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Journées Équations aux dérivées partielles
Roscoff, 1–5 juin 2015
GDR 2434 (CNRS)

Problems related to the concentration of eigenfunctions

Christopher D. Sogge

Abstract

We survey recent results related to the concentration of eigenfunctions. We also prove
some new results concerning ball-concentration, as well as showing that eigenfunctions sat-
urating lower bounds for L1-norms must also, in a measure theoretical sense, have extreme
concentration near a geodesic.

1. Introduction

In recent years much work has been devoted to problems related to the various types of con-
centration exhibited by eigenfunctions of the Laplacian on Riemannian manifolds. These include
estimates for the their nodal sets, bounds for their restrictions to submanifolds, especially geodesics,
as well as estimates for their L2-mass on small geodesic tubes or balls. In this paper we shall go
over some of this work and also present a couple of new results regarding the latter.

Our eigenfunctions satisfy the equation
−∆geλ(x) = λ2eλ(x),

so that λ is the frequency (and eigenvalue of
√
−∆g), and we shall always assume that they are

L2-normalized, i.e., ∫
M

|eλ|2 dVg = 1.

Here ∆g and dVg are the Laplace-Beltrami operator and volume element, respectively, on our
n-dimensional compact manifold (M, g).

Let us first recall the extreme types of concentration that occur on the standard round sphere,
Sn. On this manifold extreme concentration at points, as well as extreme concentration along
geodesics occur. Both phenomena are present there due to the fact that geodesic flow on Sn is
periodic and every geodesic is stable.

The eigenfunctions that have maximal concentration at points on Sn are the zonal functions.
Recall that the eigenvalues of

√
−∆Sn are

√
k(k + n− 1), repeating with multiplicity dk ≈ kn−1.

If Hk is the associated space of spherical harmonics of degree k and {ek,1, . . . ek,dk} an orthonormal
basis of Hk, then the L2-normalized zonal function centered about a point x0 ∈ Sn is given by the
formula

Zλ(x) =
(
|Sn|
dk

) 1
2 dk∑
j=1

ek,j(x)ek,j(x0), λ =
√
k(k + n− 1),

with |Sn| denoting the volume of Sn. Usually one takes x0 to be the north pole 1 = (0, . . . , 0, 1)
if we write Sn as {x ∈ Rn+1 :

∑
x2
j = 1}. For this choice of x0, by the classical Darboux-Szegö
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formula, modulo lower order terms, if dg( · , · ) denotes geodesic distance, then

Zλ(x) ≈
cos
[
(k + n−1

2 )dg(x,±1) + (n−1)π
4

]
(dg(x,±1))n−1

2
, if dg(x,±1) ≥ λ−1,

with λ =
√
k(k + n− 1), (1.1)

as well as
Zλ(x) = O(λ

n−1
2 ), if dg(x,±1) ≤ λ−1. (1.2)

Since Zλ(1) = (dk/|Sn|)
1
2 ≈ λ

n−1
2 , we deduce from the above that ‖Zλ‖∞ ≈ λ

n−1
2 , and if we

use (1.1)–(1.2), we conclude further that

‖Zλ‖Lp(Sn) ≈ λn( 1
2−

1
p )− 1

2 , if p > 2n
n−1 . (1.3)

The other type of extreme concentration on Sn is exhibited by the highest weight spherical
harmonics,

Qλ(x) = ck <(x1 + ix2)k, λ =
√
k(k + n− 1), (1.4)

where
ck ≈ k

n−1
4 , (1.5)

so that
∫
|Qλ|2 = 1. Since

|x1 + ix2|k ≈ e−
k
2 |x
′|2 , on Sn, if x′ = (x3, . . . , xn+1),

we see that the mass of Qλ is concentrated on a λ− 1
2 tubular neighborhood of the equator, γ,

where x′ = 0. From the above one can deduce that
‖Qλ‖Lp(Sn) ≈ λ

n−1
2 ( 1

2−
1
p ), p > 2, (1.6)

as well as
‖Qλ‖L1(Sn) ≈ λ−

n−1
4 , (1.7)

and
‖Qλ‖L2(T

λ
− 1

2
(γ)) ≈ 1, (1.8)

if T
λ−

1
2

(γ) denotes a λ− 1
2 tubular neighborhood of γ.

In [19] it was shown that the Lp-bounds in (1.3) and (1.6) are extreme among the spherical
harmonics. In [20], it was also shown that they are the worst possible for Lp-norms on n-dimensional
compact Riemannian manifolds. Specifically, the Lp-upper bounds,

‖eλ‖Lp(M) . λσ(p), 2 < p ≤ ∞, (1.9)
were obtained with

σ(p) = max
{

(n−1
2 ( 1

2 −
1
p ), n( 1

2 −
1
p )− 1

2
}
. (1.10)

Thus, since n−1
2 ( 1

2 −
1
p ) = n( 1

2 −
1
p )− 1

2 when p = 2(n+1)
n−1 , the bounds in (1.9) can be rewritten as

‖eλ‖Lp(M) .

λ
n−1

2

(
1
2−

1
p

)
, 2 ≤ p ≤ 2(n+1)

n−1 ,

λn( 1
2−

1
p )− 1

2 , 2(n+1)
n−1 ≤ p ≤ ∞.

(1.9′)

More, generally, it was shown in [20] that one has the following estimates for the unit-band spectral
projection operators

‖χ[λ,λ+1]‖L2(M)→Lp(M) .

λ
n−1

2

(
1
2−

1
p

)
, 2 ≤ p ≤ 2(n+1)

n−1 ,

λn( 1
2−

1
p )− 1

2 , 2(n+1)
n−1 ≤ p ≤ ∞.

(1.9′′)

If I ⊂ R+ is an interval, then χI denotes the projection onto frequencies in I. Thus, if 0 = λ0 <
λ1 ≤ λ2 ≤ . . . are the eigenvalues of

√
−∆g counted with multiplicity and if {eλj} is the associated

orthonormal basis of eigenfunctions, then

χIf =
∑
λj∈I

Ejf, with Ejf(x) = eλj (x)×
∫
M

f(y) eλj (y) dVg.
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The estimate (1.9′′) is a “local estimate" that cannot be improved on any Riemannian manifold
(see [21]). However, in many cases, the estimate (1.9′) can be improved, even though it is saturated
on Sn.

2. Improved Lp bounds for large exponents

In 2002, the author and Zelditch [27] showed that for generic Riemannian manifolds the estimates
in (1.9) can be improved when p is larger than the “critical" index pc = 2(n+1)

n−1 . Specifically, if for
a given x ∈ M , and an initial unit direction ξ ∈ S∗xM over x, we say that ξ ∈ Lx if the geodesic
with initial direction ξ loops back through x in some positive time t, then the following result was
obtained in [27]:

Theorem 2.1. If |Lx| = 0 for all x ∈ M , then ‖eλ‖L∞(M) = o(λn−1
2 ), and hence if σ(p) is as

in (1.10)
‖eλ‖Lp(M) = o(λσ(p)), ∀ p > pc = 2(n+1)

n−1 . (2.1)

The bounds in (2.1) follow via interpolation from the estimate ‖eλ‖L∞(M) = o(λn−1
2 ) and the

special case of (1.9′) with p = pc. It was shown in [27] that the condition |Lx| = 0 for all x ∈ M
holds for generic (M, g). Here | · | denotes the measure on S∗xM coming from restricting Liouville
measure on T ∗M to S∗xM .

The above theorem was improved by the author, Toth and Zelditch [24] by showing that the
condition that the looping directions is of measure zero for all x can be replaced by the condition
that the set of recurrent directions, Rx ⊂ S∗xM , be of measure zero for every x ∈M .

Further improvements were obtained recently by the author and Zelditch [25]–[26] under the
assumption that (M, g) is real analytic. Indeed, in this case, necessary and sufficient conditions for
improved sup-norm estimates were obtained.

In two dimensions, the result is very natural and simple to state:

Theorem 2.2. Let (M, g) be a real analytic two-dimensional Riemannian surface. Then

‖eλ‖L∞(M) = o(λ 1
2 ) (2.2)

if and only if there is no point x through which the geodesic flow is periodic. In this case, (2.1) also
holds.

There is also a result in higher dimensions that is a bit more technical to state. Based on an
earlier work [27], it was known that, in the real analytic case, if |Lx| 6= 0 for some x, then one
must have that Lx = S∗xM . In other words, x must be a “focal point,” and furthermore, in this
case, there must be a minimal positive T0 so that all unit speed geodesics loop back in time T0.
As a result, unitary Perron-Frobenius operators on L2(S∗xM) are well-defined, and the theorem
says that one has (2.2) if and only if there are no focal points for which the associated Perron-
Frobenius operator has a non-trivial invariant function. These operators were introduced earlier
to study these types of problems by Safarov [16], and our analysis uses ideas from his work.

If one makes curvature assumptions, then one can get further improvements. Indeed, it has been
known for some time that if the sectional curvatures of (M, g) are nonpositive then one has

‖eλ‖L∞(M) = O
(
λ
n−1

2 /
√

log λ
)
.

This follows directly from Bérard’s [1] proof of improved error term estimates for the Weyl formula
under these curvature assumptions (see, e.g., [23]). Recently, Hassell and Tacy [12] were able to
extend this by showing that one has

‖eλ‖L∞(M) = O
(
λσ(p)/

√
log λ

)
, if p > pc = 2(n+1)

n−1 .

A very interesting open problem would be to show that one also has these sorts of improvements
for the endpoint p = pc for all eigenfunctions. Recently, under the assumption of negative sectional
curvatures, Hezari and Rivière [13] were able to obtain improvements involving different powers of
log λ, but for eigenfunctions associated with a density one subsequence of eigenvalues.
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3. Kakeya-Nikodym norms and improved Lp bounds for small exponents

As we mentioned before, the highest weight spherical harmonics, Qλ, on Sn saturate Lp-norms for
2 < p < pc = 2(n+1)

n−1 . They have significant L2 mass on tubes T
λ−

1
2

(γ) of width λ− 1
2 about unit

geodesics γ on the equator. Given a compact Riemannian manifold (M, g) we shall let Π denote
the space of unit length geodesics and T

λ−
1
2

(γ) the resulting λ− 1
2 -tube about γ. Then the highest

weight spherical harmonics also saturate the Kakeya-Nikodym norms given by
|||eλ|||KN = sup

γ∈Π
‖eλ‖L2(T

λ
− 1

2
(γ)), (3.1)

in the sense that
lim inf
λ→∞

|||Qλ|||KN > 0. (3.2)

Note that, since we are assuming that our eigenfunctions have L2(M)-norm one, we always have
the trivial upper bound

|||eλ|||KN ≤ 1. (3.3)
These norms were introduced by the author [22] as a way to control Lp-norms in two-dimensions

for exponents 2 < p < pc = 6, following earlier related work of Bourgain [6].
The author was able to obtain the following result.

Theorem 3.1. Let (M, g) be a two-dimensional compact Riemannian manifold. Then if {λjk} is
a subsequence of eigenvalues, the following are equivalent

λ
−σ(p)
jk

‖eλjk ‖Lp(M) → 0, ∀ 2 < p < 6 (3.4)

|||eλjk |||KN → 0 (3.5)

λ
− 1

4
jk

sup
γ∈Π

(∫
γ

|eλjk |
2 ds

) 1
2 → 0. (3.6)

Burq, Gérard and Tzvetkov [7] showed that in two-dimensions one has

sup
γ∈Π

(∫
γ

|eλ|2 ds
) 1

2
. λ

1
4 ‖eλ‖L2(M), (3.7)

which is another estimate saturated by the Qλ. Bourgain [6] showed that, more generally, one has

sup
γ∈Π

(∫
γ

|eλ|2 ds
) 1

2
. λ

1
2p ‖eλ‖Lp(M), 2 ≤ p ≤ ∞, (3.8)

which gives that (3.4) implies (3.6). Clearly, (3.6) implies (3.5). The fact that (3.5) implies (3.4)
was established in [22] where inequalities were obtained which imply that

‖eλ‖L4(M) . |||eλ|||
1
4
KN . (3.9)

This of course implies that whenever (3.5) is valid we must have the special case of (3.4) corre-
sponding to p = 4, and the corresponding results for the other exponents 2 < p < 6 follow via
interpolation with the estimate (1.9′) for p = 6 and the trivial bound for p = 2.

In [22], using microlocal analysis, it was shown that on any two-dimensional manifold one has(∫
γ

|eλ|2 ds
) 1

2 = o(λ 1
4 )

provided that γ ∈ Π is not a unit-segment of a periodic geodesic.
The author and Zelditch used the Hadamard parametrix and microlocal analysis in [30] to show

that if (M, g) is a two-dimensional manifold of nonpositive curvature then (3.6) is valid for all
eigenfunctions, i.e.,

sup
γ∈Π

(∫
γ

|eλ|2 ds
) 1

2 = o(λ 1
4 ). (3.10)

Improvements were obtained by Chen and the author [8] in three dimensions as well under the
assumption of constant nonpositive sectional curvature.

In [4] Blair and the author found the appropriate extensions of these results to higher dimensions.
It turns out that, for n ≥ 4, L2(γ) restriction estimates are too singular to control Lp(M) norms
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for 2 < p < pc = 2(n+1)
n−1 . This is due in part to the fact that, for these dimensions, the zonal

functions, Zλ, saturate L2(γ) norms, but not these Lp(M) norms, while the highest weight spherical
harmonics, Qλ, saturate the latter but not the former. Notwithstanding, the less singular Kakeya-
Nikodym norms control Lp(M) norms for 2 < p < pc, and it was shown in [4] that

λ
−σ(p)
jk

‖eλjk ‖Lp(M) → 0, ∀ 2 < p < pc = 2(n+1)
n−1 ,

if and only if
|||eλjk |||KN → 0.

Additionally, it was shown in [4] that, in any dimension, if (M, g) is a manifold with nonpositive
sectional curvatures, then

|||eλ|||KN = o(1), (3.10′)

and hence
‖eλ‖Lp(M) = o(λσ(p)), 2 < p < 2(n+1)

n−1 . (3.11)

These results have been refined considerably in recent papers of Blair and the author [5], [4]
and [2]. The linkage between Lp(M) norms and Kakeya-Nikodym estimates has been improved
in [3], where the following estimate was established

‖eλ‖Lp(M) . λ
n−1

2 ( 1
2−

1
p )|||eλ|||

2(n+1)
n−1 ( 1

p−
n−1

2(n+1) )
KN , if 2(n+2)

n < p < 2(n+1)
n−1 . (3.12)

Additionally, in [2] the following result was obtained

Theorem 3.2. Suppose (M, g) has nonpositive sectional curvatures. Then

sup
γ∈Π

∫
T
λ
− 1

2
(γ)
|eλ|2 dV . c(λ), (3.13)

for λ� 1 with

c(λ) =


(log λ)− 1

2 , if n = 2
(log λ)−1 log log λ, if n = 3
(log λ)−1, if n ≥ 4.

Moreover, if n = 2, we have

sup
γ∈Π

∫
γ

|eλ|2 ds ≤ Cλ
1
2 c(λ). (3.14)

By combining this result with (3.12), one obtains the following

Corollary 3.3. Assume, as above, that (M, g) is a compact n ≥ 2 dimensional manifold with
nonpositive sectional curvatures. Then for any 2 < p < 2(n+1)

n−1 there is a number µ(p, n) > 0 so
that

‖eλ‖Lp(M) . λ
n−1

2 ( 1
2−

1
p ) (log λ

)−µ(p,n)
. (3.15)

Furthermore, if 2(n+2)
n < p < 2(n+1)

n−1 , one can take

µ(p, n) =


n+1
n−1 ( 1

p −
n−1

2(n+1) ), if n ≥ 4,
3
2 ( 1
p −

1
6 ), if n = 2,

and any µ(p, 3) < 2( 1
p −

1
4 ), if n = 3. (3.16)

The proof of (3.2) is similar to the argument from [30]. A new ingredient, which allows the
microlocal analysis to obtain these logarithmic improvements under the assumption of nonpos-
itive sectional curvatures, is the use of the classical Topogonov triangle comparison theorem in
Riemannian geometry.
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4. Lower bounds for L1-norms and the size of nodal sets

In [28] the author and Zelditch showed that there is a positive constant cM so that

cMλ
−n−1

4 ≤ ‖eλ‖L1(M). (4.1)

This is another estimate saturated by the highest weight spherical harmonics, Qλ. Hezari and the
author [14] showed that if

Zλ =
{
x ∈M : eλ(x) = 0

}
is the nodal set of a real eigenfunction, then its (n − 1)-dimensional Hausdorff measure, |Zλ|,
satisfies

λ‖eλ‖2L1(M) . |Zλ|. (4.2)

Combining (4.1) and (4.2) yields the lower bounds of Colding and Minicozzi [9],

λ1−n−1
2 . |Zλ|, (4.3)

which is the best known lower bound for general smooth Riemannian manifolds. Later, the author
and Zelditch in [29] found a very simple proof of (4.3) by using the estimate

‖eλ‖L∞(M) . λ
n−1

2 ‖eλ‖L1(M), (4.1′)

which in their earlier paper, [28], was used to prove (4.1).
One also can use Kakeya-Nikodym norms to control lower bounds for L1(M) norms. First, note

that by Hölder’s inequality, if p > 2,

1 = ‖eλ‖L2(M) ≤ ‖eλ‖
p−2

2(p−1)
L1(M) ‖eλ‖

p
2(p−1)
Lp(M),

and so
‖eλ‖L1(M) ≥ ‖eλ‖

− p
p−2

Lp(M) = λ−
n−1

4
(
λ−

n−1
2 ( 1

2−
1
p )‖eλ‖Lp(M)

)− p
p−2 .

Therefore, by (3.12),

λ
n−1

4 ‖eλ‖L1(M) ≥ cm|||eλ|||
− 2(n+1)−(n−1)p

(n−1)(p−2)
KN , if 2(n+2)

n < p < 2(n+1)
n−1 . (4.4)

Using this, we can deduce a couple of results. The first, which is from [2], is the following:

Theorem 4.1. Assume that (M, g) is an n-dimensional compact manifold with nonpositive sec-
tional curvatures. Then

λ−
n−1

4 (log λ)µ . ‖eλ‖L1(M), (4.5)

for any µ < µn with

µn =


(n+1)2

n−1 , if n ≥ 3
(n+1)2

2(n−1) , if n = 2.

Consequently, if eλ is a real-valued eigenfunction and |Zλ| denotes the (n− 1)-dimensional Haus-
dorff measure of its nodal set, Zλ = {x : eλ(x) = 0}, we have

λ1−n−1
2
(
log λ

)2µ
. |Zλ|, (4.6)

when µ < µn. In particular, when n = 3, (log λ)r . |Zλ| for all r < 16.

To prove this, one just uses the upper bound for |||eλ|||KN in (3.13). The resulting bounds are
optimized as p↘ 2(n+2)

n , which leads to (4.5), which by (4.2), implies (4.6).
We can also use (4.4) to show that eigenfunctions saturating the lower bound (4.1) for L1(M)-

norms must match the profile of the Qλ closely in the sense that there must be a geodesic tube
T
λ−

1
2

(γ) on which a nontrivial portion of eigenfunction has values of size ≈ λn−1
4 . Specifically, we

have the following:
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Theorem 4.2. Let (M, g) be an n-dimensional compact Riemannian manifold. Assume that λjk
is a sequence of eigenvalues for which

‖eλjk ‖L1(M) ≤ c0λ
−n−1

4
jk

(4.7)
for some positive constant c0.

Then there must be a positive constant c1 and tubes T
λjk
− 1

2
(γjk) centered along a unit-length

geodesic γjk ∈ Π so that for suffiently large λjk we have

c1 ≤
∫
T
λjk

− 1
2

(γjk )
|eλjk |

2 dVg. (4.8)

Moreover, in this case, there also must be δ, c2 > 0, depending only on c0 and (M, g), so that for
large λjk

Vol
(
{x ∈ T

λjk
− 1

2
(γjk) : |eλjk (x)| ∈ [c2λ

n−1
4

jk
, c−1

2 λ
n−1

4
jk

]}
)
≥ δλ−

n−1
2

jk
. (4.9)

To prove this, we note that (4.8) is an immediate consequence of (4.4). To prove the last part
of the theorem we shall use (4.7) and (4.1′). We deduce, that if (4.7) is valid, then we must have
that there is a constant c2 so that

‖eλjk ‖L∞(M) ≤ c3λ
n−1

4
jk

. (4.10)

Thus, if we choose c2 > 0 small enough so that c−1
2 ≥ c3 we have that |eλjk (x)| ≤ c−1

2 λ
n−1

4
jk

on all
of T

λjk
− 1

2
(γjk).

To get the other condition in the left side of (4.9) on a nontrival portion of T
λjk
− 1

2
(γjk) we need

to use (4.8). We first note that since Vol (T
λjk
− 1

2
(γjk)) ≈ λ

−n−1
2

jk
, there must be a fixed constant

C0 so that ∫{
x∈T

λjk

− 1
2

(γjk ): |eλjk (x)|≤c2λ
n−1

4
jk

} |eλj (x)|2 dVg ≤ C0c2.

If c1 is as in (4.8), we shall also assume that c2 is chosen small enough so that C0c2 ≤ c1/2. We
then have, by (4.10) and (4.8)

c1
2 ≤

∫{
x∈T

λjk

− 1
2

(γjk ): |eλj (x)|∈[c2λ
n−1

4
j

, c−1
2 λ

n−1
4

j
]
} |eλj (x)|2 dVg

≤ c−2
2 λ

n−1
2

j Vol
(
{x ∈ T

λjk
− 1

2
(γjk) : |eλjk (x)| ∈ [c2λ

n−1
4

j , c−1
2 λ

n−1
4

jk
]}
)
.

From this we clearly get (4.9) if we take δ > 0 to be c1c22/2, which completes the proof of Theo-
rem 4.2.

5. L2-estimates for small balls

In Han [11] and Hezari and Rivière [13], following in part earlier work of Zeldtich [32], it was shown
that if (M, g) has negative sectional curvatures, then∫

B(x,r)
|eλjk |

2 dVg ≤ CM rn, if r =
(
log λjk

)δn
, (5.1)

for some δn > 0 depending on the dimension, as {λjk} ranges over a density one sequence of
eigenvalues so that the resulting system is quantum ergodic.1 Here B(x, r) denotes the geodesic
ball of radius r > 0 about x ∈ M . Recent results of this type for toral eigenfunctions and much
smaller balls are due to Lester and Rudnick [15].

1In Hezari and Rivière [13, §3.1] uniform bounds of this type were obtained for all balls B(x`, r), ` = 1, . . . , N(r),
N(r) ≈ r−n, of radius r as in (5.1) occurring in a specific covering of M . The covering can be chosen so that the
doubles, B(x`, 2r), of the balls in their covering have uniformly bounded overlap by an argument of [9], which
yields (5.1).
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If r does not depend on the frequency but is fixed, then a more precise version of (5.1) (also
for a density one sequence of eigenvalues) is a consequence of the Quantum Ergodic Theorem of
Shnirelman [17] / Colin de Verdiére [10] / Zelditch [31] under the assumption that the geodesic
flow is ergodic (which is weaker than the assumptions in [11] and [13]). However, obtaining results
where the scale depends on the frequency is highly nontrivial.

Hezari and Rivière [13] used (5.1) and a localization argument to show that under the assumption
of negative curvature, for a density one sequence of eigenfunctions one gets certain log-power
improvements over the critical estimate (1.9′) with p = pc = 2(n+1)

n−1 .
The localization step was modified slightly by the author in [18] by showing that for all (M, g)

(no curvature assumptions) one has

‖eλ‖Lpc (M) ≤ Cλσ(pc)
(
r−

n+1
4 sup

x∈M
‖eλ‖L2(B(x,r))

) 2
n+1

, λ−1 ≤ r ≤ InjM, (5.2)

with pc = 2(n+1)
n−1 and σ(p) as in (1.10). Using this estimate one immediately sees how an estimate

like (5.1) leads to an improvement over (1.9′). (5.2) also shows, via the aforementioned Quantum
Ergodicity Theorem, that if the geodesic flow is ergodic then there must be a density one sequence
of eigenfunctions for which

‖eλjk ‖Lpc (M) = o
(
λ
σ(pc)
jk

)
.

A very intersting problem is whether this holds for all eigenfunctions assuming, say, negative or
nonpositive sectional curvatures.

In [18] the author showed that for any (M, g) one always has

‖eλ‖L2(B(x,r)) ≤ Cr
1
2 , λ−1 ≤ r ≤ InjM, (5.3)

with C depending only on (M, g). By (1.1)–(1.2), this estimate is saturated by the zonal functions,
Zλ, on Sn for this full range of r, and it is also saturated by the highest weight spherical harmonics,
Qλ, for the range λ−1 ≤ r ≤ λ− 1

2 .
Let us conclude this note by showing that for a slightly smaller range one can get log improve-

ments over (5.3) under the assumption of nonpositive sectional curvatures:

Theorem 5.1. Fix (M, g) with nonpositive sectional curvatures. Then given ε > 0 there is a
constant Cε such that

‖eλ‖L2(B(x,r)) ≤ Cε
(
r/ log λ) 1

2 , if λ−1 ≤ r ≤ λ− 1
2−ε. (5.4)

It was observed earlier in [18] that the special case of (5.4) with r = λ−1 follows from results of
Bérard [1]. Of course it would be very interesting to see if one could establish a result like (5.3) for
r all the way up to a logarithmic scale. The reason that we can obtain (5.4) for the range of r there
is that the radii are sufficiently small so that, presumably, only functions with the profiles of zonal
functions or highest weight spherical harmonics can saturate (5.3) for such r, and eigenfunctions
with their profiles cannot exist on manifolds of nonpositive curvature.

The proof of Theorem 5.1 is based on a simple variation on arguments in [4], [2] and [30].
First, to prove (5.4), we note that if ρ ∈ S(R) satisfies ρ(0) = 0 and if P =

√
−∆g, then for

any T ≥ 1
ρ(T (λ− P ))eλ = eλ. (5.5)

We shall also want to assume, as we may, that the Fourier transform of ρ satisfies ρ̂(t) = 0 if
|t| ≥ 1/2 and we shall take T = T (λ) = c log λ, where c depends on (M, g) and ε and will be
specified in a moment.

Based on (5.5), we see that we would obtain (5.4) if we could show that∥∥ρ(T (λ− P ))f
∥∥
L2(B(x,r)) ≤ Cε

(
r/ log λ

) 1
2 ‖f‖L2(M), λ−1 ≤ r ≤ λ− 1

2−ε. (5.4′)

By a routine TT ∗ argument, (5.4′) is equivalent to showing that∥∥χ(T (λ− P ))h‖L2(B(x,r)) ≤ Cε
(
r/ log λ

)
‖h‖L2 ,

if supp h ⊂ B(x, r), and λ−1 ≤ r ≤ λ− 1
2−ε, (5.4′′)
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with χ = |ρ|2. Note that because of our assumptions for ρ we have

χ̂(t) = 0 if |t| ≥ 1. (5.6)

Notice also that

χ(T (λ− P )) = 1
2πT

∫
χ̂(t/T )eitλe−itP dt

= 1
πT

∫
χ̂(t/T )eiλt cos t

√
−∆g dt + χ(T (λ+ P )).

Since χ ∈ S(R) and P is nonnegative, it follows that χ(T (λ + P )) has a kernel which is O(λ−N )
for all N . Therefore, we would have (5.4′′) if we could show that for T = c log λ (and appropriate
c > 0) we have

T−1
∥∥∥∫ χ̂(t/T )eiλt cos t

√
−∆g h dt

∥∥∥
L2(B(x,r))

≤ Cε
(
r/ log λ

)
‖h‖L2 ,

if supp h ⊂ B(x, r), λ−1 ≤ r ≤ λ− 1
2−ε. (5.7)

If (Rn, g̃) denotes the universal cover of (M, g) and if D ⊂ Rn is an associated Dirichlet domain
then, as in [4], [2] and [30] we shall use the fact that(

cos t
√
−∆g

)
(x, y) =

∑
α∈Γ

(
cos t

√
−∆g̃

)
(x̃, α(ỹ)),

where Γ are the deck transformations coming from our covering and x̃, ỹ ∈ D denote the lifts of
our x, y ∈M , respectively, to the fundamental domain.

Thus, the operator in (5.7) can be rewritten as
∑
α∈Γ χα where the kernel of χα is

χα(x, y) = T−1
∫
χ̂(t/T )eiλt

(
cos t

√
−∆g̃

)
(x̃, α(ỹ)) dt.

By (3.8) in [2]

|χα(x, y)| ≤ CT−1λ
n−1

2 , if α 6= Identity,

and so, by Young’s inequality,

‖χαh‖L2(B(x,r)) ≤ CT−1λ
n−1

2 rn‖h‖L2 , if supp h ⊂ B(x, r). (5.8)

Note that
λ
n−1

2 rn ≤ rλ−(n−1)ε, if r ≤ λ− 1
2−ε.

Also, by Huygen’s principle, (5.6) and volume comparison theorems there are O(exp(CMT ))
nonzero terms χα for some constant CM depending on (M, g). Therefore, since we are taking
T = c log λ, we conclude that if we choose c > 0 to be small enough then we can sum the bounds
in (5.8) to obtain ∑

Identity6=α∈Γ
‖χα‖L2(B(x,r))→L2(B(x,r)) ≤ λ−

ε
2 r, (5.8′)

which is better than the bounds posited in (5.7). As a result, we would obtain this inequality if we
also knew that

‖χα‖L2(B(x,r))→L2(B(x,r)) ≤ T−1r, if α = Identity.

But this follows from routine arguments. Indeed, if follows from a straightforward modification of
the argument in [18] that was used to establish (5.3).
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