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Journées Équations aux dérivées partielles
Roscoff, 5–9 juin 2017
GDR 2434 (CNRS)

Correlation spectrum of Morse-Smale gradient flows

Nguyen Viet Dang Gabriel Rivière

Abstract

In this note, we review our recent works devoted to the spectral analysis of Morse-Smale
flows. Then we give applications to differential topology and to the spectral theory of Witten
Laplacians.

1. Introduction

Let M be a smooth (C∞), compact, oriented and boundaryless manifold of dimension n ≥ 1.
Given a smooth vector field V on M , its integration defines a flow ϕt : M → M , and maybe
one of the most basic question in dynamical systems is to understand the long time behaviour
of such a flow. Let us formulate more precisely the meaning of the above statement. Given some
smooth differential k–form ψ1 ∈ Ωk(M), one can ask if the pulled-back differential form ϕ−t∗(ψ1)
has a weak limit in the sense of currents when times t goes to +∞. For such a limit to exist, the
dynamical system (ϕt : M 7→ M)t under study must have some particular structure. In order to
study the weak limit limt→+∞ ϕ−t∗(ψ1), it is natural to introduce the correlation function of the
flow:

∀t ≥ 0, Cψ1,ψ2(t) :=
∫
M

ϕ−t∗(ψ1) ∧ ψ2, (1.1)

where ψ1 is a k-form and ψ2 a (n− k)−form.
Let us now observe that ϕ−t∗(ψ1) is the solution of the following transport equation:

∂tψ = −LV ψ, ψ(t = 0) = ψ1, (1.2)

where LV is the Lie derivative along the vector field V . Recall that Cartan’s formula allows us to
write LV under the following supersymmetric form:

LV = (d+ ιV )2, (1.3)

that can be thought as an analogue of the formula for the Hodge–De Rham Laplacian1 : ∆g =
(d + d∗)2. This formal analogy with Hodge theory will turn out to be central for applications to
differential topology that will be described at the end of these proceedings. Equation (1.2) shows
how the study of the limit of (ϕt)t→+∞, which is nonlinear in nature, can be turned into a linear
PDE problem2. More precisely, one may try to find out some appropriate Banach space B on which
−LV has good spectral properties. Then, we would prove some kind of convergence to equilibrium
result like what one would do in the case of the heat equation associated to ∆g. To understand
this formal analogy, replacing LV in the transport equation (1.2) by the Laplacian ∆g yields the
heat equation : ∂tψ = −∆gψ, ψ(t = 0) = ψ1. However, unlike Hodge theory, one cannot work
with L2 spaces since it does not give interesting spectral properties for LV . Still, a lot of progresses

The second author is partially supported by the Agence Nationale de la Recherche through the Labex CEMPI (ANR-11-LABX-0007-
01) and the ANR project GERASIC (ANR-13-BS01-0007-01).

1Here, d∗ denotes the adjoint of d with respect to a Riemannian metric g.
2This is of course at the expense of working in infinite dimension.
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have been made towards this question in the last fifteen years, and the purpose of this report is to
present these problems in the a priori simple framework of Morse-Smale gradient flows. We refer
the reader to the introduction of our articles [8, 10, 11] for a brief overview of the literature.

There are many ways to construct appropriate spaces adapted to the dynamical properties of
the flow and all of them give in the end the same objects. Equivalently, we will get the same
eigenvalues and the same eigenmodes. Here, we choose to adopt a microlocal approach to this
problem and it is most likely that we could get similar results by following other strategies such
as the one developped by Liverani et al. [3, 23, 5]. This microlocal point of view was introduced
for dynamical systems with hyperbolic behaviour by Baladi, Dyatlov, Faure, Sjöstrand, Tsujii,
Zworski, etc [1, 30, 16, 31, 14]. In the microlocal approach, we start by the observation that the
principal symbol of −iLV is given by the Hamiltonian function

∀(x, ξ) ∈ T ∗M, HV (x, ξ) := ξ(V (x)). (1.4)
The dynamical properties of the corresponding Hamiltonian flow acting on cotangent space T ∗M ,
denoted by

Φt(x, ξ) :=
(
ϕt(x),

(
dϕt(x)T

)−1
ξ
)
, (1.5)

must be studied in order to construct the appropriate anisotropic Sobolev spaces of currents
adapted to the dynamics. A crucial feature of this flow is the hyperbolicity at the critical points.
Moreover, a particular role will be played by the stable and unstable sets of the Hamiltonian flow
in T ∗M which are conical Lagrangians in T ∗M .

2. A brief reminder on Morse-Smale gradient flows

Let us now focus on the particular case of gradient flows. For that purpose, we fix a smooth (C∞)
function of Morse type. In other words, f has only finitely many critical points, all of them being
nondegenerate. We denote by Crit(f) the set of critical points.

2.1. Definition and first properties
Let g be a smooth Riemannian metric. Then we define the gradient of f with respect to the metric
g as the following vector field :

∀(x, v) ∈ TM, dxf(v) = 〈Vf (x), v〉g(x). (2.1)
Such a vector field generates a complete flow on M that we denote by (ϕtf )t∈R and it is called the
gradient flow. The nonwandering set of this flow is equal to the set of critical points of f [26]. The
critical points being non degenerate, we say that the nonwandering set of the flow is hyperbolic.
Hence, given a in Crit(f), one can define its stable manifold (resp. unstable) as :

W s/u(a) :=
{
x ∈M : lim

t→+/−∞
ϕtf (x) = a

}
.

It can be proved that these are embedded submanifolds inside M [28, 32, 22]. However, as we
will later see, the submanifolds (W s/u(a))a∈Crit(f) are not necessarily properly embedded. We set
0 ≤ r ≤ n (resp. n− r) to be the dimension of W s(a) (resp. Wu(a)), and we note that r is also the
Morse index of the critical point a. Observe also that Wu(a) ∩W s(a) = {a}. A notable feature of
these submanifolds is that they form a partition of M [29], i.e.

M =
⋃

a∈Crit(f)

W s(a), and ∀a 6= b, W s(a) ∩W s(b) = ∅.

The same of course holds for the unstable manifolds once we observe that unstable manifolds of Vf
are stable manifolds of V−f . This “cellular” decomposition plays an important role in the applica-
tions to topology as was observed by Thom [29]. For applications to topology, Smale introduced
another requirement that, for every critical points a and b in Crit(f), the submanifolds W s(a)
and Wu(b) intersect transversally3. This assumption turns out to be crucial in our analysis and
it can be formulated in an equivalent manner by saying that the forward and backward trapped

3Note that if dim W s(a) + dim W u(b) < n then transversality means that the intersection is empty
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set of the Hamiltonian flow Φt defined by (1.5) intersect only along the zero section 0 ⊂ T ∗M .
The Morse function being fixed, this transversality assumption is satisfied by an open and dense
subset of metrics [19]. Once these properties are verified, we say that the flow ϕtf is a Morse-Smale
gradient flow.

2.2. Correlation function of a gradient flow

Let us now come back to the study of the correlation functions

Cψ1,ψ2(t) :=
∫
M

ϕ−t∗f (ψ1) ∧ ψ2

of the gradient flow. In that direction, Laudenbach and Harvey-Lawson showed that the following
holds [2, 22, 20]:

Theorem 2.1 (Laudenbach, Harvey-Lawson). Let f be a smooth Morse function. Then,
there exists an “adapted” Morse-Smale metric g such that :

• (Laudenbach) for every a in Crit(f), Wu(a) and W s(a) define integration currents in
the sense of De Rham that we denote by [Wu(a)] and [W s(a)],

• (Harvey-Lawson) for every 0 ≤ k ≤ n and for every (ψ1, ψ2) in Ωk(M)× Ωn−k(M),∫
M

ϕ−t∗f (ψ1) ∧ ψ2 −→
∑

a:dimW s(a)=k

(∫
W s(a)

ψ1

)(∫
Wu(a)

ψ2

)
, as t→ +∞. (2.2)

The second part of the Theorem can also be reformulated in terms of weak limits in the space of
currents as follows :

ϕ−t∗(ψ1) ⇀
∑

a:dimW s(a)=k

(∫
W s(a)

ψ1

)
[Wu(a)].

By an “adapted” metric, we mean that the metric is Euclidean in a Morse chart [22] near each
critical point. In particular, it means that g is flat near Crit(f). However, Minervini showed [24]
similar results on integration currents and the convergence of correlators under relaxed assumptions
on the metric g. The main difficulty regarding the first part of the Theorem is that we can easily
integrate a differential form whose support is included in a compact part ofWu(a) but it is not clear
that we can integrate a form whose support intersects ∂Wu(a) := Wu(a) \Wu(a). To justify this
point, one needs to analyse carefully the structure ofWu(a) near its boundary and this is where the
“adapted” condition comes in. Indeed, Laudenbach proves something more precise, namely that
Wu(a) is a submanifold with conical singularities. This in particular implies that Wu(a) defines a
current of finite mass in the sense of geometric measure theory. Observe now a remarkable thing
about the second part of the Theorem : ϕ−t∗f (ψ1) converges weakly to a limit current which can be
decomposed as

∑
a∈Crit(f)

(∫
W s(a) ψ1

)
[Wu(a)] in the basis (Wu(a))a∈Crit(f) of unstable currents.

This is highly reminiscent of Thom’s partition of M as a union of unstable manifolds. In other
words, if we study the convergence to equilibrium to solutions ψ of the transport equation (1.2),
then we recover at the limit some linear combination of currents which appear in the cellular
decomposition of the manifold. In particular, we can deduce from this Theorem classical results
from differential topology such as the finiteness of Betti numbers or the Morse inequalities [20].
At the end of this lecture, we will explain how to recover these topological results from a spectral
perspective.

2.3. Lyapunov exponents and linearization assumptions

In order to state our results, we need to introduce two more definitions. First of all, for every a in
Crit(f), we define Lf (a) as the unique matrix verifying

∀ξ, η ∈ TaM, d2
af(ξ, η) = ga(Lf (a)ξ, η). (2.3)
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As a is a nondegenerate critical point, the matrix Lf (a) is invertible and symmetric with respect
to ga. Its eigenvalues are the Lyapunov exponents of the critical point a and we denote them by

χ1(a) ≤ . . . ≤ χr(a) < 0 < χr+1(a) ≤ . . . ≤ χn(a),
where r is the index of the critical point a. For l ≥ 0, the flow ϕtf is said to be Cl-linearizable if, for
every critical point a of f , there exists a Cl-chart near a such that the flow can be written locally,
for t small enough,

ϕtf (x1, . . . , xn) =
(
etχ1(a)x1, . . . , e

tχn(a)xn

)
. (2.4)

Actually, thanks to the Hartman-Grobman Theorem, we can always find a C0-linearizing chart.
The Sternberg-Chen Theorem [25] states that the chart can be chosen of class Cl as soon as a
certain (finite) number of nonresonance assumptions are satisfied by the Lyapunov exponents.
We emphasize that the metrics of Laudenbach and Harvey-Lawson generate by construction C∞-
linearizable flows with all the Lyapunov exponents equal to ±1.

3. Statement of the main results

Our first main result is the following refinement of Theorem 2.1 [8, 9]:

Theorem 3.1. Suppose that ϕtf is a C1-linearizable Morse-Smale gradient flow. Fix 0 ≤
k ≤ n. Then, for every a ∈ Crit(f) of index k, there exists a pair of currents (Ua, Sa) ina

D′,k(M)×D′,n−k(M) such that the support of Ua is equal to Wu(a) and such that
LVf (Ua) = 0 and Ua = [Wu(a)] on M − ∂Wu(a).

Moreover, for every
0 < χ < min {|χj(a)| : 1 ≤ j ≤ n, a ∈ Crit(f)} ,

one has, for every (ψ1, ψ2) ∈ Ωk(M)× Ωn−k(M),∫
M

ϕ−t∗f (ψ1) ∧ ψ2 =
∑

a:dimWu(a)=n−k

(∫
M

ψ1 ∧ Sa
)(∫

M

Ua ∧ ψ2

)
+Oψ1,ψ2(e−χt).

aD′,k(M) denotes the space of currents of degree k.

The proof we gave of this result is of purely spectral nature and is completely independent of
the Theorem by Laudenbach and Harvey–Lawson. Note that our proof yields an exponential rate
of convergence towards equilibrium under rather general assumptions on the metric. Our Theorem
also establishes the existence of the extension to M of the germ of current [Wu(a)]. However, we
emphasize that the main drawback compared to Theorem 2.1 is that the extended currents are
not a priori of finite mass while the construction from [19, 22] allows to establish that Ua is a
standard current of integration. It is plausible that the rate of convergence in this Theorem could
be recovered by techniques from geometric measure theory à la Federer but we are not aware of
such proof in the literature. Yet, we emphasize that this result is just the first term of an asymp-
totic expansion that our analysis allows to compute at any order. To state a general statement, we
introduce the following notation:

|χ(a)| = (|χ1(a)|, . . . , |χn(a)|).
Then we have [8]:

Theorem 3.2. Suppose that ϕtf is a Morse-Smale gradient flow all of whose Lyapunov exponents
are rationally independent. Let 0 ≤ k ≤ n.

Then, for every a in Crit(f) and for every α in Zn+, there exists a continuous linear map:

π
(α)
a,k : Ωk(M)→ D′k(M),

such that, for every (ψ1, ψ2) ∈ Ωk(M)× Ωn−k(M) and for every χ > 0, one has∫
M

ϕ−t∗f (ψ1) ∧ ψ2 =
∑

a∈Crit(f)

∑
α∈Zn+:α.|χ(a)|≤χ

e−tα.|χ(a)|
∫
M

π
(α)
a,k (ψ1) ∧ ψ2 +Oψ1,ψ2(e−χt),
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as t tends to +∞. Moreover, for every a in Crit(f) and for every α in Zn+, one has

• 0 ≤ rk(π(α)
a,k ) ≤ 2n,

• for every ψ1 in Ωk(M), the support of π(α)
a,k (ψ1) is contained in Wu(a),

• rk(π(0)
a,k) = δk,dim(W s(a)),

• for every α in (Z∗+)n, rk(π(α)
a,k ) = n!

k!(n−k)! .

The assumption on the rational independence of the Lyapunov exponents allows us to state
the result in a simpler manner but our method allows in fact to deal with C1-linearizable flows at
the expense of having polynomial factors in the asymptotic expansion [9]. In the terminology of
dynamical systems theory, this Theorem shows that the Pollicott-Ruelle resonances of a gradient
flow are of the form −α.|χ(a)| with α a multi-index in Zn+. If we are only interested in observables
ψ1 and ψ2 supported near a critical point, we will verify below that this result can be obtained as
an application of the Taylor formula – see paragraph 4.1 below. Here, the main point is that this is
a result on the global dynamics of the gradient flow and not necessarily on the local dynamics near
a critical point. We emphasize that, in the case of the height function on the 2-sphere endowed
with its canonical metric, a similar result was obtained by Frenkel, Losev and Nekrasov via Witten
Laplacian methods [17]. We shall come back to this issue later in this note. Finally, even if we
do not describe this here, our analysis extends to more general Morse-Smale flows that may have
closed orbits and that we couple with a flat connection [10, 11].

4. About the proofs

In this review, we shall focus for the sake of simplicity on the case k = 0 and just outline the
main ideas. We will hide many technical issues and refer to the original papers– see [8, 10, 11]
for details. Moreover, we will suppose that the flow is smoothly-linearizable. The extension to the
C1-linearizable case can be found in [9].

4.1. A preliminary calculation

We first localize the study of the dynamics near critical points since this is the first natural places
to look at for gradient flows. Let us start by proving Theorem 3.2 near a critical point a whose
index will be denoted by r. We choose some neighborhood U of a on which there exists a smooth
chart where the dynamics is linearized as in equation (2.4). We fix two test forms ψ1(x) ∈ Ω0

c(U)
and ψ2(x, dx) ∈ Ωnc (U) compactly supported in U . We write∫

M

ϕ−t∗f (ψ1) ∧ ψ2 =
∫
Rn
ψ̃1(e−tχ1(a)x1, . . . , e

−tχn(a)xn)ψ̃2(x1, . . . , xn)dx1 ∧ . . . ∧ dxn

where (ψ̃1, ψ̃2) denotes the test forms in the linearizing chart. We make the following change of
variables (x1, . . . , xn) 7→ (etχ1(a)x1, . . . , e

tχr(a)xr, xr+1, . . . , xn) inside the integral :∫
M

ϕ−t∗f (ψ1) ∧ ψ2 = e
t
∑r

j=1
χj(a)

∫
Rn
ψ̃1(x1, . . . , xr, e

−tχr+1(a)xr+1, . . . , e
−tχn(a)xn)

×ψ̃2(etχ1(a)x1, . . . , e
tχr(a)xr, xr+1, . . . xn)dx1 ∧ . . . ∧ dxn.

Writing down the Taylor formula, we obtain the following formal asymptotic expansion :∫
M

ϕ−t∗f (ψ1) ∧ ψ2 ∼ e
t
∑r

j=1
χj(a) ∑

(α,β)∈Zr+×Z
n−r
+

Cα,βe
−t(α,β).|χ(a)|

×
〈
x(α,0)δ

(β)
0 (xr+1, . . . , xn), ψ̃1

〉〈
x(0,β)δ

(α)
0 (x1, . . . , xr), ψ̃2

〉
,
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where Cα,β are universal constants i.e. independent of (ψ1, ψ2). Hence, for every α in Zn+, one has,
in a neighborhood of a in Crit(f), a germ of eigendistribution uα,a that can be written in local
coordinates as :

uα,a(x1, . . . , xr) := δ
(α1,...,αr)
0 (x1, . . . , xr)xαr+1

r+1 . . . xαnn . (4.1)

The distribution uα,a satisfies the following equation in a neighborhood of a :

LVf (uα,a) = −

α.|χ(a)|+
r∑
j=1

χj(a)

uα,a. (4.2)

The above differential equation should be understood in the weak sense where both sides are
distributions in D′(U). Note that the eigenvalue 0 only shows up at critical points of index 0 (i.e.
local minima). Similarly, in degree k, the eigenvalue 0 shows up at critical points of index k.

The strategy of the proof is then as follows:

1. extend the germ of eigenmode into a globally defined generalized eigenmode,

2. use these extended eigenmodes to write down the asymptotic expansion of the global corre-
lation function.

For the first point, it is natural to use the integrated version of equation (4.2),

ϕ−t∗f uα,a = e
−t(α.|χ(a)|+

∑r

j=1
|χj(a)|)

uα,a,

in order to extend the local germ of distribution uα,a into a distribution defined over the open
set M \ ∂Wu(a) where ∂Wu(a) = Wu(a) −Wu(a). The eigenvalue equation allows to propagate
the germ of distribution from the neighborhood U of a to M \ ∂Wu(a). This new distribution
still satisfies the eigenvalue equation (4.2) and we need to extend it into a distribution globally
defined over M . This is related to the problem of renormalization in quantum field theory [7] and
also naturally appears in the proofs of Laudenbach and Harvey-Lawson. The analogy between the
construction of eigenmodes by distributional extension and Epstein–Glaser renormalization was
first noted by Frenkel–Losev–Nekrasov [17]. However, our approach to this problem is of completely
different nature and it is based on spectral theory. More precisely, for every χ > 0, we construct in
a first stage an anisotropic Sobolev space Hmχ(M) containing our germs of distributions and for
which the operator −LVf has a discrete spectrum in the half plane {Re(z) > −χ}. Then, we use
the spectral projector to prove both points (1) and (2).

4.2. Hamiltonian dynamics and anisotropic Sobolev spaces

Our spectral construction is very much inspired by the microlocal approach developped by Faure
and Sjöstrand to study the correlation spectrum of Anosov flows [16], e.g. geodesic flows on neg-
atively curved manifolds. We briefly describe the general strategy. For a given function m(x, ξ) in
S0(T ∗M), we define the following Sobolev space of variable order :

Hm(M) := Op
(

(1 + ‖ξ‖2x)
m(x,ξ)

2

)−1
L2(M).

Studying the operator −LVf on that space is equivalent to study the non selfadjoint operator

ĤVf := Op
(

(1 + ‖ξ‖2x)
m(x,ξ)

2

)
◦
(

1
i
LVf

)
◦Op

(
(1 + ‖ξ‖2x)

m(x,ξ)
2

)−1

on L2(M). An application of the rules from pseudodifferential calculus shows that this operator
can be rewritten

ĤVf = Op
(
HVf + iXHVf

.

(
m(x, ξ)

2 ln(1 + ‖ξ‖2x)
))

+O(Ψ0(M)) +Om(Ψ−1+0(M)),
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where HVf is the Hamiltonian defined from the symbol of Vf by (1.4). We denote by XHVf
the

corresponding Hamiltonian vector field whose dynamics (1.5) lifts the gradient flow. Hence, if, for
every c > 0, we manage to find a function m(x, ξ) such that, for ‖ξ‖x large enough,

XHVf
.

(
m(x, ξ)

2 ln(1 + ‖ξ‖2x)
)
≤ −c, (4.3)

then the imaginary part of the symbol of the operator will be “elliptic” in a region ‖ξ‖x ≥ R with
R > 0 large enough. Using Fredholm theory, we can then invert the operator “modulo a compact
operator” and deduce that the operator

−LVf : Hm(M)→ Hm(M)
has discrete spectrum in the region {Re(z) > −χ}, as soon as c > 0 is chosen large enough
in (4.3). In other words, if we follow the strategy of Faure-Sjöstrand, the main difficulty lies in
the construction of a function m satisfying (4.3), which is a purely dynamical question on some
Hamiltonian system. In order to understand how to construct such a function m, we write

XHVf
.

(
m(x, ξ)

2 ln(1 + ‖ξ‖2x)
)

= XHVf
(m)× 1

2 ln(1 + ‖ξ‖2x) +m(x, ξ)
XHVf

.
(
‖ξ‖2x

)
2(1 + ‖ξ‖2x) . (4.4)

We can already remark that the second term on the right hand side is bounded. Hence, one has
to impose XHVf

(m) ≤ 0 in order to be able to ensure that inequality (4.3) holds for ‖ξ‖ large
enough. We can also note that −XHVf

(f) ≤ 0. Hence, if we set m(x, ξ) = −f(x) + m0(x, ξ) with
XHVf

(m0) ≤ 0, then the inequality will be satisfied away from the critical points. Near a critical

point a, we use the hyperbolicity of the flow to show that
XHVf

.(‖ξ‖2
x)

2(1+‖ξ‖2
x) ≥ c0 > 0 (resp. ≤ −c0 < 0)

along the unstable (resp. stable) direction N∗(Wu(a)) (resp. N∗(W s(a))). In particular, if we
choose m0(x, ξ) � 0 along the unstable direction and m0(x, ξ) � 0 along the stable one, then
inequality (4.3) will be proved in this region of phase space. To summarize, it is sufficient to
construct a function m0(x, ξ) in S0(T ∗M) meeting the following requirements :

• XHVf
(m0) ≤ 0,

• near the critical points, m0(x, ξ)� 0 along the unstable direction and m0(x, ξ)� 0 along
the stable one,

• still near critical points but away from the stable and unstable directions, XHVf
(m0) ≤

−c1 < 0.

If we are able to gather all these ingredients, then we will be able to apply the strategy of Faure
and Sjöstrand described above. This is at this precise stage of the proof that we need to understand
the topological and dynamical properties of the unstable manifolds. In particular, we prove the
following Theorem which is almost sufficient to make the proof works [8, 10]:
Theorem 4.1. Let ϕtf be a C1-linearizable Morse-Smale gradient flow. Then,

1. Then the set

Σ :=

 ⋃
a∈Crit(f)

N∗(Wu(a))

 ∩ S∗M
is compact. Equivalently, the union of Lagrangians

⋃
a∈Crit(f)N

∗(Wu(a)) is a closed, conical
subset in T ∗M .

2. For every ε > 0, there exists an ε-neighborhood O of Σ in S∗M such that, for every t ≥ 0,
Φ̃tVf (O) ⊂ O,

where Φ̃tVf is the flow induced by the Hamiltonian HVf on S∗M .

The proof of this result is a microlocal extension of the seminal works of Smale [28]. This
Theorem allows us to avoid the delicate construction of Laudenbach in [2] – see also [19]. This is
at the expense of having a much less precise information on the differentiable structure of Wu(a).
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4.3. Construction of the generalized eigenmodes

Suppose that we have proved that the spectrum of the operator −LVf (acting on Hm(M)) is
discrete with finite multiplicity in the region Re(z) > −χ. For every z0 in that complex half-plane,
if z0 is an eigenvalue then we can define a spectral projector :

Πz0 := 1
2iπ

∫
Γz0

dz(
z + LVf

) ,
where Γz0 is a small circle surrounding a disk containing only z0 as eigenvalue in its interior. In
case where z0 is not an eigenvalue, this defines the zero operator. For any critical point a and any
multiindex α ∈ Nn, we can extend the distribution uα,a defined by (4.1) as follows. We fix a small
cutoff function θα,a near a and we set

uα,a := Πz0(θα,auα,a),

where z0 := −
(
α.|χ(a)|+

∑r
j=1 χj(a)

)
. Using the spectral projector replaces the Epstein–Glaser

distributional extension argument used in [17]. Using [16, Th. 1.5], we can verify that this extension
is independent of the choice of order function m used to define the anisotropic Sobolev space
Hm(M). Moreover, we can show that uα,a coincides with uα,a near the critical point and that the
family (uα,a)α,a of distributions constructed in that manner are linearly independent. They verify

−LVfuα,a = −

α.|χ(a)|+
r∑
j=1

χj(a)

uα,a on M − ∂Wu(a)

but they only verify a priori thatLVf −
α.|χ(a)|+

r∑
j=1

χj(a)

N

uα,a = 0 on M,

for a large enough N depending on a ∈ Crit(f) and on α ∈ Nn. Hence, via this spectral procedure,
we have extended the germs of invariant distributions and the same analysis of course holds in any
degree k. This spectral definition allows to bypass the analysis made in [2, 22] but, again, the diffi-
culty has been displaced in the construction of a proper spectral framework, and our construction
gives a rather imprecise statement on the regularity of these extensions. The microlocal character
of the construction allows us to show that the wave front set WF (uα,a) of the eigencurrent uα,a
is contained in the union of Lagrangians

⋃
a∈Crit(f)N

∗(Wu(a)) [9, subsection 7.1].

4.4. Conclusion

It now remains to prove that these distributions allow to write down the full asymptotic expansion
of the correlation function. This can be achieved by verifying that they generate all the generalized
eigenmodes of the operator −LVf . Indeed, recall that ϕ−t∗f (ψ1) is solution to the transport equa-
tion (1.2), i.e. ϕ−t∗f is formally equal to e−tLVf . To prove this generation result, we fix a generalized
eigenmode u0 and p ≥ 1 minimal such that(

LVf − z0
)p
u0 = 0,

for a certain z0 verifying Im(z) > −χ. We associate to this current u0 the family

u0, u1 :=
(

1
i
LVf − z0

)
u0, . . . , up−1 :=

(
1
i
LVf − z0

)p−1
u0,

and we conclude by showing that each of the ui can be expressed as a linear combination of the uα.
Without getting into the details, let us point out the main ingredients: (1) the gradient dynamics,
(2) a theorem due to Schwartz on distributions carried by submanifolds [27, p. 102] and (3) the
fact that the microsingularities of uj are contained in the conormals of the unstable manifolds
combined with a result from [7]. We omit this step and we refer the reader to [8, 11] for more
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details, especially regarding the possibility of having Jordan blocks. For instance, we show that, in
every degree k,

Ck(Vf ) := Ker
(
L(k)
Vf

)
= Ker

(
L(k)
Vf

)2
. (4.5)

5. Application to topology and to the Witten Laplacian

The works of Thom [29] and Smale [28] have shown that studying the dynamical properties of
gradient flows has strong relations with topology. We would like to conclude this note by describing
this problem via our spectral approach. First of all, note that, as d commutes with LVf , we can
define a natural complex :

0 d−→ C0(Vf ) d−→ C1(Vf ) d−→ . . .
d−→ Cn(Vf ) d−→ 0.

Our proof in [8] shows that the spaces Ck(Vf ) have dimension equal to the number ck(f) of critical
points of index k i.e. the critical points whose stable manifold has dimension k. Recall that the De
Rham complex is defined as follows:

0 d−→ Ω0(M) d−→ Ω1(M) d−→ . . .
d−→ Ωn(M) d−→ 0.

Introduce now the spectral projector associated to the eigenvalue 0:

Π(k)
0 := 1

2iπ

∫
Γ0

dz(
z + L(k)

Vf

) .
This finite rank operator is given by our spectral analysis in every degree and it induces a linear
map from Ωk(M) to Ck(Vf ). Omitting a few technical details, we will verify that this operator
induces a chain homotopy equation between the two complexes. In fact, for every ψ in Ω•(M), one
has

ψ = Π0(ψ) + (Id−Π0) (ψ)
= Π0(ψ) +

(
d ◦ ιVf + ιVf ◦ d

)
◦ L−1

Vf
(Id−Π0) (ψ)

= Π0(ψ) + d ◦ ιVf ◦ L
−1
Vf

(Id−Π0) (ψ) + ιVf ◦ L
−1
Vf

(Id−Π0) d(ψ).

If we set Rf := ιVf ◦ L
−1
Vf
◦ (Id−Π0), then we find the expected chain homotopy equation :

ψ = Π0(ψ) + dRf (ψ) +Rfd(ψ).

It is then classical, by making use of the elliptic properties of d, to deduce from the chain homotopy
equation that the two complexes (C•(Vf ), d) and (Ω•(M), d) are quasi-isomorphic [8]. This above
argument is rather robust and we showed how to apply it to more general flows such as Morse-
Smale flows (not necessarily of gradient type) and Anosov flows [12]. A direct consequence of
this observation is that we can write down Morse inequalities for such flows using only linear
algebra [22]. For certain nonsingular Morse-Smale flows [12], we also showed that this correlation
spectrum carries more topological contents such as the Reidemeister torsion [18]. Finally, still
regarding applications to topology, we can mention the recent results of Dyatlov and Zworski in the
case of contact Anosov flows in dimension 3 [15]. They expressed the dimension of Ck(V )∩Ker(ιV )
in terms of the Betti numbers of the underlying manifold. For the sake of comparison, note that
one has Ck(Vf ) ∩Ker(ιVf ) = Ck(Vf ) for gradient flows [8].

The cohomological complex (C•(Vf ), d) is known in the literature as the Thom-Smale-Witten
complex or simply the Morse complex. It is often defined in algebraic terms following the works
of Witten [33]. Our analysis shows that this complex can be realized in terms of currents carried
by unstable manifolds as was already observed in [2, 20]. It also gives a spectral interpretation of
the Morse complex, and it can be viewed as a kind of semiclassical limit of the twisted De Rham
complex introduced by Witten [33] and Helffer-Sjöstrand [21]. Recall that Witten introduced the
following semiclassical deformation of the coboundary operator:

df,~ := e−
f
~ de

f
~ = d+ df

~
∧ : Ω•(M)→ Ω•+1(M).
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To this operator, he associated an elliptic operator which is now referred as the Witten Laplacian

Wf,~ = ~
2
(
df,~d

∗
f,~ + d∗f,~df,~

)
= ~

2
(
df,~ + d∗f,~

)2
,

where d∗f,~ = d∗ + ιVf /~ is the adjoint of df,~ with respect to the Riemannian metric g. In order
to extract topological informations from this operator, one has to look at the small eigenvalues
(and their eigenmodes) of this operator and to prove that the dimension of the corresponding
eigenspaces is given by the number of critical points in every degree [21]. This can be achieved via
semiclassical techniques developped for the study of Schrödinger operators.

In order to relate this to our approach, we can make the following classical observation :

e
f
~Wf,~e

− f~ = ~
2
(
d+ d∗2f,~

)2 = ~∆g

2 + LVf , (5.1)

where ∆g is the Laplace Beltrami operator. In other terms, up to conjugation, the Witten Laplacian
is a stochastic perturbation of the operator LVf whose spectrum has just been described. This
remark is at the heart of the construction from [17] who computed the spectrum of the Witten
Laplacian for the height function on the 2-sphere and who showed how to take the limit ~→ 0+.
In the case of Anosov vector fields, it was proved by Dyatlov and Zworski that the correlation
spectrum is stable under this kind of stochastic perturbations [13]. In [9], we show that this
remains true for general Morse-Smale gradient flows, meaning that the spectrum (eigenvalues and
spectral projectors) of the Witten Laplacian converges to the correlation spectrum of the gradient
flow. As an illustration of our results, let us mention the following:

Theorem 5.1 (Semiclassical versus dynamical convergence). Let ϕtf be a C1-linearizable Morse-
Smale gradient flow.

Then, there exists ε0 > 0 small enough such that, for every 0 ≤ k ≤ n, for every 0 < ε ≤ ε0 and
for every (ψ1, ψ2) ∈ Ωk(M)× Ωn−k(M),

lim
~→0+

∫
M

1[0,ε]

(
W

(k)
f,~

)(
e−

f
~ψ1

)
∧
(
e
f
~ψ2

)
= lim
t→+∞

∫
M

ϕ−t∗f (ψ1) ∧ ψ2,

where 1[0,ε]

(
W

(k)
f,~

)
is the spectral projector on [0, ε] for the self–adjoint elliptic operator W (k)

f,~ .

Recall that the limit of the right-hand side was given by Theorem 2.1. In that sense, this
Theorem illustrates the relation between Laudenbach-Harvey-Lawson approach to Morse theory via
currents and the Witten-Helffer-Sjöstrand one via semiclassical analysis. This was made possible by
providing a convenient spectral framework for the operator −LVf . As far as we know, such a result
cannot be obtained (at least directly) from the methods in [21]. Thus, even if this spectral approach
does not allow to recover the full strength of the Helffer-Sjöstrand analysis (e.g. exponential decay
of the small Witten eigenvalues), it still provides new properties related to the asymptotics of the
Witten Laplacian. We believe that this may have other applications and we showed for instance
how to use this point of view to give a new proof of a conjecture due to Fukaya on Witten’s
deformation of the wedge product – see [9] for details.

6. Analogy with renormalization in quantum field theory

At the heart of our argument was the extension of certain germs of currents via spectral techniques.
Let us show, by some simple example, how one can construct general eigenstates by regularization
of divergent integrals rather than by spectral techniques. Note that this kind of approach would
require to have a nice enough description of ∂Wu(a) for every critical point a which may be a
subtle issue related to the works of Laudenbach [2]. Still, in the case where ∂Wu(a) is a point,
we can describe what it would give. This method is similar to Epstein–Glaser renormalization in
quantum field theory.

Let us consider the canonical sphere (Sn, gCan) and we let f be the usual height function whose
critical points are the south pole S and the north pole N . We are given two charts φ : Sn 7→ Rn
near the south pole and φ̃ : Sn 7→ Rn near the north pole. In stereographic chart (x1, . . . , xn) near
the south pole, the gradient vector field reads φ∗Vf =

∑n
i=1 xi∂xi . Let us show how to construct
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a global eigenmode for the eigenvalue k ∈ N. In local coordinates (x1, . . . , xn) near the south pole
S, a natural candidate for eigenfunction is the polynomial germ

u ◦ φ−1 =
n∏
i=1

xαii

where α ∈ Nn is a multiindex which satisfies
∑n
i=1 αi = k and LVfu = ku near S. Since the chart

(x1, . . . , xn) covers S2 \ N , the germ u extends as a smooth function u on S2 \ N which solves
LVfu = ku.

Then in stereographic chart near the north pole N , φ̃∗Vf = −
∑n
i=1 xi∂xi and

ũ = u ◦ φ̃−1 =
∏n
i=1 x

αi
i

(
∑n
i=1 x

2
i )
k

since the transition map between charts reads xi 7→ xi
x2

1+···+x2
n

for all i ∈ {1, . . . , n}. Therefore
u ∈ C∞(S2 \N) and has a singularity at N which can be measured by scaling. Consider the action
of the following simple dynamical system :

ϕt : (x1, . . . , xn) ∈ Rn 7→ (etx1, . . . , e
txn) ∈ Rn

which acts on ũ by pull–back: ϕ−t∗ũ. Then one can show that ũ ∈ D′(Rn \ {0}) is homogeneous of
order −k under scaling hence weakly homogeneous of the same order in the sense of [7, definition
3.4 p. 828].

In [7, Theorem 5.1 p. 844], it is proved that if a distribution ũ defined on some manifold M
minus some submanifold X (here X = {N}) is weakly homogeneous of degree −k such that
−k + codim(X) > 0 then there is a unique extension u which is an eigenmode LVfu = ku.

Otherwise, if −k + codim(X) 6 0, the extension involves a renormalization as follows. For all
test form ψ(x1, . . . , xn)dx1 ∧ · · · ∧ dxn ∈ Ωnc (Rn) :

〈u, ψ〉 = lim
ε→0+

∫
Rn\B(0,ε)

ũψdnx−
∑

|β|6k−n

(∫
ε6|x|61

ũ
xβ

β! d
nx

)(
∂βxψ

)
(0)


where u ∈ D′(Rn) defines a distributional extension of ũ ∈ D′(Rn \ {0}). This can be written in
purely current theoretic terms as :

u = lim
ε→0+

ũ1{|x|>ε} −
∑

|β|6k−n

cβ(ε)∂βx δ


where 1{|x|>ε} is the indicator function of {|x| > ε}, cβ(ε) = (−1)|β|

∫
ε6|x|61 u

xβ

β! d
nx and cβ(ε)∂βx δ

is a local counterterm supported at 0 ∈ Rn which can be singular when ε→ 0. This renormalization
is analogous to Epstein–Glaser renormalization used in quantum field theory [4].

Once we have extended the function u ∈ C∞(Sn \ N) to a distribution u on Sn, one may
wonder if the extension u still satisfies the eigenvalue equation LVfu = ku. In other words, does
renormalization preserve symmetries ? The extension u satisfies the following residue formula [6,
Thm 8.3.7 p. 182] :

LVfu− ku =
∑

|β|6k−n

(∫
∂B(N,1)

uω
xβ

β!

)
∂βx δ

where the integral is over the (n−1) sphere around N and ω =
∑n
i=1(−1)ixidx1∧ ˆdxi∧dxn. So one

could try to subtract from u some distributions supported at N , if these subtractions fail to turn
u into an eigenfunction of LVf with eigenvalue k, then we are in a situation where the generalized
eigenspaces of the vector field LVf have Jordan blocks which is called logarithmic mixing in [17].
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