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Journées Équations aux dérivées partielles
Port d’Albret, 7 juin–11 juin 2010
GDR 2434 (CNRS)

Electromagnetic Schrödinger flow: multiplier
methods for dispersion

Luca Fanelli
Abstract

We show a list of results which have been recently obtained about dispersive
properties of the electromagnetic Schrödinger flow. We introduce a general
philosophy, based on multiplier technique, which permits to detect the bad
parts of an electromagnetic potential which can possibly affect the dispersion.

1. Introduction

In the research about dispersive equations, a lot of mathematical tools have been
developed to understand dispersive phaenomena. Dispersive equations involve some
relevant models, which have been deeply investigated in the last years; among them,
we mention the Schrödinger equation, the wave and Klein-Gordon equations, the
Dirac equation. Motivated by solving some nonlinear models related to the previous
examples, a strong effort was devoted to understand the dispersive properties of the
respective linear evolution operators, which can be translated in terms of linear a
priori estimates for solutions. In this paper, we take the Schrödinger equation as
a model; however, we emphasize that the following discussion can be rephrased in
terms of the other equations we mentioned before.

Consider the free Schrödinger equation∂tu(t, x) = i∆u(t, x)
u(0, x) = u0(x),

(1.1)

where u = u(t, x) : R1+d → C. It is well known that, given any initial datum
u0 ∈ L2(Rd), the unique solution u ∈ C(R;L2(Rd)) of (1.1) is given by

u(t, x) = 1
(4πit) d2

∫
e−
ix·y
2t e

i|y|2
4t u0(y) dy =: Kt ∗ u0(x), (1.2)

Keywords: electric potentials, magnetic potentials, virial identities, Schrödinger operators, spectral theory.
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where Kt(x) = (4πit)− d2 ei
|x|2
4t . By the representation formula (1.2), it turns out

immediately that the following time decay estimates hold:

‖u(t, ·)‖Lp . |t|−d(
1
2−

1
p)‖u0‖Lp′ , p ≥ 2 1

p
+ 1
p′

= 1, (1.3)

where u is given by (1.2), for any t 6= 0, where the symbol . means that the
inequality holds modulo a positive constant which does not depend on t and u0.

The time decay estimates (1.3) imply some smoothing effects, in terms of Lp-
integrability, for free Schrödinger solutions, which are well known as Strichartz es-
timates, stating that

‖eit∆f‖LptLqx . ‖f‖L2
x
, (1.4)

for any couple (p, q) satisfying the admissibility condition

2
p

= d2 + d
q
,


p ≥ 4 if d = 1
p > 2 if d = 2
p ≥ 2 if d ≥ 3.

For a standard proof of (1.4) in the non-endpoint case, see e.g. [14], while for the
endpoint case the proof is given in [20].

There is moreover another family of dispersive estimates, which we usually refer
to as weak dispersive estimates, involving for example the Morawetz estimate

∫ ∫ |∂τeit∆f |2
|x|

dx dt . ‖f‖2
Ḣ

1
2

(1.5)

and the local smoothing estimate

sup
R>0

1
R

∫ ∫
|x|<R
|∇eit∆f |2 dx dt . ‖f‖2

Ḣ
1
2
, (1.6)

where ∂τ is the tangential component of the gradient to the sphere and ‖ · ‖Ḣ1/2 =
‖|D|1/2 ·‖L2 . An estimate of the same type of (1.5) was proved by C. Morawetz in [22]
first, for the Klein-Gordon equation (without gain of derivatives, which is not true
in that case); the kind of techniques we we will use in the sequel refers, in fact, to
the original Morawetz’ paper. The local smoothing (1.6) was proved independently
in [3, 27, 30].

Starting from the pioneer paper [22], multiplier methods have been developed to
prove a priori estimates of the type (1.5), (1.6). Due to this, weak dispersive estimates
are the most adaptable to be proved for some perturbations of the Schrödinger
equation (e.g. variable coefficients, NLS). The aim of this paper is to introduce
the above mentioned multiplier techniques, with particular interest to the model
of Schrödinger equation with an external electromagnetic field. We will show how
estimates (1.5), (1.6) can be proved; finally, we will explain how Strichartz estimates
for the electromagnetic Schrödinger equation can be proved once weak dispersion is
known.
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2. Viral-type identities for the free Schrödinger equation

Let us consider the free Schrödinger equation (1.1), where the solution u is given by
(1.2). Let T : L2 → L2 be a linear operator and consider the quantity

Θ(t) = (u, Tu) =
∫
u(t)Tu(t) dx.

A formal computation gives
d

dt
Θ(t) = i(u, [∆, T ]u) (2.1)

d2

dt2
Θ(t) = −(u, [∆, [∆, T ]]u), (2.2)

where the brackets [·, ·] denote the commutator. Identity (2.1) is in fact the Eisen-
berg equation. When T is the multiplication operator for a function φ : Rn → R,
the commutators can be written explicitly as differential operators with variable
coefficients depending on φ and its derivatives; integration by parts leads to the
following virial-type identities:

Lemma 2.1. Let φ : Rn → R be a positive function and define Θ(t) =
∫
φ|u|2 dx,

where u is given by (1.2). The following formal identities hold:
d

dt
Θ(t) = 2=

∫
u∇φ · ∇u dx (2.3)

d2

dt2
Θ(t) = 4

∫
∇uD2φ∇u dx−

∫
|u|2∆2φ dx, (2.4)

where D2φ is the Hessian matrix of φ and ∆2φ = ∆(∆φ) is the bi-laplace.

We now pass to some relevant examples of multipliers φ.

2.1. Virial Multiplier
Let us consider the virial multiplier φ = |x|2. In this case, (2.4) reads as follows:

d2

dt2

∫
|x|2|u|2 dx = 8

∫
|∇u|2 dx = 16E, (2.5)

being E the energy, which is an invariant of the motion. Equation (2.5) is the well
known virial identity. It affirms, in particular, that the position ‖xu‖L2 is a strictly
convex function of time, if u is nontrivial. Since it is also positive, it tends to infinity
as t → ±∞, which means that free Schrödinger particles have the propagation
property. This convexity property is a kind of characterizing fact for dispersive
equations.

2.2. Morawetz Multiplier
Let us now consider the Morawetz multiplier φ = |x|, in dimension d ≥ 3. Due
to the following identity

∇uD2φ∇u = φ′′|∂ru|2 + φ
′

|x|
|∂τu|2,
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which holds for radial functions φ, by (2.3) and (2.4) we obtain

2= d
dt

∫
u∂ru dx = 4

∫ |∂τu|2
|x|
dx−

∫
|u|2∆2|x| dx.

Since ∆2|x| ≤ 0 if d ≥ 3, and since by interpolation we have |
∫
u∂ru| ≤ ‖u‖Ḣ1/2 ,

integrating in time the last identity and using the conservation of the Ḣ 1
2 -norm we

get the Morawetz estimate ∫ ∫ |∂τu|2
|x|
dx dt . ‖u(0)‖2

Ḣ
1
2
. (2.6)

Once again, the convexity of ‖|x|1/2u‖L2 as a function of time was a crucial fact
here.

2.3. Local smoothing multiplier
We now introduce a new multiplier, which mixes the previous two ones. Denote by
r = |x|; for any R > 0, we need a function φR with the following behavior:

φR(r) '

r2, r ≤ Rr, r > R.

An explicit example is given by the following one: in dimension d ≥ 3, for any R > 0,
let us consider φR(r) =

∫ r
0 φ
′
R(s) ds, with

φ′R(r) =


(d−1)r

2nR , r ≤ R
1
2 −

R
2drd−1 , r > R.

(2.7)

An explicit computation shows that

φ′′R(r) =


1
R
· d−1

2d , r ≤ R
1
R
· R

d(d−1)
2drd , r > R,

(2.8)

∆2φR =

−4πδx=0 − 1
R2 δ|x|=R, d = 3

−d−1
2 δ|x|=R −

(d−1)(d−3)
2r3 χ[1,+∞), d ≥ 4.

(2.9)

Notice that ∆2φ < 0 and φ′, φ′′ ≥ 0, since d ≥ 3. Plugging it into the virial identities
(2.3), (2.4) and arguing as above, it gives the following estimates:

sup
R>0

1
R

∫ ∫
|x|<R
|∇u|2 dx dt+ sup

R>0

1
R2

∫ ∫
|x|=R
|u|2 dσ(x) dt . ‖u(0)‖2

Ḣ
1
2
. (2.10)

This kind of multiplier was used in [23] first, for the Helmholtz equation, and then
in [1] for the electric Schrödinger equation. The refined explicit version given by
(2.7) was introduced in [12].

3. Electromagnetic potentials

A Schrödinger Hamiltonian with electromagnetic potential is an operator of the
form

H = −(∇− iA)2 + V,
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where A = (A1, . . . , Ad) : Rd → Rd and V : Rd → R are the magnetic and electric
potential, respectively. The Cauchy problem for the electromagnetic Schrödinger
equation is hence given by

∂tu = iHuu(0) = u0. (3.1)
It describes the interaction of a free particle with an external electromagnetic field.
The electric field is given by E = ∇V . Once identifying A with the linear 1-form
ω = ∑d

j=1A
j(x)dxj, the magnetic field is given by the differential B = dω. In the

euclidean setting, we can also write explicitly B = DA−DAt as the antisymmetric
component of the matrix gradient of A. In particular, since in dimension d = 3
1-forms and 2-forms are identified, we also have that

Bv = (DA−DAt)v = curlA× v, (d = 3)
for all v ∈ R3, where the cross denotes the vectorial product in R3.

From now on, we will always need the following regularity assumptions on the
Hamiltonian H:

(H1) The Hamiltonian HA = −∇2
A is essentially self-adjoint on L2(Rn), with

form domain
D(HA) =

{
f : f ∈ L2,

∫
|∇Af |2 <∞

}
.

(H2) The potential V is a perturbation of HA in the Kato-Rellich sense, i.e. there
exists a small ε > 0 such that

‖V f‖L2 ≤ (1− ε)‖HAf‖L2 + C‖f‖L2 , (3.2)
for all f ∈ D(HA).

Assumptions (H1), (H2) have several consequences about the existence theory for
equation (3.1). First of all, they imply the self-adjointness of H, by standard per-
turbation techniques; hence by the spectral theorem we can define the Schrödinger
propagator S(t) = eitH . Moreover we can define for any s the distorted norms

‖f‖Ḣs = ‖H s
2f‖L2 . ‖f‖Hs = ‖f‖L2 + ‖H s

2f‖L2 .

SinceH andHs commute with each other, for any s ≥ 0, the Schrödinger propagator
S(t) satisfy the family of conservation laws

‖eitHf‖Ḣs = ‖f‖Ḣs , s ≥ 0,
for all t ∈ R. For the validity of (H1) and (H2) see e.g. [4], and the standard reference
[21].

A relevant property of equation (3.1) is the gauge invariance. In fact, if u solves
(3.1), then v = eiϕu solves the same equations, with the new potential Ã = A+∇ϕ.
Notice that the magnetic field B does not change if we sum a gradient to the
potential. Hence we are interested in giving results which respect this property,
namely we need to state theorems in which the assumptions do not depend on the
gauge choice. A relevant electromagnetic potential is the so-called Coulomb-type
one. They are homogeneous potentials of degree -1 and -2 (respectivly the magnetic
and the electric one); a model is

A = |x|−2x, V = |x|−1.

Notice that they leave equation (3.1) invariant under the natural scaling uλ(t, x) =
u(t/λ2, x/λ).
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As we see in the following, the multiplier techniques we introduced before for the
free Schrödinger equation, lead us to detect the bad parts of the potentials which
possibly affect the dispersive properties of the flow eitH . As for the electric part,
the radial derivative ∂rV will play a crucial role; for the magnetic term, we need to
introduce the quantity Bτ , defined as

Bτ (x) = x
|x|
B d ≥ 2. (3.3)

Notice that, in dimension d = 3, we can write

Bτ = x
|x|
× curlA. (3.4)

Hence Bτ is a tangential projection of the vector field B on the sphere. We will
usually refer to it as to the trapping component of the field B.

It is relevant to show examples of potentials A for which Bτ ≡ 0; as it will be
clear in the sequel, it is natural to call them non-trapping magnetic potentials. we
will focus our attention on the 3D case.
Example 3.1. First we consider some singular potentials. Take

A = 1
x2 + y2 + z2 (−y, x, 0) = 1

x2 + y2 + z2 (x, y, z) ∧ (0, 0, 1). (3.5)

We can check that
∇ · A = 0, B = −2 z

(x2 + y2 + z2)2 (x, y, z), Bτ = 0.

Another (more singular) example is the following:

A =
(
−y
x2 + y2 ,

x

x2 + y2 , 0
)

= 1
x2 + y2 (x, y, z) ∧ (0, 0, 1). (3.6)

Here we have B = (0, 0, δ), with δ denoting Dirac’s delta function. Again we have
Bτ = 0 .
Example 3.2. Now we show a natural generalization of the previous examples.
Assume that B = curlA : R3 → R3 is known, and assume that divA = 0; then we
can reconstruct the potential A using the Biot-Savart formula

A(x) = 1
4π

∫ x− y
|x− y|3

∧B(y) dy. (3.7)

Assume now that Bτ = 0, namely x ∧B(x) = 0; by (3.7) we have

A(x) = x4π ∧
∫ B(y)
|x− y|3

dy. (3.8)

To have Bτ = 0 it is necessary B(y) = g(y) y|y| , for some scalar function g : R3 → R.
Since we want A 6= 0, g has not to be radial. As an example we consider

g(y) = h
(
y

|y|
· ω
)
|y|−α,

for some fixed ω ∈ S2, where h is homogeneous of degree 0 and α ∈ R; consequently,
the vector field B is homogeneous of degree −α. By (3.8) we have

A(x) = x4π ∧
∫ h ( y|y| · ω)
|x− y|3|y|α

y dy. (3.9)
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The potential A is homogenous of degree 1 − α, and by symmetry we have that
A(ω) = 0. These examples can be easily extended to higher dimensions.

The definition of Bτ and the previous examples appear e.g. in [12].

4. Weak dispersion for the electromagnetic flow
We can now state our main results about the dispersive properties of the electro-
magnetic Schrödinger flow eitH . First of all, in analogy with Lemma 2.1 we have the
following:
Theorem 4.1 (Virial for magnetic Schrödinger [12]). Let φ : Rn → R be a radial,
real-valued multiplier, φ = φ(|x|), and let

Θ(t) =
∫

Rn
φ|u|2 dx. (4.1)

Let u = eitHu0 be a solution of the magnetic Schrödinger equation (3.1) with initial
datum u0 ∈ L2, HAu0 ∈ L2; then, for any t ∈ R, the following virial-type identity
holds:

Θ̇(t) =2=
∫
φ′u∇Au ·

x

|x|
dx (4.2)

Θ̈(t) =4
∫

Rn
∇AuD2φ∇Au dx−

∫
Rn
|u|2∆2φ dx

− 2
∫

Rn
φ′ (∂rV ) |u|2 dx+ 4=

∫
Rn
uφ′Bτ · ∇Au dx, (4.3)

where (
D2φ

)
jk

= ∂2

∂xj∂xk
φ, ∆2φ = ∆(∆φ),

for j, k = 1, . . . , n, are respectively the Hessian matrix and the bi-Laplacian of φ,
and ∇A := ∇− iA.

Notice that, in the free case A ≡ V ≡ 0, the previous result coincides with
the one in Lemma 2.1. The proof of Theorem 4.1 can be performed by a direct
computation, for regular solutions u ∈ H2, and then completed for H1-solutions via
a density argument; see [12] for the details.

Observe that only standard derivatives act on the multiplier φ in identity (4.3),
while the covariant derivatives ∇A only act on the solution u. This is due to the
following Leibnitz rule:

∇A(fg) = g∇Af + f∇g.
This way to write the identity permits to use the same multipliers as in the free
case, in order to get convexity for Θ; indeed, the terms involving ∂rV and Bτ in
(4.3) can be treated as perturbations of the free identity (2.4). We now specialize
the previous identities to the above introduced multipliers.

Virial Multiplier. Using the virial multiplier φ = |x|2, we immediately obtain
the following Corollary of Theorem 4.1, which is the analogous of the virial identity
(2.5).
Corollary 4.2. Let u = eitHu0 be a solution of the magnetic Schrödinger equation
(3.1) with f ∈ L2, HAf ∈ L2. Then the quantity

Q(t) =
∫

Rn
|x|2|u|2 dx
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satisfies the identity

Q̈(t) = 8
∫

Rn
|∇Au|2 dx− 4

∫
Rn
|x| (∂rV ) |u|2 dx+ 8=

∫
Rn
|x|uBτ · ∇Au dx. (4.4)

Consequently, the strict convexity of Q for nontrivial solutions of (3.1) is a matter
of fact, if Bτ ≡ 0 and ∂rV ≤ 0. When these conditions are satisfied, we say that V
is repulsive and A is non-trapping.

Morawetz and local smoothing multipliers. We can now consider the sum
of the Morawetz multiplier φ = |x| with the local smoothing multiplier φR given
by (2.7), (2.8), (2.9). Plugging them into identities (4.2), (4.3), we can prove the
two following Theorems, regarding weak dispersive properties of the group eitH ,
respectively in dimension d = 3 and d ≥ 4.

Theorem 4.3 (Weak dispersion for 3D Schrödinger [12]). Let d = 3, and assume
(H1), (H2); denote by∫ +∞

0
ρ3 sup
|x|=ρ
|Bτ |2 dρ =

∥∥∥|x| 32Bτ∥∥∥2

L2
rL
∞(Sr)

=: C1∫
ρ2 sup
|x|=ρ

∣∣∣(∂rV )+

∣∣∣ dρ =
∥∥∥|x|2 (∂rV )+

∥∥∥
L1
rL
∞(Sr)

=: C2,

and assume that
√
C1 +

√
C1 + 2C2√

C1 + 2C2

(√
C1 +

√
C1 + 2C2

2

√
C1 + C2

)
≤ 1

2 . (4.5)

Then, for any solution u of (3.1) with f ∈ L2, HAf ∈ L2, the following estimate
holds:

sup
R>0

1
R

∫ +∞

0

∫
|x|≤R
|∇Au|2 dx dt ≤ C‖f‖2Ḣ 1

2
(4.6)

for some C > 0. Moreover, if the strict inequality holds in (4.5), we also have

sup
R>0

1
R

∫ +∞

0

∫
|x|≤R
|∇Au|2 dx dt+ ε

∫ +∞

0

∫
Rn

|∇τAu|2

|x|
dx dt (4.7)

+ ε sup
R>0

1
R2

∫ +∞

0

∫
|x|=R
|u|2 dσ dt ≤ C‖f‖2

Ḣ
1
2
,

for some ε > 0.

In higher dimension we prove the following Theorem.

Theorem 4.4 (Weak dispersion for higher dimensional Schrödinger [12]). Let d ≥ 4,
and assume (H1), (H2); assume that

|Bτ (x)| ≤
C1

|x|2
, |V +

r (x)| ≤ C2

|x|3
, C2

1 + 2C2 ≤
2
3(d− 1)(d− 3), (4.8)

for all x ∈ Rn. Then, for any solution of (3.1) with f ∈ L2, HAf ∈ L2, the following
estimate holds:

sup
R>0

1
R

∫ +∞

0

∫
|x|≤R
|∇Au|2 dx dt ≤ C‖f‖2Ḣ 1

2
,
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for some C > 0. Moreover, if the strict inequality holds in (4.8), we also have

sup
R>0

1
R

∫ +∞

0

∫
|x|≤R
|∇Au|2 dx dt+ ε

∫ +∞

0

∫
Rn

|∇τAu|
2

|x|
dx dt (4.9)

+ ε(d− 1)(d− 3)
2

∫ +∞

0

∫ |u|2
|x|3
dx dt ≤ C‖f‖2

Ḣ
1
2
,

for some ε > 0.
Remark 4.1. Conditions (4.5) and (4.8) have to be interpreted as the necessary
(and probably sharp) smallness assumption on the bad parts of B and V , in order
to obtain the same weak dispersive properties as in the free case. As for (4.5), notice
that, when C1 = 0 (non-trapping case), it reduces to C2 ≤ 1

2 , while if C2 = 0
(repulsive case) it just requires C1 ≤ 1

4 .
Remark 4.2. Notice that the assumptions of the previous Theorems are given in
terms of the fields; consequently, the previous results are invariant with respect to
gauge transformations.
Remark 4.3. The analogous of the previous results, proved by the same techniques,
for the purely electric Schrödinger flow, was proved in [1]. We also mention [8] and
the references therein for a proof of local the local smoothing, also local in time, for
the Schrödinger equation with unbounded electromagnetic potentials, in which the
same kind of techniques are involved.

5. Endpoint Strichartz estimates
Strichartz estimates for the flow eitH can be proved, by perturbative techniques, as
a consequence of the weak dispersive Theorems of the previous section.

In the last years, a big effort was spent to prove Strichartz estimates for the
Schrödinger equation with electromagnetic potential. In the purely electric case
A ≡ 0 the literature is extensive and almost complete; we may cite among many
others the papers [2], [16], [25]. It is now clear that in this case the decay V (x) ∼
1/|x|2 is critical for the validity of Strichartz estimates; suitable counterexamples
were constructed in [17]. In the magnetic case A 6= 0, the Coulomb decay |A| ∼ 1/|x|
is also critical, as it was shown in the counterexamples produced in [11]. An intense
research is ongoing concerning Strichartz estimates for the magnetic Schrödinger
equation, see e.g. [7], [5], [6], [13]; see also [24] for a more general class of first order
perturbations.

Actually, Theorems 4.3 and 4.4 suggest that a natural initial space in which to
set the problem is Ḣ 1

2 . Let us fix the Coulomb gauge divA = 0, which is in fact a
not restrictive assumption. By the explicit expansion

H = −∆ + 2iA · ∇A − |A|2 + V,
we see that the solution u = eitHu0 of (3.1) can be written in terms of the Duhamel
formula as follows

eitHϕ = eit∆ϕ+
∫ t

0
ei(t−s)∆R(x,D)eitHϕ, ds, (5.1)

where the perturbative operator R(x,D) is given by
R(x,D) = 2iA · ∇A − |A|2 + V. (5.2)

VII–9



Now we recall the following estimate:∥∥∥∥|D| 12 ∫ t
0
ei(t−s)∆F (s, ·)ds

∥∥∥∥
LpLq

.
∑
j∈Z

2
j
2‖Fj‖L2L2 , (5.3)

for any admissible couple (p, q) as above, where
F =

∑
j∈Z
Fj, suppFj ⊂ {2j ≤ |x| ≤ 2j+1} × R

Estimate (5.3) was proved in [26] first; actually it follows by mixing the free Strichartz
estimates for T (t) with the dual of the local smoothing estimates which were proved
independently by [3], [27] and [30]. In the paper [26] the endpoint estimate for p = 2
is not proved (and indeed it predates the Keel-Tao paper [20]). The endpoint case
p = 2 in dimension n ≥ 3 is a consequence of Lemma 3 in [18]. By (5.3) and free
Strichartz, we can hence estimate∥∥∥|D| 12 e−itHϕ∥∥∥

LpLq
≤ C‖|D|

1
2ϕ‖L2 +

∑
j∈Z

2
j
2
∥∥∥χjR(x,D)eitHϕ

∥∥∥
L2L2
, (5.4)

where χj is the characteristic function of the ring 2j ≤ |x| ≤ 2j+1.
Let us recall the definition of Kato norm.

Definition 5.1. Let n ≥ 3. A measurable function V (x) is said to be in the Kato
class Kd provided

lim
r↓0

sup
x∈Rd

∫
|x−y|≤r

|V (y)|
|x− y|d−2dy = 0.

We shall usually omit the reference to the space dimension d and write simply K
instead of Kd. The Kato norm is defined as

‖V ‖K = sup
x∈Rd

∫ |V (y)|
|x− y|d−2dy.

The above computations suggest the proof of the following Theorem.

Theorem 5.2 ([9]). Let d ≥ 3. Given A, V ∈ C1
loc(Rd \ {0}), assume the operators

∆A = −(∇− iA)2 and H = −∆A + V are selfadjoint and positive on L2. Moreover
assume that

‖V−‖K <
π
d
2

Γ
(
d
2 − 1

) (5.5)

for a sufficiently small ε > 0 depending on A and∑
j∈Z

2j sup
|x|∼2j
|A|+

∑
j∈Z

22j sup
|x|∼2j
|V | <∞, (5.6)

and the Coulomb gauge condition
div A = 0. (5.7)

Finally, when d = 3, we assume that for some M > 0(
M + 1

2

)2

M
‖|x|

3
2Bτ‖2L2

rL
∞(Sr) + (2M + 1)‖|x|2(∂rV )+‖L1

rL
∞(Sr) <

1
2 , (5.8)

while for n ≥ 4 we assume that

‖|x|2Bτ (x)‖2L∞ + 2‖|x|3(∂rV )+(x)‖L∞ <
2
3(d− 1)(d− 3). (5.9)
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Then, for any Schrödinger admissible couple (p, q), the following Strichartz estimates
hold:

‖eitHϕ‖LpLq ≤ C‖ϕ‖L2 ,
2
p

= d2 −
d

q
, p ≥ 2, p 6= 2 if d = 3. (5.10)

In dimension d = 3, we have the endpoint estimate

‖|D|
1
2 eitHϕ‖L2L6 . ‖H

1
4ϕ‖L2 . (5.11)

The previous result was proved in [9], to which we remand for more details about
the proof.

Remark 5.1. Let us remark that the regularity assumption A, V ∈ C1
loc(Rd \ {0}) is

actually stronger than what we really require. For the validity of the Theorem, we
just need to give meaning to inequalities (5.8), (5.9).

Remark 5.2. We emphasize that in Theorem 5.2 we do not require absence of res-
onances at energy zero, in contrast with [5], [6]. Indeed, this is possible thanks to
the non-trapping and repulsivity conditions (5.8), (5.9); notice however that these
conditions can be checked easily in concrete examples, which is not the case for the
abstract assumption on resonances.

Remark 5.3. In order to perform the proof, we also need the following result about
equivalence of standard and distorted Sobolev spaces, which we think is of outstand-
ing interest:

Theorem 5.3 ([9]). Let d ≥ 3. Given A ∈ L2
loc(Rn; Rn), V : Rn → R, assume the

operators ∆A = −(∇− iA)2 and H = −∆A + V are selfadjoint and positive on L2.
Moreover, assume that V+ is of Kato class, V− satisfies

‖V−‖K <
π
d
2

Γ
(
d
2 − 1

) , (5.12)

and
|A|2 + V ∈ Ld/2,∞, A ∈ Ld,∞. (5.13)

Then the following estimate holds:

‖H1/4f‖Lq ≤ Cq‖|D|
1
2f‖Lq , 1 < q < 2d, d ≥ 3. (5.14)

In addition we have the reverse estimate

‖H1/4f‖Lq ≥ cq‖|D|
1
2f‖Lq ,

4
3 < q < 4, d ≥ 3. (5.15)

Theorem 5.3 was proved in [9], by means of the Stein-Weiss interpolation Theorem
and Barry Simon’s diamagnetic inequalities. We remand to [9] for the detailed proof.
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