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Abstract
We will present a unique continuation result for solutions of second or-

der differential equations of real principal type P (x,D)u + V (x)u = 0 with
critical potential V in Ln/2 (where n is the number of variables) across non-
characteristic pseudo-convex hypersurfaces. To obtain unique continuation we
prove Lp Carleman estimates, this is achieved by constructing a parametrix
for the operator conjugated by the Carleman exponential weight and investi-
gating its Lp − Lp′ boundedness properties.
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1. Introduction

The aim of these notes is to present a unique continuation result for solutions of
second order differential equations with a potential with critical regularity in the
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Lebesgues spaces. Let P (x,D) be a second order differential operator of real prin-
cipal type with C∞ coefficients and u be the solution of the differential equation

P (x,D)u+ V (x)u = 0, x ∈ Ω ⊂ Rn (1)

where V ∈ Ln/2
loc and let S be a C∞ hypersurface in Rn locally defined by

S ≡ ψ(x) = ψ(x0) (2)

in a neighbourhood Ω of x0. We consider the two sides of this orientated hypersurface

S± = {x ∈ Ω : ψ(x) ≷ ψ(x0)}

and say that a solution u of (1) has unique continuation across the hypersurface
S if when u vanishes on the side S− then it vanishes on a whole neighbourhood
of x0. The Ln/2 regularity for the potential is the critical one, there are known
counter-examples showing that uniqueness may fail for potentials in Lp, p < n/2.

The usual tool for proving unique continuation results is the Carleman estimates;
these are weighted exponential inequalities, which in the Lp framework take the form

‖e−σφv‖Lp ≤ C‖e−σφP (x,D)v‖Lp′ (3)

for C∞ compact supported functions v, when σ > 0 is large enough. The phase φ
of the exponential weight is chosen such that if pσ(x, ξ) = p(x, ξ − iσφ′(x)) stands
for the principal symbol of the conjugated operator e−σφP (x,D)eσφ then

pσ = 0 ⇒ 1

σ
{Re pσ, Im pσ} > 0. (4)

Related to the Lp Carleman estimates is the question of proving Strichartz type es-
timates (Lp−Lp′ estimates) for pseudo-differential operators with complex symbols;
in particular understanding the underlying geometry in the case of symplectic type
pseudo-differential operator (for which the Poisson bracket of the real and imaginary
parts of the symbol is positive on the characteristic set) is of substancial interest.
We refer the reader to [4] and [5] for the investigation of such estimates in two
different geometric cases.

The unique continuation problem for equations with potential in the Lebesgues
spaces has been widely studied. Jerison and Kenig initiated the theory of Lp Carle-
man estimates for the Laplace operator and proved unique continuation results for
elliptic constant coefficient operators in [9]. This was latter generalised to elliptic
variable coefficient operators by Sogge [16]. There were further improvements by
Wolff [21] for elliptic operators with less regular coefficients and by Koch and Tataru
[11] who considered the problem with gradient terms.

For second order hyperbolic operators, unique continuation across space-like
hypersurfaces was obtained by Sogge in [17]. For the case of time-like hypersurfaces,
the first results were obtained by Kenig, Ruiz and Sogge in [13] who proved unique
continuation across any hyperplane when P is a constant coefficient operator (with
symbol a non-degenerate quadratic form). Then Tataru, studying function spaces
adapated to the differential operator P in [19], proved unique continuation for second
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operators across pseudo-convex hypersurfaces in the subcritical case (V ∈ Lp
loc,

p > n/2). To be mentioned are also the results of Escauriaza and Vega [6] on the
heat equation.

To this one should add a forthcoming paper [12] of Koch and Tataru investigating
estimates for operators with complex symbols; their results are complementary to
some obtained by the author (see [4] and [5]) and allow them to obtain unique
continuation results similar to those described in these notes.

2. Statement of the main result

We will need somme additionnal assumptions on the hypersurface S to obtain unique
continuation. We will suppose that S is non-characteristic and pseudo-convex. Let
us recall the definition of (strict1) pseudo-convexity:

Definition 2.1. The hypersurface S ≡ {x ∈ Ω : φ(x) = φ(x0)} is said to be
(strictly) pseudo-convex at x0 ∈ Ω with respect to the real principal type differential
operator P of order 2 (with principal symbol p) whenever

p(x0, ξ) = Hpφ(x0, ξ) = 0 ⇒ H2
pφ(x0, ξ) < 0, ∀ξ ∈ Rn.

Remark 2.2. The geometric interpretation is the following: the transverse char-
acteristics cross the hypersurface whereas the tangential ones remain on one side.

Transversal characteristics

Tangential characteristics

S+

S−

x0

S ≡ ψ = ψ(x0)

Figure 1: Pseudo-convexity.

Remark 2.3. In the case of the wave operator, a space-like hypersurface is always
pseudo-convex.

Let us now state the main theorem.
1For second order real principal type operators, the notions of pseudo-convexity and strict

pseudo-convexity coincide, hence we shall give here the definition of strict pseudo-convexity which
is simpler.

VI–3



Theorem 2.4. Let P (x,D) be a differential operator of order 2 of real principal
type defined on an open set Ω ⊂ Rn, n ≥ 3 and S be a hypersurface defined by (2)
non-characteristic and pseudo-convex with respect to P at x0. If u ∈ H1 is solution
of the differential equation (1) on Ω with V ∈ Ln/2

loc and u|S− = 0 then x0 /∈ suppu.

Typically, we would like to consider the wave operator with a time-like hyper-
surface satisfying some convexity assumption.

3. The Carleman method

The Carleman method consists in establishing adapted weighted Lp inequalities
with an exponential weight e−σφ, σ being a large enough parameter and φ a C∞

function, the level set of which is in a suitably convexified situation (see figure 2)
and to deduce unique continuation therefrom. This is the object of the following
proposition.

S−

S+

S ≡ ψ = ψ(x0)

φ = φ(x0)

x0

Figure 2: Relative situations of the level sets of φ and ψ.

Proposition 3.1. Let P (x,D) be a differential operator of order 2, defined on an
open set Ω ⊂ Rn, n > 2. Suppose that there exists M ≥ 1, a neighbourhood Ω0 of
x0 ∈ Ω and a function φ ∈ C∞ verifying {x ∈ Ω0 : x 6= x0, φ(x) ≤ φ(x0)} ⊂ S−
such that the Carleman estimate

‖e−σφv‖
L

2n
n−2

≤ C‖e−σφP (x,D)u‖
L

2n
n+2

(5)

holds for all v ∈ C∞
0 (Ω0) and σ ≥M . Then if u ∈ H1(Ω) is solution of the equation

(1) on Ω where V ∈ L
n/2
loc and u vanishes on S−, then there exists a neighbourhood

of x0 on which u vanishes.

Let us briefly recall why the Carleman estimate implies unique continuation.
Suppose x0 = 0 and ψ(0) = 0 and let χ ∈ C∞

0 (Ω0) equal 1 on a compact neigh-
bourhood Ω1 of 0. Applying the Carleman inequality to the function v = χu with
compact support gives

‖e−σφv‖
L

2n
n−2

≤ C‖V ‖
L

n
2 (supp χ)

‖e−σφv‖
L

2n
n−2

+ C‖e−σφ[P (x,D), χ]u‖
L

2n
n−2

.
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φ = c

φ = 0

S ≡ ψ = 0

S+

S−

χ ≡ 1 Ω1

suppu ∩ Ω0\Ω1

0

Figure 3: The Carleman method.

Then we choose χ with sufficiently small support so that the first right handside
term may be absorbed in the left handside term, thus

‖e−σφχu‖
L

2n
n−2

≤ 2C‖e−σφ[P (x,D), χ]u‖
L

2n
n+2

.

But [P (x,D), χ]u is supported in suppu∩Ω0\Ω1 ⊂ {φ > 0} where one has φ > c > 0
(see figure 3), which implies

‖e−σφχu‖
L

2n
n−2

≤ 2Ce−σc‖[P (x,D), χ]u‖
L

2n
n+2

≤ C ′e−σc‖u‖H1 .

and hence that ‖e−σ(φ−c)χu‖
L

2n
n−2

is bounded, which is impossible unless u = 0 when
φ < c. This completes the proof of unique continuation.

The Carleman estimates are merely Lp − Lp′ estimates for the conjugated op-
erator Pσ = P (x,D − iσφ′(x)), whose principal symbol p(x, ξ − σφ′(x)) is always
complex. Besides, one should have in mind that because of the essential property
(4) it is important to keep track of the positivity of the parameter σ. Note that
an important ingredient in the proof of Lp − Lp′ estimates is the curvature of the
characteristic set; in our case, this is contained in the fact that the principal sym-
bol of P is a non-degenerate quadratic form (hence it vanishes on a codimension 1
manifold with (n− 2) non-vanishing principal curvatures2).

We shall concentrate on the proof of the Carleman estimates. The proof is
organised along the following principal points: microlocalisation, reduction of the
operator to a normal form, construction of a microlocal parametrix, investigation of
the Lp−Lp′ boundedness properties of the parametrix, estimation of the remainders.
We will give some ideas of the proof.

We suppose that x0 = 0. After a change of coordinates, we may suppose that
the principal symbol of the operator takes the form

p(x, ξ) = ξ2
1 + r(x, ξ′) (6)

where r is a non-degenerate quadratic form in ξ′ ∈ Rn−1, that the hyperplane x1 = 0
is pseudo-convex with respect to P and that the hypersurface S is convex with

2Because of the homogeneity, this is the maximal curvature we may have on the zero set of the
principal symbol.
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respect to x1 = 0 (see figure 2). We choose φ(x) = x1 − Ax2
1/2 for the exponential

weight. The pseudo-convexity at 0 reads

r(0, ξ′) = 0 ⇒ ∂r

∂x1

(0, ξ′) > 0

and allows us to choose A > 0 such that the property (4) is true.
The principal symbol of the conjugated operator is then:

pσ(x, ξ) = ξ2
1 + r(x, ξ′)− σ2(1− Ax1)

2 − 2iσ(1− Ax1)ξ1. (7)

We are interested in constructing a parametrix microlocally in a conic neighbour-
hood of the characteristic set

Σ = {(ξ, σ) ∈ Rn\{0} × R+ : p(0, ξ − iσφ′(0)) = 0}
= {ξ2

1 + r(0, ξ′) = σ2} ∩ {ξ1σ = 0}.

Three zones may be distinguished :

1. in the neighbourhood of Σ+ = {r(0, ξ′) = σ2} ∩ {ξ1 = 0} ∩ {|ξ′| . σ}, since
r > 0, the situation is (microlocally) similar to the one which arises in the
case of unique continuation for elliptic operators (see [16]),

2. in the neighbourhood of Σ− = {r(0, ξ′) = −ξ2
1}∩{σ = 0}∩{{|ξ′| . |ξ1|}, since

r < 0, the situation is (microlocally) similar to the one which arises in the case
of unique continuation for hyperbolic operators (see [17]) across a space-like
hypersurface,

3. in the neighbourhood of Σ0 = {r(0, ξ′) = 0}∩{σ = 0}∩{ξ1 = 0} the situation
is unknown.

In what follows we will concentrate on the third case.
On a conic neighbourhood of (0, ξ′0, 0) with r(0, ξ′0) = 0, assuming for instance

that ∂r/∂ξn(0, ξ′0) 6= 0, using the Malgrange-Weierstrass theorem, the symbol pσ

reads
ξn + α(x, ξ1, ξ

′′, σ) + iσβ(x, ξ1, ξ
′′, σ)

(with ξ = (ξ1, ξ
′′, ξn)) modulo an elliptic factor homogeneous of order 1. Using

the Littlewood-Paley theory, we may also restrict our construction to a zone where
σ + |ξ| ∼ |ξ′| ∼ λ.

We will take t = xn as the evolution variable and change a little notations by
taking (t, x) = (t, x1, . . . , xn−1) as what used to be the x variables. Conjugating
the operator Pσ by a Fourier integral operator U1(t) with real phase reduces the
problem to the construction of a parametrix for

Dt + iσf(t, x,Dx, σ).

But since the property (4) is invariant by symplectic change of coordinates, we have
∂f/∂t > 0, thus the latter operator takes the form

Dt + iσ(t+ ω(x,Dx, σ))Λ(t, x,Dx, σ)
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where Λ > 0, this may also be reduced after conjugation by another Fourier integral
operator with real phase U2 (independent of the time) to

Dt + iσ(t+ λ−1Dx1)Λ(t, x,Dx, σ) (8)

with Λ > 0.
If we sum up, after conjugation by a Fourier integral operator U(t) = U1(t)U2

with real phase, the problem of finding a paramterix to the operator Pσ reduces to
the construction of a paramatrix for the model operator (8). This is fortunate since
the fact that the change of sign of the imaginary part of the symbol of (8) occurs
on a fairly simple set will allow us to use the method of Treves [20] to construct
such a parametrix. The phase of the Fourier integral operator U(t) satisfies some
non-degeneracy property which will be useful in the investigation of the Lp − Lp′

boundedness properties of the parametrix. This property follows basically from the
fact that p(x, ξ) is a non-degenerate quadratic form (hence vanishes on a codimension
one manifold with n − 2 non-vanishing principal curvatures), and may be tracked
along the different reductions of the symbol.

4. A parametrix construction

To find a left parametrix for the reduced operator (8) we seek a right parametrix
for Dt − iσ(t+ λ−1Dx1)Λ and then take the adjoint.

Let us first study the model case Dt − iσ(t + λ−1Dx1). In this case, the con-
struction is fairly easy since we can take the Fourier transform with respect to x1

and solve an ordinary differential equation according to the sign of the quantity
t+ λ−1η1. Namely we have3

Eu(t, x) = e−σ(t−s)2/2

∫∫∫
ωei(x−y)·ηe−σ(t−s)(s+λ−1η1)a(η, σ, λ)u(s, y) dy dη ds (9)

where ω(s, t, η1, λ) = H(t− s)− Ȟ(λs+ η1)

and where a is just a localising function in the set σ+ |ξ| ∼ λ and in the neighbour-
hood of a point of Σ0. Observe that the integral lies precisely on a set where the
real exponentials are decreasing.

In the general case, we seek the parametrix under the form

Eu(t, x) =

∫∫∫
ωeiw(s,t,x,η,σ,λ)−iy·ηa(s, t, x, η, σ, λ)u(s, y) dy dη ds (10)

where Imw ≥ 0 when ω 6= 0 and σ ≥ 0, and where w is a solution (at least in an
approximate sense) of the complex eiconal equation

∂tw = iσ(t+ ∂x1w)Λ̃(t, x, ∂xw)

w|t=s = x · η

3H is the Heaviside function, and Ȟ(t) = H(−t).
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where Λ̃ is an almost analytic extension of Λ, and where a is solution of a complex
transport equation. This requires a careful application of the construction of Treves
[20] for solving complex eiconal equation.

We find that the phase looks very much like the one in the model case

w(s, t) = x · η + iσ(t− s)(s+ λ−1η1)Λ(s, x, η) + σ(t− s)2v(s, t)

where v(s, t) is a complex function with positive imaginary part. Besides it is fairly
simple to obtain that the operator

W (t, s)u =

∫∫∫
ωeiw(s,t,x,η,σ,λ)−iy·ηa(s, t, x, η, σ, λ)u(s, y) dy dη (11)

is bounded on L2.

5. The Lp − Lp
′

estimates

It is time now to study the Lp − Lp′ boundedness of the complete microlocal
parametrix U(t)E∗U∗(t) of the operator Pσ. Recall that U(t) is the Fourier in-
tegral operator with real phase reducing the conjugated operator Pσ to the normal
form (8).

Proposition 5.1. We have the following estimate:

‖U(t)E∗U∗(t)u‖Lp ≤ Cλ‖u‖Lp′ (12)

for all functions u ∈ C∞
0 (Rn).

The operator U(t)E∗U∗(t) takes the form∫
U(t)W ∗(t, s)U∗(s) ds

where W (s, t) is given by (11), hence it suffices to prove the estimate

‖U(t)W ∗(t, s)U∗(t)f‖Lp(Rd
x) ≤ Cλ|t− s|−(1− 2

n
)‖f‖Lp′ (Rd

x) (13)

which gives

‖U(t)EU∗(t)u‖Lp(Rd
x) ≤ Cλ

∫
|t− s|−(1− 2

n
)‖u(s)‖Lp(Rd

x) ds

and implies the estimate (12) thanks to the Hardy-Littlewood-Sobolev inequality
since

1− 1

p
= 1− 1

p′
+

2

n
.

The estimate (13) is obtained by interpolation between the L2 estimate

‖U(t)W ∗(t, s)U∗(t)f‖L2(Rd
x) ≤ ‖f‖L2(Rd

x)
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which as said previously is fairly simple to obtain, and the L∞ − L1 estimate

‖U(t)W ∗(t, s)U∗(t)f‖L∞(Rd
x) ≤ λn/2|t− s|−

n−2
2 ‖f‖L1(Rd

x). (14)

To give an idea of the proof of (14) we will restrict ourselves to the model case where
U(t) = eit|Dx| — which basically contains all the non-degeneracy properties of the
phase which will be needed — and where W (s, t) is given by (11) in the model case
(9).

The estimate (14) comes from a L∞ bound on the kernel of U(t)W ∗(t, s)U∗(s)
which in our model case takes the form

e−σ(t−s)2/2

∫
[H(s− t)− Ȟ(λt+ η1)]e

i(x−y)·η

× ei(t−s)|η|e−σ(s−t)(t+λ−1η1)a(η, σ, λ) dη (15)

where the amplitude a is supported in a neighbourhood of a point of Σ0 and in a
set where σ + |ξ| ∼ λ. After a change of variable, we have to prove the following
bound∣∣∣∣∣

∫
[H(s− t)− Ȟ(t+ η1)]e

iλ(x−y)·ηeiλ(t−s)|η|e−σ(s−t)(t+η1)a(λη, σ, λ) dη

∣∣∣∣∣
≤ C(λ|t− s|)−

n−2
2 (16)

where a is now compact supported with support independent from λ and its deriva-
tives are bounded independently from λ.

We restict ourselves to the case s ≥ t. Two cases occur: either |x′− y′| & |t− s|
and we obtain the bound by integration by parts in η′, or |x′ − y′| . |t − s| and
for the sake of simplicity we may as well suppose that x′ = y′. Suppose that the
amplitude is supported in a neighbourhood of η = (0, . . . , 1), then the Hessian of |η|
with respect to (η2, . . . , ηn−2) is non-degenerate, we can take λ|t− s| as a parameter
and apply the stationnary phase in the integral with respect to (η2, . . . , ηn−2). Hence
it remains to bound the one dimensional integral∣∣∣∣∣

∫ ∞

−t

eiλ(x1−y1)·η1eiλ(t−s)
√

η2
1+η2

n−1e−σ(s−t)(t+η1)a(η1, ηn−1) dη1

∣∣∣∣∣ ≤ C(λ|t− s|)−
1
2 .

When |x1 − y1| & |t − s| this is just an integration by part (considering the real
exponential as an amplitude), hence for the sake of simplicity we may as well suppose
x1 = y1. Finally we have to prove∣∣∣∣∣

∫ ∞

−t

eiλ(t−s)
√

η2
1+η2

n−1e−σ(s−t)(t+η1)a(η1, ηn−1) dη1

∣∣∣∣∣ ≤ C(λ|t− s|)−
1
2

but to do this we only have to apply Van der Corput’s lemma since the phase is non-
degenerate when (η1, ηn−1) = (0, 1) putting the real exponential in the amplitude,
since in Van der Corput’s lemma we only need the amplitude to be bounded and the
L1 norm of the derivative of the amplitude to be bounded b constants independent
of λ. This is of course the case of e−σ(s−t)(t+η1)a. This achieves the proof in the
model case.
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6. Comments

The general basic ideas of the proof are similar to those we have described in
the model case presented here. Technical difficulties arise from the fact that the
parametrix constructed in section 4 is not a Fourier integral operator with complex
phase. Therefore we can not use the symbolic calculus to compute the composition
with the Fourier integral operator U(t). Nevertheless repeated use of the stationnary
phase provides an adequate substitute to the calculus.

One point that we have not so much insisted on is that along the different
reductions from the general form of Pσ given by the Malgrange-Weierstrass theorem
to the normal form (8), we may obtain a description of the phase of the Fourier
integral operator U(t) allowing us to apply the same general principles as in the
model case.

The last remark concern the remainders: when microlocalising, constructing a
parametrix, etc., remainders appear. But the Carleman estimate (5) may not be a
posteriori pertubated by lower order terms. Hence we have to be particularly careful
in the proof when dealing with the remainders. The solution is to use estimates
involving L2 for the remainders. Namely we need the additional estimates

‖U(t)E∗u‖Lp ≤ Cλ1/2‖u‖L2

‖E∗U∗(t)u‖L2 ≤ Cλ1/2‖u‖Lp′

the proof of which is very similar in spirit to the proof of the Lp −Lp′ estimates for
the principal term. Indeed using the TT ∗ argument these reduce to proving Lp−Lp′

estimates.
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