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Journées Équations aux dérivées partielles
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GDR 2434 (CNRS)

Turning points at infinity and stability of detonations

Mark Williams

Abstract

We begin by looking at a few simple examples of turning points in systems of ODEs
depending on parameters, and then focus on the difficult case where the turning point occurs
at infinity. We explain how turning points at infinity arise in a problem of detonation stability
that was studied by J. J. Erpenbeck in the 1960s. In this problem the relevant system of
ODEs describes the evolution of high frequency perturbations of a detonation profile, and the
parameters on which the system depends are the perturbation frequencies. The resolution of
the problem requires an analysis of the turning point at infinity that is uniform with respect
to the parameters. This is joint work with Olivier Lafitte and Kevin Zumbrun.
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1. Introduction

When studying the stability of structures arising in fluid mechanics, like shocks, detonations, vortex
sheets, or boundary layers for example, one is often led to consider systems of ODEs depending
on frequencies as parameters. Typically, the frequencies ζ arise as Fourier transform variables
which appear after the original system (say, the Navier-Stokes equations) is linearized about the
special structure whose stability is being studied (say, a viscous shock profile s(x) depending on
x ∈ R), and then Fourier-transformed with respect to all variables except one, x, which is now
the independent variable in a system of ODEs depending on ζ. Indeed, it is often the case that
the hardest part of the stability analysis is to obtain a good understanding of how certain classes
of solutions of this system of ODEs (for example, solutions that decay as x → +∞) vary as the
parameters ζ vary. This analysis is greatly complicated by the presence of turning points, which
are values of x where eigenvalues cross and the matrix governing the system of ODEs becomes
singular. The study of turning points is the subject of a large literature going way back [14].

This was partially supported by NSF grant no. DMS-1001616.
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Turning points in general vary with the frequency parameters and, in problems on unbounded
domains, it is possible for turning points to occur “at infinity” for certain values of the parameters.
We begin this talk with some examples of how this can happen and then formulate the main
mathematical question addressed here, which in rough form is the following: When a turning point
of a system of ODEs occurs at infinity for a particular frequency parameter ζ0, how can one obtain
a uniform understanding of the behavior of solutions for ζ near ζ0? The kind of “understanding”
we seek is, for example, an explicit expansion of the solution in terms of special functions that is
uniformly valid in a given parameter domain containing (or near) ζ0.

Next, we explain how this question arises in detonation theory, in particular, in connection with
work on the stability of strong detonation profiles that was begun by Erpenbeck [1, 5, 4] in the
1960s. In [5, 4] Erpenbeck identified two basic classes of detonation profiles, those of increasing
(type I) and decreasing type (type D). Our main result, given in Theorem 3.1 and proved in detail
in [9], shows that there is a uniform high frequency cutoff for stability of type D detonations;
in other words, there exists an M > 0 such that type D detonations are stable with respect to
perturbations of frequency magnitude ≥M , independently of the frequency direction. We conclude
by discussing some of the ideas used in our uniform analysis of the turning point at infinity that
arises in the study of type D detonations.

2. Turning points

For h > 0 small, consider the ODE for the unknown φ(x)

h
dφ

dx
=
(

0 1
x 0

)
φ on R. (2.1)

The matrix has eigenvalues ±
√
x, which are real for x > 0, pure imaginary for x < 0. The

eigenvalues cross at x = 0 and the matrix becomes singular there; we then call x = 0 a (finite)
turning point. This system is equivalent to the scalar second order equation h2wxx = xw, which is

Airy’s equation. The function w satisfies h2wxx = xw if and only if φ :=
(
w
hwx

)
satisfies (2.1).1

If we introduce a complex parameter α and consider the system

h
dφ

dx
=
(

0 1
x− α 0

)
φ, (2.2)

as an ODE on the complex plane, the new turning point of course depends on α: x(α) = α.
Exact solutions of (2.2) on C can be written in terms of Airy functions. Airy functions can also

be used to describe solutions locally near the turning point x(α) = α of slightly perturbed systems

h
dφ

dx
=
(

0 1
(x− α) + hr(x, α, h) 0

)
φ, (2.3)

where r is some analytic function of x [14].

2.1. How can a turning point be at infinity?
Consider the model problem

h
dφ

dx
=
(

0 1
e−2x 0

)
φ, (2.4)

where now we regard x = +∞ as a turning point for the same reasons as before.
The model problem with the extra parameter α2

h
dφ

dx
=
(

0 1
e−2x + α2 0

)
φ (2.5)

exhibits finite turning points x(α) converging to +∞ as α → 0 along the imaginary axis, as well
as a turning point at ∞ when α = 0.

1The system (2.1) exhibits the simplest kind of finite turning point; the analysis becomes more difficult as the
power of x in (2.1) is increased [14, 13].
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Problem 1. Construct solutions φ(x, α, h) of this problem on [0,∞) that decay to zero as x →
+∞. Describe behavior in a way that is uniform with respect to small h > 0 and small α.

2.2. Connection with Bessel’s equation
Consider the scalar equation equivalent to the last system:

h2 d
2w

dx2 = (e−2x + α2)w.

Under the change of variable t = e−x this becomes
h2(t2wtt + twt) = (t2 + α2)w. (2.6)

Thus, the turning point at x = +∞ for α = 0 is mapped to t = 0, which is a regular singular point
for (2.6).

Setting z = h−1t we obtain

h2[z2 d
2w

dz2 + z
dw

dz
] = (h2z2 + α2)w.

Dividing by h2 and setting β := α
h , the equation becomes Bessel’s equation:

z2wzz + zwz − (z2 + β2)w = 0.
It turns out that the resolution of the following variation on Problem 1 is (nearly equivalent to)

the main step in the solution of the detonation stability question we discuss in the next section.

Problem 2. Consider the perturbed problem

h
dφ

dx
=
(

0 1
(e−2x + α2) + hr(x, α, h) 0

)
φ. (2.7)

Construct solutions φ(x, α, h) of this problem on [0,∞) that decay to zero as x → +∞. Describe
behavior in a way that is uniform with respect to small h > 0 and small α near the imaginary axis.
Part of the problem is to decide when hr(x, α, h) can be regarded as a perturbation. For example,
we’d better have r(+∞, α, h) = 0, at least!

Based on the earlier model problem we expect that Bessel’s equation should be important in
the analysis of this problem, and that a parameter like β = α/h will be a key parameter in the
analysis.

3. Turning points at infinity in detonation theory

In the 1960s J.J. Erpenbeck studied [1, 5, 4, 3] the stability of certain solutions of the Zeldovitch-
von Neumann-Döring (ZND) system of combustion equations (reactive compressible Euler coupled
to a reaction rate equation):

∂t v + u · ∇v − v∇ · u = 0
∂tu + u · ∇u + v∇p = 0
∂tS + u · ∇S = −r∆F/T
∂tλ+ u · ∇λ = r.

(3.1)

The unknowns in this 6 × 6 system are (v,u, S, λ) (specific volume, particle velocity u =
(ux, uy, uz), entropy, fraction of reactant) and the thermodynamic functions are the pressure
p = p(v, S, λ), temperature T , free energy ∆F , and reaction rate r. The ZND system is prob-
ably the most widely studied model of combustion in the detonation theory literature [6, 12].

Erpenbeck was interested in the stability of special solutions of this system given by steady,
planar, strong detonation profiles P (x) = (v, u, 0, 0, S, λ). Here the spatial variables are (x, y, z)
and P (x) is a weak solution of the ZND system depending only on x ∈ R with a jump, called the
von Neumann shock, at x = 0.

The profile P (x) varies with x and is subsonic, 0 < u(x) < c(x), in the reaction zone [0,∞); in
the quiescent zone (−∞, 0], the profile P (x) is constant and supersonic. The two constant states
P (±0) defining the von Neumann shock actually give a stationary shock solution of the Euler
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equations without the reaction equation. In studying the stability of P (x), Erpenbeck assumed
that the von Neumann shock is uniformly stable as an Euler shock, so that he could focus on
effects due to the reaction.

In x ≤ 0, the quiescent zone, we have λ = 1. Moreover, the profile P (x) has a well-defined
endstate P (+∞) for which λ(+∞) = 0 and

|P (x)− P (+∞)| ≤ Ce−µx for some µ > 0. (3.2)
Erpenbeck linearized the nonlinear system about this profile. He was perhaps the first person to

realize, both here and in the study of Euler shocks [2], that the nonlinear system must be linearized
not just with respect to the state variables, but also with respect to the front.

Taking the Laplace transform of the linearized system with respect to time, and the Fourier
transform with respect to the transverse spatial variables (y, z), he obtained a 6×6 ODE in x that
we write as

(a) dφ
dx

= G(x, τ, η)φ+ F1(x, τ, η) for x ∈ [0,∞),

(b) B(τ, η)φ|x=0 = F2(τ, η).
(3.3)

Here τ ∈ C with <τ ≥ 0 is dual to time, η is dual to (y, z), and the x dependence enters only through
P (x). The boundary conditions are the linearized, transformed Rankine-Hugoniot conditions.

Using a rotational symmetry one can reduce the above system to a 5× 5 system on [0,∞):

(a) dφ
dx

= G(x, τ, |η|)φ+ f1(x, τ, |η|) for x ∈ [0,∞)

(b) B(τ, |η|)φ|x=0 = f2(τ, |η|).
(3.4)

To resolve the stability question one must understand how solutions of this problem depend on
the frequency parameters (τ, |η|). For example, (violent) instability is indicated by the existence
of solutions to (3.4) that decay to zero as x → +∞ for frequencies (τ, |η|) with <τ > 0. Such
frequencies correspond to perturbations of P (x) with transverse frequency magnitude |η| that
grow exponentially in time.

3.1. Erpenbeck’s stability function
Erpenbeck defined a stability function (what we now call an Evans function) V (τ, |η|) such that
V (τ, |η|) = 0 implies the existence of an exponentially growing solution at the frequency (τ, |η|).
To determine whether or not V (τ, η) vanishes for a given choice of (τ, η), one could attempt to
construct decaying solutions to the interior equation (3.3)(a) on [0,∞), and then try to “see” if
there are any that satisfy the boundary conditions at x = 0.

Instead, Erpenbeck showed that one could detect zeros of V (τ, |η|) more simply by studying
decaying solutions of the homogenous, transposed interior equation:

dθ

dx
= −Gt(x, τ, |η|)θ = (|η|Φ0(x, ζ) + Φ1(x))θ. (3.5)

Here ζ with <ζ ≥ 0 is defined by τ = |η|ζ.
Erpenbeck knew (or expected) that V (τ, |η|) would vanish for many frequencies when |η| was of

moderate size, so he focused on stability for large |η|. For such η the eigenvalues and eigenvectors
of Φ0(x, ζ) are clearly decisive. Call these µj(x, ζ) and Tj(x, ζ), j = 1, . . . , 5.

For <ζ > 0 the eigenvalues of Φ0(x, ζ) satisfy
<µ1(x, ζ) < 0, <µj(x, ζ) > 0 for j = 2, . . . , 5. (3.6)

In view of (3.6) it is not surprising that
dθ

dx
= (|η|Φ0(x, ζ) + Φ1(x))θ (3.7)

has a one-dimensional space of solutions decaying to zero as x → ∞. Let us choose a nontrivial
solution in this subspace θ(x, ζ, |η|) and refer to it as the decaying solution.

Erpenbeck showed that for any given |η| and τ = ζ|η|, the stability function V (τ, |η|) is not 0
provided the decaying solution θ(x, ζ, |η|), evaluated at x = 0, is parallel (or nearly parallel) to
T1(0, ζ), the eigenvector of Φ0(0, ζ) associated to µ1(0, ζ).
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Erpenbeck distinguished two basic types of detonations:

− type D, for which d

dx
(c2 − u2) < 0 on [0,∞)

− type I, for which d

dx
(c2 − u2) > 0 on [0,∞).

(3.8)

These detonations are “basic” in the sense that some stability questions for more general detona-
tions can be analyzed by decomposition of P (x) into concatenations of these two types.

3.2. Erpenbeck’s conclusions
In 1965 Erpenbeck provided convincing evidence, by a combination of rigorous and non-rigorous
arguments, that:

(a) for some choices of ζ, detonations of type I are violently unstable for transverse frequencies
of arbitrarily large magnitude |η|.

(b) for type D detonations there is a ζ−dependent cutoff magnitude M(ζ) such that
V (ζ|η|, |η|) 6= 0 for |η| ≥ M(ζ). This applied to all ζ with <ζ ≥ 0, except for two special fre-
quencies ζ0 and ζ∞ on the imaginary axis, which his methods could not treat.

In 2012 [7] we gave rigorous proofs, with some simplifications and extensions, of Erpenbeck’s
1965 conclusions. For type D detonations, the 2012 paper still provided only a ζ-dependent high
frequency cutoff for stability, and still failed to treat the two exceptional frequencies.

Different methods were needed to obtain a uniform high frequency cutoff for stability of type D
detonations and to treat the exceptional frequencies. As we’ll see, the exceptional frequency ζ0 is
associated with a turning point at x = 0, and the frequency ζ∞ is associated with a turning point
at x = +∞.

3.3. Our main result: a uniform high frequency cutoff for stability of type D
detonations

In the following theorem the assumptions are the same as those made by Erpenbeck in 1965.

Theorem 3.1 ([9]). Assume:
(H1) All the thermodynamic functions appearing in the ZND equations (pressure, temperature,

reaction rate, etc.) are real-analytic functions of their arguments (v, S, λ), and the detona-
tion profile P (x) is of type D and real-analytic on [0,∞).

(H2) In the reaction equation, ∂tλ + u · gradλ = r, the rate function r = r(v, S, λ) satisfies
r|λ=0 = 0, rλ < 0.

(H3) The von Neumann shock is uniformly stable.
Then there is a uniform transverse frequency magnitude M such that if |η| ≥ M , we have
V (ζ|η|, |η|) 6= 0 for all ζ with <ζ ≥ 0.

Recall that to show V (ζ|η|, |η|) 6= 0 for a particular (ζ, |η|), it is enough to show that the
decaying solution of

dθ

dx
= (|η|Φ0(x, ζ) + Φ1(x))θ (3.9)

on [0,∞) is nearly parallel to T1(0, ζ) at x = 0, i.e., that θ(0, ζ, |η|) is nearly parallel to T1(0, ζ).
Henceforth, let us set h = 1

|η| , so τ = ζ|η| = ζ/h, and write (3.9) as

h
dθ

dx
= (Φ0(x, ζ) + hΦ1(x))θ. (3.10)

With slight abuse we will now write V (ζ, h) instead of V (τ, |η|) and θ(x, ζ, h) instead of θ(x, ζ, |η|).
Thus, finding a uniform cutoff for stability amounts to finding h0 > 0 such that for all ζ with

<ζ ≥ 0 and all 0 < h ≤ h0 we have V (ζ, h) 6= 0.

The eigenvalues {µ1, µ2} of Φ0(x, ζ) satisfy:
µ2(x, ζ)− µ1(x, ζ) = k(x)s(x, ζ), (3.11)
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where s(x, ζ) =
√
ζ2 + (c2(x)− u2(x)) and k(x) > C > 0 for all x. Note: the eigenvalues µ1 and

µ2 cross when s = 0. This can only happen when ζ lies in the interval of turning point frequencies
given by:

±[ζ∞, ζ0] := ±
[
i
√

(c2 − u2)(+∞), i
√

(c2 − u2)(0)
]
. (3.12)

Observe that when ζ = ζ∞, s(x, ζ∞) vanishes at x = +∞, while for ζ = ζ0, s(x, ζ0) vanishes
at x = 0. As ζ moves from ζ∞ to ζ0, the turning point moves from +∞ to 0. The main difficulty
in the proof is to obtain representations of θ(0, ζ, h) that are uniformly valid for small h and for
ζ near a turning point frequency. We focus now on the most interesting (and hardest) case of all,
namely when ζ lies in a small neighborhood ω 3 ζ∞.

3.4. Some ideas of the proof
First one shows, using the analyticity assumption (and the scalar reaction equation), that the
profile P (x) actually has a convergent expansion

P (x) = P0 + P1e
−µx + P2e

−2µx + ... for some µ > 0, (3.13)
and thus that P (x) extends analytically to the half-plane H(M0) = {x ∈ C : <x > M0} for some
large enough M0 > 0.

Now, the eigenvalues of Φ0(x, ζ) have the property that for ζ near ζ∞ and x ∈ H(M0), {µ1, µ2}
are well separated from {µ3, µ4, µ5} for all (x, ζ).

This allows us to construct a 5 × 5 conjugator Y (x, ζ, h) such that the map θ = Y (x, ζ, h)φ
exactly transforms the system (3.9) to block diagonal form on the wedge W (M0,

π
4 ) = {x ∈ C :

| arg(x−M0)| < π
4 }:

h
d

dx
φ =

(
A11(x, ζ, h) 0

0 A22(x, ζ, h)

)
φ, (3.14)

where the blocks A11 and A22 are 2× 2 and 3× 3, with eigenvalues near {µ1, µ2} and {µ3, µ4, µ5},
respectively.

The entries of the conjugator Y satisfy differential equations on the infinite wedge that are solved
by contraction arguments. The analytic extension of P (x) to H(M0) gives essential flexibility in
choosing suitable paths of integration. 2

Write φ = (φ1, φ2). The block A11 has eigenvalues close to the crossing eigenvalues µ1(x, ζ),
µ2(x, ζ). Thus, for ζ near ζ∞ we have reduced the problem of constructing the decaying solu-
tion θ(x, ζ, h) on [M0,+∞) to constructing the decaying solution of the 2 × 2 system d

dxφ1 =
A11(x, ζ, h)φ1.

This 2× 2 system can be written as an equivalent scalar, second-order equation
h2wxx = (C(x, ζ) + hr(x, ζ, h))w, where
C(x, ζ) = (µ2 − µ1)2(x, ζ) = [ζ2 + (c2(x)− u2(x))]k2(x),

(3.15)

and 0 < C1 ≤ |k(x)| ≤ C2. We focus on solving this equation on an infinite strip of the form
TM,R := {x ∈ C : <x ≥M, |=x| ≤ R}. Note that for M large enough, TM,R ⊂W (M0,

π
4 ).

The perturbation r(x, ζ, h), which can be expressed in terms of components of P (x) and the
conjugator Y (x, ζ, h), satisfies r(+∞, ζ, h) = 0; so there is hope the “perturbation” is not too big.

Moreover, the coefficient of w in h2wxx = (C(x, ζ)+hr(x, ζ, h))w vanishes at (x, ζ) = (+∞, ζ∞);
there is a turning point at x = +∞.

A transformation of the form t = t(x, ζ) = f(ζ)e−µx/2 for some f(ζ), transforms (3.15) into an
equation that is a perturbation of Bessel’s equation:

h2(t2Wtt + tWt) = (t2 + α2)W+
[α2t2b1(t, ζ) + t4b2(t, ζ) + ht2b3(t, ζ, h)]W on W,

(3.16)

where W, the image of the strip TM,R under the map t = t(x, ζ), is a bounded wedge in {<t ≥ 0}
with vertex at t = t(+∞, ζ) = 0.

2Examples given in [8] show that, in general, analyticity is necessary for the existence of such conjugators.
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Bessel’s equation is a very singular equation, with a regular singular point at 0, an irregular
singular point at ∞, and turning points for certain choices of (α, h). It is a delicate matter to
understand what is a tolerable perturbation of such a singular object. The behavior of solutions
depends on both the phase of α and on the relative magnitude of α and h.

The parameter α in (3.16) satisfies α2 ≈ i(ζ−ζ∞). Setting β = α/h, we distinguish 3 parameter
regimes:

I : |β| ≥ K, arg (ζ − ζ∞) ∈
[
−π2 ,

π

2 − δ
]

II : |β| ≥ K, arg (ζ − ζ∞) ∈
[π

2 − δ,
π

2

]
III : |β| ≤ K.

(3.17)

The perturbed Bessel problem (3.16) can be analyzed in Regimes I, II, III by using suitable
transformations of dependent and independent variables to reduce (3.16) to the normal form

Wξξ = (u2ξm + ψ(ξ))W, (3.18)
where m = 0, 1, or −1, respectively, u is a large complex parameter, and ψ depends on the
perturbation in (3.16).

In Regime I the correct choice of large parameter is u = β = α/h and a basis of solutions
of (3.16) can be written in terms of exponentials , e±uξ. In Regime II, the large parameter is
u = −iβ and a basis of solutions of (3.16) can be written in terms of Airy functions, Aik(u2/3ξ),
k = 1, 2. In Regime III the large parameter is u = 1/h and solutions are expressed in terms of the
modified Bessel functions Iα

h
(2uξ1/2), Kα

h
(2uξ1/2).3

The validity of the transformations to normal form depends on precise estimates of how the
functions b1(t, ζ), b2(t, ζ), b3(t, ζ, h) and their t−derivatives grow on the wedge W and on the
dilated wedge W/h.

In each case the many transformations can be unravelled to identify the form of the decaying
solution θ(x, ζ, h) on the x−strip

TM,R := {x ∈ C : <x ≥M, |=x| ≤ R}.
This analysis provides explicit expressions for θ(M, ζ, h), one expression for each of the three

regimes, that are uniformly valid for ζ near ζ∞ and h ∈ [0, h0) Since there are no turning points
to the left of x = M , it is then relatively easy to examine θ on [0,M ] and check that θ(0, ζ, h) is
nearly parallel to T1(0, ζ). Thus, the stability function V (ζ, h) is nonvanishing for ζ near ζ∞ and
h ∈ [0, h0).

To complete the proof of the theorem, we give in [9] a uniform analysis near each of the finite
turning point frequencies, a uniform analysis on any bounded set in the ζ half-plane that excludes
a neighborhood of the turning point frequencies, and a uniform analysis on {|ζ| ≥ K} for K large
enough.
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