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The fractional Calderón problem

Mikko Salo

Abstract

We review recent progress in the fractional Calderón problem, where one tries to deter-
mine an unknown coefficient in a fractional Schrödinger equation from exterior measurements
of solutions. This equation enjoys remarkable uniqueness and approximation properties,
which turn out to yield strong results in related inverse problems.

1. Introduction

In this expository note, we will discuss recent results for a fractional version of the inverse problem
of Calderón. Let 0 < s < 1, and denote by (−∆)s the fractional Laplacian in Rn defined by

(−∆)su = F−1{|ξ|2sû(ξ)}

where Fu = û is the Fourier transform of u. Observe that the fractional Laplacian is a nonlo-
cal operator: the support of (−∆)su can be much larger than the support of u, and computing
(−∆)su(x) at some point x ∈ Rn requires knowledge of the values of u in all of Rn.

Let Ω ⊂ Rn be a bounded Lipschitz domain and let q ∈ L∞(Ω). Consider solutions u ∈ Hs(Rn),
where Hs denotes the standard L2-based Sobolev space, of the fractional Schrödinger equation{

((−∆)s + q)u = 0 in Ω,
u|Ωe = f

where Ωe = Rn\Ω is the exterior domain. We assume that 0 is not an exterior Dirichlet eigenvalue,
i.e., {

if u ∈ Hs(Rn) solves ((−∆)s + q)u = 0 in Ω and u|Ωe = 0,
then u ≡ 0. (1.1)

This holds e.g. if q ≥ 0. Then there is a unique solution u ∈ Hs(Rn) for any f ∈ Hs(Ωe) (see e.g.
[GSU16]).

We assume that we have access to measurements of solutions outside Ω. The inverse problem will
determine an unknown potential q in Ω from these measurements. The boundary measurements
will be encoded by the exterior Dirichlet-to-Neumann map (DN map for short),

Λq : Hs(Ωe)→ Hs(Ωe)∗

that maps f to a nonlocal analogue of the Neumann boundary value of the solution u. Formally
Λqf = (−∆)su|Ωe . (See [GSU16] for a more precise treatment, also in the case where Ω is a general
bounded open set.)

The following result states that exterior measurements, even on arbitrary, possibly disjoint
subsets of Ωe, uniquely determine the potential in Ω.
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Theorem 1.1. [GSU16] Let Ω ⊂ Rn, n ≥ 1, be bounded open, let 0 < s < 1, and let q1, q2 ∈ L∞(Ω)
satisfy (1.1). Let also W1,W2 ⊂ Ωe be open. If the DN maps for the equations ((−∆)s + qj)u = 0
in Ω satisfy

Λq1f |W2 = Λq2f |W2 for any f ∈ C∞c (W1),
then q1 = q2 in Ω.

This theorem is a fractional version of uniqueness results in the classical inverse problem of
Calderón (see [Uh14] for many results and references), where s = 1 and measurements are taken
on ∂Ω. We note that the fractional problem, where 0 < s < 1, has several interesting features
when compared to the standard Calderón problem:

• The same method proves Theorem 1.1 in all dimensions n ≥ 1, whereas in the standard
Calderón problem one often needs different methods for n = 2 and n ≥ 3 (and uniqueness
fails for n = 1).

• Theorem 1.1 proves uniqueness with measurements in arbitrarily small, possibly disjoint
sets in the exterior. The standard Calderón problem with measurements on an arbitrary
subset of the boundary is still open in dimensions n ≥ 3, and the case of disjoint sets may
be even more difficult (see [DKN17] and references therein).

• The proof is based on remarkable uniqueness and approximation properties of the fractional
Schrödinger equation (see Section 2). These replace the method of complex geometrical
optics solutions that is typical in the standard Calderón problem.

The above facts suggest that the fractional Calderón problem is more manageable than the
classical problem, and one could hope for a fairly complete understanding of this inverse problem.
Heuristically, this is also explained by a formal variable count: one tries to determine a function of
n variables (the potential q) from data that depends on 2n variables (the Schwartz kernel of the
exterior DN map Λq). This makes the fractional inverse problem formally overdetermined in any
dimension n ≥ 1.

Extensions
Theorem 1.1 has already been extended in several directions:

1. Low regularity. Uniqueness has been proved in [RS17a] for a large class of low regularity
potentials, including potentials in L

n
2s (Ω) (the scale invariant Lp space for this equation)

or potentials in W−s,ns (Ω) that vanish near the boundary.

2. Stability. The work [RS17a] also gives a quantitative version of Theorem 1.1, showing that
this inverse problem enjoys logarithmic stability. One of the results in [RS17a] states that
if Ω is smooth and if one has the a priori bound ‖qj‖W δ, n2s ≤M for some δ > 0, then

‖q1 − q2‖L n
2s (Ω) ≤ ω(‖Λq1 − Λq2‖∗)

where ω is a logarithmic modulus of continuity and ‖ · ‖∗ is the natural norm for the exterior
DN map. In [RS17d] this type of stability is proved to be optimal, showing that the fractional
inverse problem is in general highly ill-posed.

3. Reconstruction. Constructive procedures for recovering q from Λq are presented in [GRSU18],
even in the case of a single measurement (a related result for obstacles is in [CLL17]), and
in the work [HL17] that involves monotonicity methods and shape reconstruction.

4. Anisotropic problem. The work [GLX17] proves a version of Theorem 1.1, where the operator
(−∆)s + q is replaced by (−div(A∇ · ))s + q where A ∈ C∞(Rn,Rn×n) is a given uniformly
elliptic matrix function. The corresponding result for s = 1 is open when n ≥ 3.

5. Semilinear equations. A version of Theorem 1.1 that applies to semilinear equations
(−∆)su+ q(x, u) = 0 is proved in [LL17].
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Background
The study of fractional and nonlocal operators is currently an active research field and the related
literature is substantial. We only mention that operators of this type arise in problems involving
anomalous diffusion and random processes with jumps, and they have applications in probability
theory, physics, finance, and biology. See [BV16, Ro16] for further information and references.

The mathematical study of inverse problems for fractional equations goes back at least to
[CNYY09]. By now there are a number of results, largely for time-fractional models and including
many numerical works. Here is an example of the rigorous results that are available [SY11]: in the
time-fractional heat equation

∂αt u−∆u = 0 in Ω× (0, T ), u|∂Ω×(0,T ) = 0,
where 0 < α < 1 and ∂αt is the Caputo derivative, u(0) is determined by u(T ) in a mildly ill-posed
way (for α = 1 this problem is severely ill-posed). In general, nonlocality may influence the nature
of the inverse problem but there are several aspects to be taken into account. We refer to [JR15]
for a detailed discussion and many further references.

This article is organized as follows. Section 1 is the introduction. In Section 2 we describe the
main tools, namely the strong uniqueness and approximation properties of the fractional equation,
that are used in solving the inverse problem. Section 3 contains sketches of proofs of the main
results.

2. Tools

The proof of Theorem 1.1 begins by showing that if the two DN maps are equal, then (exactly as
in the usual Calderón problem) one has the integral identity∫

Ω
(q1 − q2)u1u2 dx = 0

for any uj ∈ Hs(Rn) that solve ((−∆)s + qj)uj = 0 in Ω and satisfy supp(uj) ⊂ Ω ∪W j . For
the standard Schrödinger equation, one then typically uses special complex geometrical optics
solutions uj to show that the products {u1u2} form a complete set in L1(Ω). See [Uh14] for an
overview.

However, solutions of the fractional Schrödinger equation are much less rigid than those of the
usual Schrödinger equation. The fractional equation enjoys stronger uniqueness and approximation
properties, as demonstrated by the following theorems:

Theorem 2.1. [GSU16] If 0 < s < 1, if u ∈ H−r(Rn) for some r ∈ R, and if both u and (−∆)su
vanish in some open set, then u ≡ 0.

Theorem 2.2. [GSU16] Let Ω ⊂ Rn be a bounded open set, and let Ω1 ⊂ Rn be any open set with
Ω ⊂ Ω1 and Ω1 \ Ω 6= ∅.

(a) If q ∈ L∞(Ω) satisfies (1.1), then any f ∈ L2(Ω) can be approximated arbitrarily well in
L2(Ω) by functions u|Ω where u ∈ Hs(Rn) satisfy

((−∆)s + q)u = 0 in Ω, supp(u) ⊂ Ω1.

(b) If Ω has C∞ boundary, and if q ∈ C∞c (Ω) satisfies (1.1), then any f ∈ C∞(Ω) can be
approximated arbitrarily well in C∞(Ω) by functions d(x)−su|Ω where u ∈ Hs(Rn) satisfy

((−∆)s + q)u = 0 in Ω, supp(u) ⊂ Ω1.

(Here d is any function in C∞(Ω) with d(x) = dist(x, ∂Ω) near ∂Ω and d > 0 in Ω. Also,
vj → v in C∞(Ω) means that vj → v in Ck(Ω) for all k ≥ 0.)

Note that corresponding results fail for the Laplacian: if u ∈ C∞c (Rn) then both u and ∆u
vanish in a large set but u can be nontrivial, and the set of harmonic functions in L2(Ω) is a closed
subspace of L2(Ω) which is smaller than L2(Ω).

Theorem 2.1 is classical [Ri38] at least with stronger conditions on u, and even the strong
unique continuation principle holds [FF14, Rü15, Yu17]. We note that related results appear in the
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mathematical physics literature in connection with anti-locality and the Reeh-Schlieder theorem,
see [Ve93].

A Ck version of Theorem 2.2 was proved in [DSV17] when Ω = B1 and q = 0, but with
little control over the supports of the approximating solutions. We note that a similar strong
approximation property holds for a large class of nonlocal equations including the fractional heat
and wave equations (∂t+(−∆)s)u = 0 and (∂2

t +(−∆)s)u = 0, see [DSV16, RS17b], which suggests
that one could treat inverse problems for these equations as well.

We will give a proof of Theorem 2.1 based on the Caffarelli-Silvestre extension [CS07]. This
allows us to interpret the quantities u|W and (−∆)su|W as the Cauchy data on W × {0} for the
solution w of {

div(x1−2s
n+1 ∇w) = 0 in Rn+1

+ ,

w|Rn×{0} = u.

This reduces the proof of Theorem 2.1 to a unique continuation statement for this degenerate
elliptic equation.

The approximation property, Theorem 2.2, follows from the uniqueness result using a Runge type
argument [La56, Ma56]. The L2 approximation result, which is sufficient for proving Theorem 1.1,
only requires the basic well-posedness theory for fractional Dirichlet problems. However, for the C∞
approximation one needs to invoke the higher regularity theory for these problems [Hö65, Gr15].

3. Proofs

We will first sketch the proof of Theorem 1.1, which follows easily from the L2 approximation
property in Theorem 2.2(a).

Proof of Theorem 1.1. We begin with an integral identity proved in [GSU16]: one has

((Λq1 − Λq2)f1, f2)Ωe =
∫

Ω
(q1 − q2)u1u2 dx (3.1)

whenever uj ∈ Hs(Rn) satisfy ((−∆)s + qj)uj = 0 in Ω with uj |Ωe = fj . This is basically an
integration by parts formula based on the definition of the exterior DN map Λq (the left hand side
is a natural dual pairing in Ωe).

If Λq1f |W2 = Λq2f |W2 for all f ∈ C∞c (W1), then (3.1) implies that∫
Ω

(q1 − q2)u1u2 dx = 0 (3.2)

for all uj ∈ Hs(Rn) solving ((−∆)s + qj)uj = 0 in Ω with uj |Ωe ∈ C∞c (Wj). It is thus enough
to show that the products {u1u2|Ω} of such solutions form a complete set in L1(Ω). This is a
consequence of Theorem 2.2(a): one can for instance fix any v ∈ L2(Ω) and choose solutions u(k)

j

satisfying u(k)
j |Ωe ∈ C∞c (Wj) (by the proof of Theorem 2.2(a) below) such that

u
(k)
1 → v in L2(Ω),

u
(k)
2 → 1 in L2(Ω),

as k →∞. Inserting these solutions in (3.2) and letting k →∞ gives∫
Ω

(q1 − q2)v dx = 0.

Since v ∈ L2(Ω) was arbitrary, it follows that q1 = q2. �

It is a natural question to try to relax the assumption qj ∈ L∞(Ω). In fact, this was done in
[RS17a] using a version of Theorem 2.2(a) that gives an approximation result in Hs(Ω) rather
than in L2(Ω).

We will next prove the approximation result, Theorem 2.2, using the uniqueness result (The-
orem 2.1). The proof is a standard functional analysis argument, which essentially boils down to
computing the formal adjoint of the Poisson operator Pq.
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Proof of Theorem 2.2. We give the proof of part (a) in the case where Ω is a bounded Lipschitz
domain (for the case of general open sets see [GSU16]).

Let W be a ball such that W ⊂ Ω1 \ Ω. Let Pq : C∞c (W ) → Hs(Rn) be the Poisson operator
that maps an exterior Dirichlet value f ∈ C∞c (W ) to the solution u ∈ Hs(Rn) of ((−∆)s+q)u = 0
in Ω satisfying u|Ωe = f . Define the space

R = {Pqf |Ω ; f ∈ C∞c (W )}.

The result will follow if we can show that R is a dense subspace of L2(Ω).
By the Hahn-Banach theorem, it is enough to prove that any F ∈ L2(Ω) that satisfies

(F, Pqf |Ω)L2(Ω) = 0 for all f ∈ C∞c (W ) must satisfy F ≡ 0. To do this, let ϕ ∈ Hs(Rn) solve

((−∆)s + q)ϕ = F in Ω, ϕ|Ωe = 0. (3.3)

Also extend q by zero from Ω to Rn. Then, for any f ∈ C∞c (W ), we have

0 = (F, Pqf |Ω)L2(Ω) = (((−∆)s + q)ϕ|Ω, Pqf − f |Ω)L2(Ω).

We may extend the last pairing to Rn: since Pqf − f is a function in Hs(Rn) and is supported
in Ω, there are ψj ∈ C∞c (Ω) with ψj → Pqf − f in Hs(Rn) (see e.g. [Mc00, Theorem 3.29]). Thus

0 = lim
j→∞

(((−∆)s + q)ϕ,ψj)L2(Rn)

= (((−∆)s + q)ϕ, Pqf − f)H−s(Rn)×Hs(Rn).

Also ϕ ∈ Hs(Rn) is supported in Ω, and we may integrate by parts to show that (((−∆)s +
q)ϕ, Pqf)H−s(Rn)×Hs(Rn) = 0 since Pqf is a solution in Ω.

It follows that
0 = −((−∆)sϕ, f)H−s(Rn)×Hs(Rn)

for all f ∈ C∞c (W ). But now ϕ ∈ Hs(Rn) satisfies

ϕ|W = (−∆)sϕ|W = 0.

Theorem 2.1 implies that ϕ ≡ 0, and consequently also F ≡ 0. This proves part (a).
To show part (b), i.e. C∞ approximation, the function F in the above proof becomes a very

irregular distribution. Then one essentially needs to solve (3.3) in negative order Sobolev spaces
associated with the fractional equation. By duality, this can be reduced to the higher regularity
theory for fractional exterior Dirichlet problems [Hö65, Gr15]. We refer to [GSU16] for the details.

�

We mention that [RS17a] proves a quantitative version of Theorem 2.2(a): given v ∈ L2(Ω) and
ε > 0, one estimates the size of a control function f in Ωe such that the corresponding solution u
satisfies ‖u|Ω − v‖L2(Ω) ≤ ε. This is related to the notion of cost of (approximate) controllability
in the control theory literature. The proof of the quantitative approximation theorem is based on
a quantitative version of the uniqueness result, Theorem 2.1, and a functional analysis argument
as in [Ro95]. A similar argument was used to quantify the classical Runge approximation property
for second order elliptic equations in [RS17c], and also to quantify the approximation property for
more general nonlocal equations such as the fractional heat and wave equation [RS17b].

Finally, let us sketch a proof of the uniqueness result, Theorem 2.1, in the spirit of the quantita-
tive proof given in [RS17a]. As mentioned above, this is based on the Caffarelli-Silvestre extension
[CS07]: for any u ∈ Hs(Rn), one can realize (−∆)su as the limit (with convergence in H−s(Rn))

(−∆)su = cs lim
xn+1→0+

x1−2s
n+1 ∂n+1w,

where w solves the Dirichlet problem{
div(x1−2s

n+1 ∇w) = 0 in Rn+1
+ ,

w|Rn×{0} = u.

If s = 1/2 this is just the Dirichlet problem for the Laplace equation in Rn+1
+ , and w is the harmonic

extension of u. For a general s with 0 < s < 1, the weight x1−2s
n+1 is a Muckenhoupt A2 weight, and

the equation is a degenerate elliptic equation that has been studied in [FKS82, FJK82, CS14].
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x
′

xn+1

W × {0} Ω× {0}

Figure 3.1: An illustration of the propagation of smallness argument.

The main point is that Theorem 2.1, which is a uniqueness statement for the nonlocal operator
(−∆)s, becomes a unique continuation statement for solutions of the local equation div(x1−2s

n+1 ∇w)=
0. To prove Theorem 2.1, it is enough to show that if the Cauchy data of w vanish on W × {0}
(meaning that w|W×{0} = limxn+1→0+ x1−2s

n+1 ∂n+1w|W×{0} = 0), then the solution w is identically
zero in Rn+1

+ . This of course implies that u ≡ 0.
The work [RS17a] gave a quantitative unique continuation statement of this type for the degener-

ate elliptic equation div(x1−2s
n+1 ∇w) = 0. This was based on Carleman estimates and propagation of

smallness, or Lebeau-Robbiano interpolation inequality, arguments (see [ARRV09, LR95, LL12]).
The proof proceeds in three steps, which are sketched in the following (see [RS17a] for the

details). The argument is also illustrated in Figure 3.1, which is from [RS17a].

1. If the Cauchy data of w is small in W × {0}, then w is small in W × (0, 1). This is proved
using a boundary interpolation inequality, which in turn follows from a suitable Carleman
inequality with boundary terms.

2. If w is small inW×(0, 1), then w is small in Ω×(h, 1) where h > 0 will be specified later. To
show this, one propagates the smallness of w in the interior by a chain of balls argument and
three balls inequalities, which can again be obtained from a suitable Carleman inequality.
Since the balls in the argument have to lie in Rn+1

+ , the balls at height h should have radius
∼ h, and thus one needs ∼ |log h| balls in the chain.

3. If w is small in Ω× (h, 1), then w is small on Ω×{0}. To show this, one first uses a localized
trace theorem to estimate the boundary value of w on Ω× {0} in terms of the size of w in
Ω× (0, 1). One has an estimate in Ω× (h, 1) from step 2. The L2 norm of w in Ω× (0, h) is
bounded by a higher Lp norm times hα for some α > 0 by the Hölder inequality, and the
higher Lp norm of w can be bounded by a L2 norm of ∇w using a Sobolev embedding for
the degenerate equation. Optimizing over h > 0 gives the final estimate for w in Ω×{0} in
terms of the Cauchy data on W × {0} and an a priori bound for a weighted H1 norm of w
in Rn+1

+ .
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