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Hyperbolic equations and SBV functions
Camillo De Lellis

Abstract
In this article we survey some recent results in the regularity theory of ad-

missible solutions to hyperbolic conservation laws and Hamilton-Jacobi equa-
tions.

Functions of bounded variations are L1 functions with distributional derivatives
which are Radon measures. It is well known that the space of functions of bounded
variation (shortly BV) plays a prominent role in the well-posedness theory for some
important class of hyperbolic equations and hyperbolic systems. In this paper we
will consider four different instances of this fact:

(a) Scalar conservation laws in 1 space dimension. The unknown is a scalar
function u defined on a subset of Rt × Rx which solves the equation

ut + [f(u)]x = 0 . (0.1)
We will always assume that f is at least C2.

(b) Hamilton-Jacobi equations. The unknown is a scalar function v defined
on a subset of Rt × Rnx which solves the equation

vt +H(Dxv) = 0 . (0.2)
We will always assume that

H is C2 and uniformly convex. (0.3)

(c) Hyperbolic systems of conservation laws in 1 space dimension. The
unknown is a vector-valued function u defined on a subset of Rt × Rx which
solves the system

ut + [f(u)]x = 0 (0.4)
with some restrictions on f . If the target of u is k-dimensional, then f =
(f1, . . . , fk) is a map from (a subset of) Rk into Rk and (0.4) consists of the k
equations

(ui)t + [fi(u)]x = 0 .
The hyperbolicity of the system requires that the k×k matrix Df(ū) has real
eigenvalues for every ū. The system is strictly hyperbolic if the k eigenvalues
are distinct for every ū.
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(d) Scalar conservation laws in n space dimension. The unknown is a scalar
function u defined on a subset of Rt × Rnx which solves the equation

ut + divx[f(u)] = 0 . (0.5)
This paper surveys some recent regularity theorems for admissible solutions for the
examples (a), (b) and (c). Often these equations are coupled with an initial condition
of the form u(0, x) = u0(x) and one seeks solutions on the domain [0,+∞[×Rn,
which are therefore called global solutions of the Cauchy problem. It turns out that
most of the theorems reported below are valid for general domains. However, in most
of our discussion we will restrict our attention to solutions of the Cauchy problem,
in order to make our presentation easier.

It is well known that generically solutions of the Cauchy problem lose their regu-
larity after a finite time, even when the initial data u0 is extremely regular. Consider
for instance (0.1) with the choice f(ū) := ū2

2 . The resulting equation is called Burg-
ers’ equation and it is a famous prototype for the “finite-time-blowup” of classical
solutions, taken as an example in most textbooks on partial differential equations
(see for instance Section 3.4 in [18]). A thoroughly studied question is whether
one can solve the equations “after” the appearing of singularities and give a well-
posedness theory in a suitable class of solutions which allows singularities. It turns
out that this is possible in a variety of cases. Briefly, we start with:
• bounded maps u which solve (0.1), (0.5) and (0.4) in the sense of distributions;

• Lipschitz maps v which satisfy (0.2) almost everywhere.
It is well known that such solutions are not unique (again, the most common example
is Burgers’ equation when it is coupled, for instance, with the initial condition
u(0, ·) = 1[0,+∞[; cp. with Section 4.2 of [15]). In all the cases we define admissible
solutions by requiring that the solutions above satisfy some additional constraints:
• in the case of (0.1) and (0.5) we impose some inequalities in the sense of

distributions, commonly called entropy conditions (see for instance Section
6.2 of [15]); these solutions are therefore called entropy solutions;

• in the case of (0.2) we consider viscosity solutions (see for instance Section
10.1 of [18]);

• in the case of (0.4) we consider BV solutions subject to several restrictions
(see for instance Section 9.3 of [11]); we will call them semigroup solutions.

In the cases (0.1)-(0.5) and (0.2) there is global existence and uniqueness of ad-
missible solutions when starting from, respectively, bounded and Lipschitz initial
data (cp. with [15] and [18]). Moreover:
• the entropy solutions of (0.1) and (0.5) are BV if the initial data are;

• the gradients of viscosity solutions are always locally BV (this regularization
property holds for (0.1) as well, when the flux f is uniformly convex).

The situation for (0.4) is much more complicated. A well-posedness theory for global
semigroup solutions has been achieved only recently by Bressan and his school. In
this case one needs suitable smallness assumptions for the initial data (we refer to
[11] for further details).
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1. SBV functions
In general the BV class is a quite satisfactory functional setting for the equations
above. Indeed, easy examples show that jump singularities (respectively in u for
(0.1), (0.4) and (0.5) and in ∇v for (0.2)) are necessary. The typical picture that
one has in mind for these solutions (resp. for their gradients, in the case of (0.2))
is a piecewise C1 function which undergoes jump discontinuities along space-time
hypersurfaces (and hence along space-time curves if the space dimension is 1). The
space of BV functions is perhaps the most used functional-analytic “closure” of
classical functions which have jump singularities. However, a typical BV function
might have a quite complicated behavior.

Consider for a moment a BV scalar function f in 1 variable. We then know (see
for instance Section 3.2 of [4]) that, after possibly redefining f on a set of measure
zero, f is continuous except for an at most countable set J . Moreover, for every
x0 ∈ J , the following limits exist:

f+(x0) := lim
x↓x0
f(x) and f−(x0) := lim

x↑x0
f(x) .

The distributional derivative of f is a measure µ. By the Radon-Nykodim Theorem
we can decompose it into µs + µa, where µa is absolutely continuous with respect
to the Lebesgue measure and µs is singular. We can further decompose µs into its
atomic and nonatomic part µat+µna. This means that µat consists of the sum of (at
most countably many) Dirac masses, whereas µna has the property that µna({x}) = 0
for every x ∈ R. The atomic part of the measure can be nicely related to the
pointwise properties of f through the formula

µat =
∑
y∈J

(f+(y)− f−(y))δy . (1.1)

For this reason, several authors call µat the jump part of µ and denote it by µj. The
measure µna is instead much less understood.

A typical example of µna is the derivative of the classical ternary Cantor function
(see Example 1.67 of [4]). Inspired by this example, µna has been called Cantor part
and denoted by µc by Ambrosio and De Giorgi in [17], where this decomposition of
µs was proposed for the first time. This idea can be generalized to n dimensions, as
it was first done in [17]. In this general setting the measure µj is concentrated on a
rectifiable set of codimension 1 (i.e. a countable union of pieces of C1 hypersurfaces)
and one can relate the pointwise behavior of f to µj with a suitable generalization
of (1.1). The remaining “Cantor part” µc of the singular measure µs is, roughly
speaking, a “fractal measure” of “dimension between n − 1 and n” (for the precise
definitions and a complete account of the theory we refer to Chapter 3 of [4]).

In order to deal with some variational problems, Ambrosio and De Giorgi in-
troduced in [17] the space of special functions of bounded variations, briefly SBV ,
which consists of those BV functions for which the Cantor part of the derivative
vanishes identically. This space can be regarded as that “regular part” of BV which
retains the typical properties of classical functions with jump discontinuities. The
following two questions arise naturally in connection with the hyperbolic equations
considered in this note:
(Q1) Do admissible solutions of the Cauchy problems for (0.1), (0.2), (0.4), (0.5)

preserve also the SBV regularity?
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(Q2) Is there an SBV -regularization under suitable assumptions?

These questions can be regarded as “regularity problems” for admissible solutions.
There are very interesting results on higher regularity for solutions of (0.2), see for
instance the book [14]. However, these theorems require some regularity assumptions
on the initial data and it is known that they do not hold if we start from general
Lipschitz initial data. Besides their intrinsic interest, the questions (Q1) and (Q2)
arise naturally in some problems in the control theory for hyperbolic systems of
conservation laws (see for instance [12], [6], [5], [7] and [13]). In this note we will
survey some recent results that show that, while the answer to (Q1) is quite easily
seen to be negative, an SBV -regularization effect holds for (0.1), (0.2) and (0.4) as
soon as the equation is sufficiently nonlinear (note that such a hypothesis is needed
since transport equations are special cases of all the equations considered so far).

2. A couple of examples
As already anticipated, it is easy to see that the answer to Question (Q1) is negative.
Let us consider the simple case of Burgers’ equation

ut +
[
u2

2

]
x

= 0 . (2.1)

As it is well known, classical solutions are constant along characteristics, which are
straight lines and solve the ode γ̇ = u(γ). Let g be the Cantor ternary function (see
Example 1.67 of [4] for the explicit construction of g). As it is well known g is a
continuous strictly increasing map from [0, 1] onto [0, 1]. Define u1 : R→ [0, 1] as

u1(x) =


g(−x) for x ∈ [−1, 0]
0 for x > 0
1 for x < −1 .

For every y ∈ R consider the half-line `y ⊂]−∞, 1]× R given by the equation
`y := {(x− y) = u1(y)(t− 1)} .

The monotonicity of u1 easily implies that the collection {`y}y∈R is a fibration of
] − ∞, 1[×R. Define therefore the function u :] − ∞, 1] × R → [0, 1] by requiring
that u|`y ≡ u1(y). It is easy to check that u is locally Lipschitz on ] − ∞, 1[×R,
continuous on ]0,+∞] × R and satisfies u(1, x) = u1(x). Moreover, by the theory
of characteristics, u solves (2.1) on ] − ∞, 1[×R. This solution is also an entropy
solution (the entropy conditions can be easily checked because the usual chain rule
holds for Lipschitz functions).

Consider next the entropy solution ū of (2.1) on [0,+∞[×R with initial data
ū(0, x) = u0(x) := u(0, x). u0 is a Lipschitz function, which is constantly equal to
0 for x >> 1 and constantly equal to 1 for x << −1. Therefore u0 is an SBV
function. On the other hand, ū coincides necessarily with u on [0, 1[×R and by the
continuity in time of entropy solutions, we conclude that ū(1, x) = u(1, x). Therefore
ū(1, ·) is the Cantor ternary function, which is not in SBV . We can summarize this
construction in the following remark.

Remark 2.1. There exists a bounded Lipschitz initial data u0 such that, if ū denotes
the unique entropy solution in [0,+∞[×R of (2.1) coupled with the initial condition
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ū(0, ·) = u0, then ū(1, ·) is a “Cantor-type” function which belongs to L∞ ∩ (BV \
SBV ).

The previous example still leaves open that entropy solutions are, for instance,
SBV functions when we consider them as functions of both variables: an SBV
function of two variables can in fact have the Cantor ternary function as trace on a
given line. To see this, consider the map u constructed above and extend it to the
whole space-time by setting u(t, x) = u(1− t, x) for t > 1. Then it is easy to see that
u ∈ W 1,1

loc (Rt × Rx). Obviously, this extended function is not even a distributional
solution of (2.1): the example just shows that there is no incompatibility between
the SBV regularity in two variables and having “bad” trace at time t = 1, but
the proof of the SBV regularity in two variables for entropy solutions of Burgers’
equation does not have anything to do with a “reflection trick”.

Consider next the easiest example of (0.1), i.e. let f be a linear function. For some
constant c0 we then have

ut + c0ux = 0 . (2.2)

The only distributional solution of (2.2) on [0,+∞[ with the initial condition
u(0, ·) = u0 is obviously u(t, x) = u0(x− c0t). Therefore, if u0 is BV function which
does not belong to SBV, the solution u is obviously not in SBV . This shows that,
in order to hope for an SBV regularization effect, we need some assumption on
the flux function f . Indeed, the key property which induces the SBV regularization
effect is a “sufficient nonlinearity”.

Let us come back to the example of Remark 2.1. In this explicit case, it is possible
and instructive to see how the entropy solution behaves at times larger than 1. If
we fix ε > 0, no matter how small it is, u(1 + ε, ·) is a piecewise constant function
taking finitely many values. Therefore, the distributional derivative ux(1 + ε, ·) is a
finite sum of Dirac deltas, located on the finitely many points where the function
u jumps. The number of these points converge to ∞ as ε approaches 0. Essentially,
for ε ↓ 0, the jump sets J1+ε of u(1 + ε, ·) cluster towards the Cantor ternary set
(which is the set where the fractal measure ux(1, ·) is concentrated). It is also not
difficult to see that the total mass of the singular measure ux(1 + ε, ·) equals the
mass of the singular measure ux(1, ·).

Inspired by this example, one could formulate the following conjecture (which was
pointed out to the author by Bressan during a conversation on the problem): if u is
an entropy solution of Burgers’ and, for a certain positive time T , u(T, ·) is not in
SBV, at future times T + ε the “Cantor part” of u(T, ·) gets transformed into jump
singularities. From this rough picture one should be able to conclude that u(T, ·) is
“almost always” in SBV , and hence that u ∈ SBV as a function of two variables.
We will see in the next section that this picture is correct for general nonlinear
scalar laws in 1 space dimension. A suitable version is also true for Hamilton Jacobi
equations (under the assumption (0.3)) and for hyperbolic systems of conservation
laws which are genuinely nonlinear.
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3. The SBV -regularization effect

Following the discussion of the previous section, we list here several theorems which
have been proved on the SBV regularity of admissible solutions. The first result has
been proved in [2]:

Theorem 3.1. Assume f ∈ C2(R) and f ′′ > 0. Let u be a bounded entropy solution
of (0.1) in a domain Ω ⊂ Rt×Rx. Then there exists a set S ⊂ R at most countable
such that the following holds ∀τ 6∈ S:

u(τ, ·) ∈ SBV (I) for every open interval I ⊂⊂ Ω ∩ {t = τ}.

In addition, u ∈ SBV (Γ) for every domain Γ ⊂⊂ Ω.

This theorem has been later extended in [19] in two directions:

(i) the assumption f ′′ > 0 can be replaced by the discreteness of the set {f ′′ = 0}
(in this case we must however assume that the solution is BV , since there are
bounded entropy solutions with unbounded variation);

(ii) we can allow for sufficiently regular source terms and for flux functions de-
pending also on u and (x, t); in other words the result can be extended to
balance laws of type ut + [f(u, x, t)]x + g(u, x, t) = 0.

The Theorem 3.1 implies a similar regularization effect for Hamilton-Jacobi equa-
tions (0.2) in 1 space dimension. Indeed, it is well known that, for convex fluxes f , a
Lipschitz function v is a viscosity solution of vt + f(vx) = 0 if and only if u := vx is
an entropy solution of ut+[f(u)]x = 0. However, this nice equivalence does not have
a counterpart when the space dimension is higher than 1. For (0.2), a generalization
of Theorem 3.1 to any dimension has been given in [10]:

Theorem 3.2. Assume v is a Lipschitz viscosity solution of (0.2) on a domain
Ω ⊂ Rt × Rnx, under the assumption (0.3). Then there exists a set S ⊂ Rt at most
countable such that the following holds for every τ 6∈ S:

∇v(τ, ·) ∈ SBV (Γ) for every domain Γ ⊂⊂ Ω× {t = τ}.

Moreover, vt,∇v ∈ SBV (Σ) for every Σ ⊂⊂ Ω.

Tonon [20] has extended this theorem to Hamiltonians depending also on t and x
(that is to solutions of vt +H(t, x,∇v) = 0).

Finally, very recently Theorem 3.1 has been extended to the much more interesting
and difficult case of hyperbolic systems in [9]. First steps in this direction had been
taken in [16] (for self-similar solutions, i.e. solutions of the Riemann problem) and
in [8] (for genuinely nonlinear Temple systems).

Theorem 3.3. Consider a strictly hyperbolic system (0.4) coupled with an initial
data u(0, ·) = ū. Assume that each characteristic field is genuinely nonlinear (see
Definition 5.2 of [11]). If the BV norm of ū is sufficiently small, then the same con-
clusions of Theorem 3.1 hold for the unique semigroup solution of the corresponding
Cauchy problem in [0,+∞[×R.
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The investigation of which conditions ensure the SBV regularity of solutions to
multidimensional scalar conservation laws has not yet been explored and remains,
therefore, an open question. Another interesting question is whether the entropy con-
dition is really needed. Indeed, one could for instance ask whether BV distributional
solutions of Burgers’ equation are necessarily SBV (as functions of 2 variables). This
last question is linked to some problems in the theory of transport equations with
rough coefficients (we refer the reader to [3], in particular to Remark 8.1 therein)
and might be quite subtle. Indeed, it is possible to show that there are BV functions
u 6∈ SBV such that ut +

(
u2

2

)
x

= µ and µ is a purely jump measure (see the proof
of Proposition 1.3 in [3]).

4. Why the SBV regularization holds
A common point in the proofs of all the theorems mentioned above is the following
observation. Assume that we are looking at the solution u of a Cauchy problem in
[0,+∞[×Rn (the case of a general domain is reduced to this one by the finite speed
of propagation). It is then possible to construct a functional F which we evaluate
on the solution u(t, ·) and enjoys the following properties:

• t 7→ f(t) := F(u(t, ·)) has some monotonicity properties;

• If u(τ, ·) (resp. ∇v(τ, ·) for (0.2)) does not belong to SBV , then the function f
has a jump discontinuity at τ ; indeed it is possible to estimate |f(τ+)−f(τ−)|
from below with (a suitable expression involving) the total variation of the
Cantor part of the measure ux(t, ·).

The functionals F used in the papers cited above are all somewhat similar. How-
ever, the various situations pose different levels of difficulty. The proof of [2] is the
most elementary and we will give a sketchy explanation of it in this section. The
proof of [10] is more difficult to visualize and, though the key estimates have a quite
elementary nature, their proof needs some sophisticated technical devices (most no-
tably a reformulation of the theory of monotone functions with tools from geometric
measure theory, due to [1]). The proof in [9] is surely the most demanding, due to
the complicated interactions which arise when dealing with hyperbolic systems of
conservation laws and to the technical difficulties in justifying the computations (in
other words, the estimates are achieved through subtle approximation techniques).

To illustrate some of the basic ideas which are common to all the proofs, we choose
the most simple situation, i.e. that of Theorem 3.1. In this case the functional F has
an immediate interpretation in terms of Dafermos’ generalized characteristics (see
[15]). Fix the time t and consider the set of jump discontinuities Jt of the scalar BV
function x 7→ u(t, x). For each xi ∈ Jt there are a maximal and minimal backward
characteristics `+i and `−i which are straight segments in space-time. One endpoint
of these segments is (t, xi), whereas the two other extrema are distinct and lie on
the line {t = 0} (see Figure 4.1 below). These segments and the line {t = 0} bound
a nontrivial triangle.

If at each time we consider the shadowed region Rt in Figure 4.1, it is clear
from the geometric properties of generalized characteristics that this region can
only increase (in other words, Rs ⊂ Rt for every s < t). Obviously this suggests
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several possible candidates for the functional F . Observe that the region Rt might
be unbounded. To overcome this technical problem we fix M > 0 and define the
function fM(t) as the sum of the lengths of the triangles belonging to Rt and having
tips lying in [−M−Ct,M+Ct]. Note that, by the geometric properties of generalized
characteristics, the triangles do not overlap. If C is sufficiently large, then fM is a
nondecreasing function of time. The choice of C depends only on f and ‖u‖∞ (and
is in fact related to the finite speed of propagation: roughly speaking it ensures that,
if a triangle Γs has tip lying in [−M − Cs,M + Cs], at later time t > s there is a
triangle Γt of Rt which contains Γs and has tip in [−M − Ct,M + Ct])).

t = τ
jumps of u

x

t

Figure 4.1: The shadowed region Rτ .

It remains to check that, if the restriction of the measure ux(t, ·) to the segment
[−M − Ct,M + Ct] has non-vanishing Cantor part, then the function fM “jumps”
up at t. The set of Theorem 3.1 is then the union of the jump discontinuities of
all fM , with M ranging among all natural numbers. To check that fM jumps when
“Cantor-type behaviors’ appear is obviously the delicate part of the proof. One thing
is, however, quite clear.

Consider a point x0 where the Cantor part of ux(t, ·) “prevails” (more precisely,
if we denote by µ the Cantor part of ux, we then require that

lim
r↓0

|µ|([x0 − r, x0 + r])
|ux|([x0 − r, x0 + r]) = 1

)
.

Then, for most points x0 of this type, we have

lim
y→x0

u(t, y)− u(t, x0)
y − x0

= −∞ .

Indeed, the difference quotient diverges because of the prevalence of the Cantor part,
which is a singular measure; the minus sign is instead an effect of Oleinik’s estimate
ux ≤ C

t
. Consider now two characteristics passing through points (t, y) and (t, z)

with y < x0 < z. If the points y and z are very close, these characteristics must
“collide” shortly after the time t.

At time t+ ε we will therefore see plenty of newly formed triangles in the region
Rt+ε. In particular, these triangles contain a set of the form {t} ×A, where A is an
open subset of R covering the “region where the Cantor part of ux(t, ·) prevails”. At
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this point one needs to estimate the total number of new segments that must be
counted when computing fM(t + ε) − fM(t). A careful, yet not long, computation,
succeeds in estimating this number from below. The important point is obviously
that the estimate is independent of ε and gives, therefore, the inequality fM(t+)−
fM(t) > 0.
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