. Decay of scattering coefficients

To what extent can we reconstruct f ∈ L2(R) from Sf?

This problem is a priori more involved as in the case of the wavelet transform modulus. Instead of
directly solving it, we can first try to determine a few properties of f that can be recovered from
Sf , as well as a few properties of f that cannot be recovered from Sf .

From [8], we already know that, under suitable conditions on the wavelet family, the scattering
transform preserves the L2-norm:

∀f ∈ L2(R),
∑
p∈P
||S[p]f ||22 = ||f ||22.

On the other hand, it is insensitive to small deformations: if T ∈ C2(R,R) is such that ||T ′ − 1||∞
is “small”, then

∀f ∈ L2(R), Sf ≈ S(f ◦ T ).

(We refer to [8] for a formal statement.)
The next theorem follows this line of work: it describes a relation between the decay of the

Fourier transform of f , and the decay in norm of scattering coefficients as a function of the order.
Its interest is twofold. First, it shows that the scattering transform contains some information on
the smoothness of the initial signal: non-negligible high-order scattering coefficients are the sign of
a highly irregular function f .

Second, it explains a phenomenon observed in numerical experiments: for the classes of signals
that appear in most applications, for typical families of wavelets and values of J , the norm of
scattering coefficients decays very rapidly, to the point that only zero-th, first- and second-order
coefficients are usable. This fact implies that further studies of the scattering transform should
probably focus on these orders only, which avoids considering the whole cascade, as could have
been expected from Definition 5.1.

Theorem 5.2 ([13, Thm III.2]). We assume that the family of wavelets is such that there exists
c0 > 0 satisfying

∀ω ∈ R, c0 ≤ |φ̂J(ω)|2 + 1
2
∑
j≤J

(
|ψ̂j(ω)|2 + |ψ̂j(−ω)|2

)
≤ 1.

Additionally, we assume that there exists ε > 0 such that

|ψ̂(ω)| = O(|ω|1+ε) when ω → 0.
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Then there exists a0 > 0, c > 1 such that, for any real-valued function f ∈ L2(R), and any n ≥ 2,

∑
p∈P
|p|≥n

||S[p]f ||22 ≤
∫
R
|f̂(ω)|2

1− 1(
1 +

√∣∣∣ 2Jω
cna0

∣∣∣)4

 dω. (5.1)

To understand this theorem, let us note that

ω → 1− 1(
1 +

√∣∣∣ 2Jω
cna0

∣∣∣)4

is a high-pass filter with cut-off frequency of the order of 2−Jcna0. So Equation (5.1) means that
the norm of scattering coefficients with order at least n is (essentially) upper bounded by the norm
of f̂ , restricted to frequencies of order of at least 2−Jcna0.

From numerical experiments, it seems that for the wavelet families that we usually consider, a0
is typically of the order of 1, and c of the order of 2.

As a corollary, as soon as the Fourier transform of f decays at least as fast as O
(
|ω|−1), the

norm of scattering coefficients decays exponentially fast when their order increases.

Corollary 5.3. For any real-valued function f ∈ L2(R), if there exists C > 0 such that

∀ω ∈ R, |f̂(ω)| ≤ C√
1 + ω2

,

then
(∑

|p|≥n ||S[p]f ||22
)
n∈N

decays exponentially fast.
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