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Spectral geometry of flat tori
with random impurities

Henrik Ueberschär

Abstract

We discuss new results on the geometry of eigenfunctions in disordered systems. More
precisely, we study tori Rd/LZd, d = 2, 3, with uniformly distributed Dirac masses. Whereas
at the bottom of the spectrum eigenfunctions are known to be localized, we show that for
sufficiently large eigenvalue there exist uniformly distributed eigenfunctions with positive
probability. We also study the limit L → ∞ with a positive density of random Dirac masses,
and deduce a lower polynomial bound for the localization length in terms of the eigenvalue for
Poisson distributed Dirac masses on Rd. Finally, we discuss some results on the breakdown
of localization in random displacement models above a certain energy threshold.

1. Introduction

In 1900 Paul Drude introduced a classical model [4, 5] for the motion of electrons in a material with
the aim of studying transport properties such as conductivity of metals. In particular Ohm’s law
could be derived from the model. In 1933 the model was supplemented with results from quantum
theory by Hans Bethe and Arnold Sommerfeld as what is now known as the Drude-Sommerfeld or
free electron model.

Anderson discovered in 1958 that at low energy electronic transport could break down in dis-
ordered media, provided the disorder is sufficiently strong [2]. In particular the eigenstates in this
regime are exponentially localized. This phenomenon is today known as Anderson localization. A
key question concerns the transition from a localized to a delocalized regime when the disorder
becomes small compared with the energy. In 1979, Abrahams, Anderson, Licciardello and Ra-
makrishnan proposed their scaling theory which suggests that such a transition should exist in
dimension d ≥ 3, the case d = 2 being critical, whereas for d = 1 there is only a localized regime.
Regarding d = 2 the widely held belief is that no transition exists, however the localization length
can be very large compared with the size of the system.

The type of disordered system considered in this paper is a box Λ = [L/2, L/2]d, L > 0, which
contains N independently uniformly distributed impurities, which are modeled by Dirac masses
(also known as Fermi’s pseudo-potential, delta potentials or point scatterers). In this paper we
will consider periodic boundary conditions, i.e. we will study flat tori TdL = Rd/LZd. However, our
results can easily be generalized for Dirichlet or Neumann boundary conditions.

2. Tori with random impurities

By a random Schrödinger operator on TdL we mean the following type of stochastic differential
operator

HΩ = −∆ +
∑
ω∈Ω

V (x− ω), V ∈ C0(TdL), (2.1)
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Figure 3.1: The picture above shows a random displacement model in two dimen-
sions. In black the lattice Z2, in grey the randomly perturbed lattice Z2 + ω.

where Ω, |Ω| = N , is a stochastic process on TdL.
A simplified model H replaces V = δ, where δ denotes a Dirac mass centered at the origin.

Such a “potential” is known as Fermi’s pseudo-potential, a delta potential or a point scatterer.
The model approximates the generic random Schrödinger operator HΩ well in the regime, where
diam suppV � w(E), and where w(E) � 1/

√
E denotes the wavelength, and E the energy.

The advantage of considering the formal operator H is that it can be realized as a self-adjoint
extension of the restricted Laplacian H0 = −∆|C∞

c (Td
L
−Ω), which is a positive symmetric operator

with deficiency indices (N,N). The extensions are parametrized by a unitary matrix U ∈ U(N),
and the corresponding self-adjoint extension is given by the restriction of the adjoint H∗0 to the
domain of functions f ∈ H2(TdL − Ω) which are of the form

f(x) = g(x) + 〈v,Gi(x)〉+ 〈Uv,G−i(x)〉

and G±i(x) = (G±i(x, ω1), · · · , G±i(x, ωN )), where Gi(x, ω) and G−i(x, ω) are incoming and out-
going circular waves at the point ω ∈ TdL.

We note that the parameter space of self-adjoint extensions is much larger than the physical
parameter space which is of dimension N (there are N real coupling constants). In fact a non-
diagonal matrix U corresponds to an extension which violates local conservation of mass in the
scattering process (i. e. it is possible for part of the wave to enter into one impurity and emerge
from another, as if a wire were attached between the two points). Assuming local conservation of
mass in all scattering processes we reduce the parameter space to the subgroup of diagonal unitary
matrices D(N) ⊂ U(N). Note that the operator H corresponds to a matrix D = eiϕ Id, for some
ϕ ∈ (−π, π), since all coupling constants are equal to 1.

3. Anderson localization

Let us consider a particular type of random Schrödinger operator on Rd, a random displacement
model (cf. Figure 1)

−∆ +
∑
ξ∈Zd

V (x− ξ − ωξ), V ∈ C∞c (Rd) (3.1)

where the displacements ωξ are i.i.d. random variables with radially symmetric probability density
P(x) = P (|x|), P (0) > 0 and P ∈ C∞c (R+) strictly decreasing. The disorder in the present system
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can for instance be measured by the average displacement, δ0 = EP(X), where X is a random
variable with probability density P.

If the probability distribution P were given by a Dirac distribution centered at the origin,
i.e. if Zd + ω = Zd and δ0 = 0, then we know from Bloch’s theorem that the spectrum has a
continuous band structure with corresponding extended eigenstates. However, if there is sufficiently
strong disorder, i.e. δ0 is large enough, then we have, almost surely, pure point spectrum and the
corresponding eigenstates are exponentially localized at the bottom of the spectrum.

Definition 3.1. Let E2 > E1 > 0. We say that HΩ is exponentially localized on [E1, E2], if HΩ
has a.s. pure point spectrum on [E1, E2] and the eigenfunctions ψλ satisfy the bound :

∃xλ ∈ Rd : ∀x ∈ Rd : |ψλ(x)| ≤ Ce|x−xλ|/Lloc

where the localization length Lloc depends on E1, E2 and the localization centre xλ as well as the
constant C depend on the sample ω ∈ Ω.

Mathematical proofs of Anderson localization were for instance obtained by Goldsheid,
Molchanov and Pastur [11], Fröhlich and Spencer [6], Simon [12], Bourgain and Kenig [3], Klopp [10]
and Germinet [7]. However, a crucial question concerns the existence of a delocalization transition
in the regime where the disorder is small compared with the energy, in the case of a random
displacement model: δ0 � E.

In 1979, the “Gang of Four”, Abrahams, Anderson, Licciardello and Ramakrishnan [1] proposed
what is now known as the “scaling theory of localization” which predicted that the answer should
depend on the dimension d. For d = 1 the theory predicts that there is only a localized regime, i.e.
any amount of disorder is sufficient to localize all eigenstates. For d ≥ 3 it predicts the existence
of a delocalization transition, i.e. when the disorder is sufficiently small compared with the energy,
the eigenstates should become delocalized. The case d = 2 was identified as critical, and it was
famously conjectured that there should only be a localized regime, however, the localization length
could be very large.

The mathematical characteristics of the delocalized regime are continuous band structure above
a certain energy threshold and associated extended eigenstates. A very interesting phenomenon
is observed near the transition point between the two regimes, where physicists have observed a
multifractal structure of the eigenstates [8].

Very few rigorous mathematical results exist regarding the multifractal or delocalized regime.
We will continue to describe some rigorous results about the geometry of the eigenstates of Poisson
random Schrödinger operators with Dirac masses on flat tori. In particular these compact models
allow us to give polynomial lower bounds on the localization length on Rd. In fact for certain
stochastic processes, such as random displacement models, one can go much further and prove the
breakdown of exponential localization for sufficiently large eigenvalues [13]. We will sketch these
results at the end of this paper.

4. Spectrum and eigenfunctions

We consider a flat torus TdL, d = 2, 3 with N independent uniformly distributed delta potentials
located at the points Ω = {x1, · · · , xN}and we let U = eiϕ IdN . We denote the associated self-
adjoint extension of −∆|C∞

c (Td
L
−Ω) by −∆ϕ. We denote the Green’s function, the resolvent kernel

of the Laplacian on TdL by

Gλ(x, y) = 1
−∆− λδ(x− y), λ /∈ σ(−∆).

The spectrum of −∆ϕ consists of two parts, old eigenfunctions of the Laplacian which vanish
on Ω and new eigenfunctions which, almost surely, diverge at each point in Ω. The divergence is
of order log |x− xj | in d = 2 and of order 1/|x− xj | in d = 3.

The new eigenvalues are solutions of the equation
detAϕλ = 0 (4.1)

where the matrix entries are given by

(Aϕλ)kl = Gλ(xk, xl)−<Gi(xk, xl)− tan(ϕ2 )=Gi(xk, xl).
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In particular one can show that per old Laplacian eigenspace the self-adjoint extension −∆ϕ

produces at mostN new eigenvalues, which almost surely lie in between two neighbouring Laplacian
eigenvalues.

The associated new eigenfunctions are superpositions of Green’s functions
ψλ(x) = 〈v,Gλ(x)〉 , v ∈ kerAϕλ (4.2)

and we recall Gλ(x) = (Gλ(x, x1), · · · , Gλ(x, xN )). Also note that v is a function of the random
variables x1, · · · , xN . Given detAϕλ = 0, the matrix Aϕλ has almost surely rank N−1 which implies
dim kerAϕλ = 1, so the choice of v is unique up to normalization.

5. Uniformly distributed eigenfunctions

The aim of this section is to given information on the geometry of the new eigenfunctions of
the random operator −∆ϕ. For a large number N of impurities we expect the eigenfunctions
to be exponentially localized at the bottom of the spectrum. However, we will show that for
sufficiently large eigenvalues there exist, with a certain positive probability (which tends to zero as
N → ∞), eigenfunctions which are uniformly distributed on the torus TdL. In particular this fact
gives information on the size of the localization length, yielding a certain polynomial lower bound.

Before we state our main result we recall that each new eigenvalue λ satisfies almost surely
λ ∈ (λj , λj+1) for some j. We have the following result.

Theorem 5.1. Denote the Laplacian eigenvalues on TdL by {λj}j∈N. Fix any a0 ∈ C∞(T2
L).

There exists Jd = {jk}k ⊂ N, an index subset of full density such that for any j ∈ Jd and
any new eigenvalue of −∆ϕ, λ ∈ (λj , λj+1), we have with probability & 1

N for all a ∈ C∞(T2
L),

‖â‖l1 ≤ ‖â0‖l1 ,∫
Td
L

a(x)|ψλ(x)|2dx = 1
Ld

∫
Td
L

a(x)dx+Oε(N1/2‖â0‖l1λ−δd+εL−2δd+ε) (5.1)

and δ2 = 17
416 , δ3 = 1

12 .

We may now apply this result to give a lower bound on the localization length. The equidis-
tribution theorem above implies that if we are still in the localized regime, then the localization
length must exceed the size of the torus:

Lloc � L.

Let us now fix a positive density of impurities
N = ρLd

and observe that our stochastic process on TdL converges to a Poisson process of density ρ on Rd
in the limit L→∞. Our equidistribution result on the torus of TdL therefore gives information on
the localization length for a Schrödinger operator with Poisson delta potentials on Rd.

In particular, equidistribution occurs when

N1/2λ−δdL−2δd � L−d ⇔ L� λαd

where
αd = δd

3d
2 + 2δd

.

And this implies that the localization length must satisfy the lower bound
Lloc & λαd .

6. Elements of the proof

Consider the square torus T2 = R2/2πZ2

Let

Ψ(x) =
N∑
j=1

vjGλ(x, xj).
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We introduce a test function a ∈ C∞(Td) and the L2-normalized eienfunction is denoted by
ψλ = Ψλ/‖Ψλ‖2.

We have
〈aψλ, ψλ〉 = 1

4π2

∫
Td
adµ+

∑
ζ∈Zd

â(ζ) 〈eζψλ, ψλ〉

where
eζ(x) = 1

2π e
i〈ζ,x〉.

Our goal is to show that a matrix element correponding to a nonzero mode 〈eζψλ, ψλ〉, ζ 6= 0,
is small if λ� 1.

Let us define the annulus
Aζ(λ, L) = {ξ ∈ Z2 | ||ξ − ζ|2 − λ| ≤ L}, ζ ∈ Z2, L > 0.

Using Chebyshev’s inequality one can show that with probability & 1
N we have

| 〈eζψλ, ψλ〉 |2 . N

∑
ξ∈A0(λ,λδ)(|ξ − ζ|2 − λ)−2∑
ξ∈A0(λ,λδ)(|ξ|2 − λ)−2

where δ ∈ ( θ2 ,
1
2 − θ) and θ = 133

416 is the best known exponent (due to Huxley [9]) in the circle law

N(X) = #{|ξ|2 ≤ X | ξ ∈ Z2} = πX +Oε(Xθ+ε).
For a density one subsequence of new eigenvalues λ we have that ξ ∈ A0(λ, λδ) implies

ξ 6∈ Aζ(λ, λδ)⇔ ||ξ − ζ|2 − λ| > λδ

so that
1

||ξ − ζ|2 − λ|
< λ−δ.

Also the error term in the circle law implies the following bound on the number of lattice points
in a thin annulus

#A0(λ, L) = Oε(λθ+ε).
Combining the bounds above we obtain the estimate (recall δ > 1

2θ)∑
||ξ|2−λ|≤λδ

(|ξ − ζ|2 − λ)−2 = Oε(λ−2δ+θ+ε).

Furthermore, we have for a density one subsequence of eigenvalues λ the lower bound∑
ξ∈A0(λ,λδ)

(|ξ|2 − λ)−2 ≥ C(ε)λ−ε.

So, for generic λ, the following bound holds with probability & 1
N

| 〈eζψλ, ψλ〉 |2 .ε Nλ
−1+3θ+ε.

This argument can easily be extended for any trigonometric polynomial with nonzero frequen-
cies. The result for a general torus TdL = Rd/LZd then follows by a simple scaling argument.

7. Delocalization for random displacement models

Let BL = [−L,L]d and consider

HΩ,L = −∆ +
∑

ξ∈Zd∩BL

δ(x− ξ − ωξ)

with Dirichlet boundary conditions, where the displacements ωξ are i.i.d. random variables with
probability density P ∈ C0(Rd) and suppP ⊂ B(0, 1

4 ).
Denote by ψLλ an L2-normalized eigenfunction of HΩ,L. Fix χ ∈ C∞c (Rd), χ ≥ 0 and ‖χ‖1 = 1,

and introduce the smoothed eigenfunction

ΨL
λ (x) =

(∫
BL

χ(x′ − x)|ψLλ (x′)|2dx′
)1/2

.
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One of the problems with Definition 3.1 is that the localization centre depends on the sample
ω ∈ Ω. To observe localization it is therefore advisable to consider the two-point correlation
function of the smoothed eigenfunction ΨL

λ which is defined for any two points x, y ∈ BL by

ΘL
λ (x, y) = ΨL

λ (x)ΨL
λ (y).

The decay is then observed with respect to the distance |x−y|, which is independent of the sample
ω.

We have the following alternative definition of localization.

Definition 7.1. Let F ∈ C0(R+) be strictly decreasing and HΩ,Lψ
L
λ = λψLλ , ‖ψLλ ‖2 = 1. We say

that HΩ,L is F -localized on an interval I ⊂ R+ if, for sufficiently large L, we have

∀x, y ∈ BL : E

(∑
λ∈I

ΘL
λ (x, y)

)
≤ F (|x− y|)

and the limit of the LHS as L→∞ exists.

We can show that for large enough energy HΩ,L fails to be localized. We denote the set of
distinct eigenvalues of the Dirichlet Laplacian on BL by ΛL.

Theorem 7.2 (H.U. 2015). There exists E0 � 1 and a full density subsequence Λ′L ⊂ ΛL such
that for any λk ∈ Λ′L, λk > E0,

E

 ∑
λ∈(λk,λk+1)

ΘL
λ (x, y)

 & 1.

In particular, this result implies that the localization length blows up at a certain critical energy
threshold: Lloc →∞ as E → E0.

7.1. The limit of large tori
The key idea in proving the above theorem is to study the operator HΩ,L in the limit L → ∞.
One of the key obstructions to doing this is the dependence on the number of potentials, N � Ld,
in the error term in equation (5.1).

However, we are able to improve the estimate of the error term significantly in the case of
random displacement models: Fix a0 ∈ C∞(B1) and any ε > 0. Denote by Λ = {λj}∞j=0 the set
of distinct eigenvalues of the Dirichlet Laplacian on B1. There exists a full density subsequence
Λ′ ⊂ Λ such that we have, for sufficiently large λk ∈ Λ′L, with probability 1−ε for any a ∈ C∞(B1),
|â| ≤ |â0| and any λ ∈ (λk, λk+1)∫

BL

b(y)|ΨL
λ (y)|2dy = 1

Ld

{∫
BL

b(y)dy +O(λ−δdL−2δd)
}
, b(·) = L−da(·/L).

Now let a0 = χ ∈ C∞(Rd), ‖χ‖1 = 1 and suppχ ⊂ B(0, ε0) for some small ε0. We thus obtain
the lower bound

ΨL
λ (x) & L−d/2

for any L � 1. In particular, we have the following lower bound for the two-point correlation
function

ΘL
λ (x, y) & |x− y|−d, |x− y| � L.

In particular if we sum over all λ ∈ I = (λk, λk+1), λk ∈ Λ′L, and take the expectation, we may
show

E

(∑
λ∈I

ΘL
λ (x, y)

)
& 1

where we have used that
#{λ ∈ I} � Ld.
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