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Remarks on the blow-up for the Schrödinger
equation with critical mass on a plane domain

Valeria Banica

Abstract
We concentrate on the analysis of the critical mass blowing-up solutions for

the cubic focusing Schrödinger equation with Dirichlet boundary conditions,
posed on a plane domain. We bound from below the blow-up rate for bounded
and unbounded domains. If the blow-up occurs on the boundary, the blow-up
rate is proved to grow faster than (T − t)−1, the expected one. Moreover, we
state that blow-up cannot occur on the boundary, under certain geometric
conditions on the domain.

1. Introduction

In this paper we study the blow-up of critical mass solution to cubic focusing NLS
in a plane domain with Dirichel boundary condition. First we recall the classical
results on the whole euclidean plane. These results can be generalized in higher
dimension.

Consider the nonlinear Schrödinger equation on R2

(S)

{
i∂tu+ ∆u+ |u|p−1u = 0

u(0) = u0

The associated Cauchy problem is locally well posed in H1 for all p ([6], [8]).
The Gagliardo-Nirenberg inequality

‖v‖p+1
p+1 ≤ Cp+1‖v‖2

2‖∇v‖
p−1
2

implies that the energy of the solution u of the equation (S),

E(u) =
1

2

∫
R2

|∇u|2dx− 1

p+ 1

∫
R2

|u|p+1dx,
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is bounded from below by

‖∇u‖2
2

(
1

2
− Cp+1

p+ 1
‖u‖2

2‖∇u‖
p−3
2

)
.

As a consequence, if p < 3, since the mass is conserved, the gradient of u is controlled
by the energy. Therefore the solution does not blow up and global existence occurs.

The cubic power is a critical power, in the sense that the nonlinearity is strong
enough to generate solutions blowing up in a finite time. However, even in this case,
we have a global result for small initial conditions.

Indeed, in the case, if the mass of the initial condition is small enough so that

C4

4
‖u‖2

2 <
1

2
,

then the energy controls the gradient and again, the global existence is proved for
the equation (S).

For this particular value of p, Weinstein has given a sharpening of the Gagliardo-
Nirenberg inequality ([20]). By variational methods using Lions concentration-
compacity lemma ([11], [12]), he obtained the existence of a minimizer Q for the
optimal constant of Gagliardo-Nirenberg’s inequality

1

C4

= inf
v∈H1(R2)

‖v‖2
2‖∇v‖2

2

‖v‖4
4

.

This minimizer verifies the Euler-Lagrange equation

∆Q+Q3 = Q.

Such a positive function, called ground state of the nonlinear Schrödinger equation,
is radial, exponentially decreasing at infinity and regular. Recently, Kwong has
shown that it is unique up to a translation ([10]). Moreover, it verifies the Pohozaev
identities {

‖∇Q‖2
2 − ‖Q‖4

4 + ‖Q‖2
2 = 0

‖Q‖4
4 = 2‖Q‖2

2

,

leading to the relations between the norms of Q which give the optimal value for
the constant of the Gagliardo-Nirenberg inequality

C4 = 2
1

‖Q‖2
2

.

In conclusion, if p = 3, the solutions of the equation (S) with initial condition
of mass smaller than the one of the ground state

‖u‖2 < ‖Q‖2,

are global in time.
The mass ‖Q‖2 is critical, in the sense that we can construct as follows solutions

of mass equal to ‖Q‖2, which blows up in finite time. Since p = 3, the pseudo-
conformal transform of a solution u of (S)

1

t
ei

|x|2
4t u

(
−1

t
,
x

t

)
,

I–2



is also a solution of (S) ([4]). So, from a stationary solution on R2

eitQ(x),

for all positive T ,

u(t, x) =
e

i
T−t

T − t
e−i

|x|2
4(T−t) Q

(
x

T − t

)
,

is a solution blowing-up at the time T . Moreover, Merle proved in [14] that all blow-
ing up solutions on R2 with critical mass ‖Q‖2 are of this type, up to the invariants
of the equation. The proof is based on a result of concentration of Weinstein ([21],
see Lemma 1.2) and on the study of the first order momentum

f(t) =

∫
R2

|u(t, x)|2xdx,

and of the virial
g(t) =

∫
R2

|u(t, x)|2|x|2dx

associated to a solution u of the equation (S). The conservative properties of these
two quantities on R2, in the case of the critical power 3, play an important role in
Merle’s proof. The derivative of the first order momentum is constant in time

∂2
t f = 0,

and g satisfies the virial identity ([4])

∂2
t g = 16E(u).

In certain cases of initial conditions with mass larger than ‖Q‖2 recent achieve-
ments were done by Merle and Raphaël ([15], [16]).

In this work we are concerned with the nonlinear Schrödinger equation posed on
a regular domain Ω of R2, with Dirichlet boundary conditions

i∂tu+ ∆u+ |u|p−1u = 0
u|R×∂Ω = 0
u(0) = u0

.

The Cauchy problem is well posed on H2 ∩ H1
0(Ω). For nonlinearities less than

cubic, Vladimirov [19] and Ogawa and Ozawa [17] have shown the well-posedness
of the Cauchy problem on H1

0(Ω), but without the uniform continuity of the flow
on bounded sets of H1

0(Ω). For nonlinearities stronger than cubic in dimension 2, or
for any power nonlinearity p, in dimension higher than 2, the Cauchy problem on
H1

0(Ω) is open.
For the equation with power p < 3, one can show as for the case Rn that the

H1
0(Ω) solutions are global in time. For the equation with power p ≥ 3, posed

on a star-shaped domain of Rn, Kavian has proved the blow-up in finite time of
the H2 ∩ H1

0(Ω) solutions of negative energy or of positive energy but under some
conditions on the first and second derivatives of the virial ([9]). His proof follows
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the ones on Rn of Zakharov ([23]) and Glassey ([7]), by estimating via the geometric
condition on Ω the boundary terms which appear in the second derivative of the
virial. The proof is based on an upper bound of the virial in terms of its first and
second derivative, which implies the cancellation of the virial at a finite time T .
Since the mass is conserved, it follows that the solution must blow up at the time
T .

From now on we shall analyze the cubic equation on Ω

(SΩ)


i∂tu+ ∆u+ |u|2u = 0

u|R×∂Ω = 0
u(0) = u0

.

The usual Strichartz inequalities are no longer valid and the loss of derivatives is
stronger than in the case of a compact manifold ([3]).

As in the case of the plane, for initial conditions with mass smaller than the
one of the ground state, the Cauchy problem is globally well-posed on H2 ∩H1

0(Ω).
The proof, given by Brézis and Gallouët, is based on logarithmic type estimates
([2]). This result has been extended to the natural space H1

0(Ω), up to the uniform
continuity of the flow ([19],[17],[4]).

The critical mass for blow-up is ‖Q‖2, as in the case of the equation posed on
R2. More precisely, the following result holds.

Theorem 1.1 (Burq-Gérard-Tzvetkov [3]) Let Ω be a regular bounded domain of
R2. Let x0 ∈ Ω and ψ ∈ C∞0 be a function equal to 1 near x0. Then there exist
positive numbers κ and α0 such that for all α > α0, there exists a time Tα and a
function rα defined on [0, Tλ[×Ω, satisfying

‖rα(t)‖H2(Ω) ≤ ce−
κ

Tα−t ,

such that

u(t, x) = ψ(x)
e

i
α2(Tα−t)

α(Tα − t)
e−i

|x−x0|
2

4α(Tα−t)Q

(
x− x0

α(Tα − t)

)
+ rα(t, x),

is a critical mass solution of (SΩ), blowing up at x0 at the time Tα with the blow-up
rate 1

Tα−t .

The proof, following an idea of Ogawa and Tsutsumi ([18]), is based on a fixed
point method wich allows to complete the cut-off of the explicit blowing up solution
on R2 at x0 to a blowing up solution on Ω at x0. Theorem 4.1.1 implies in particular
that at every point of Ω there are explosive solutions. Moreover, the proof is still
valid for the torus T2 and for a larger class of subsets of the plane, which satisfy the
property of 2-continuation, from H2∩H1

0(Ω) to H2(R2), and for which the Laplacian
domain

D(−∆Ω) = {u ∈ H1
0(Ω),∆u ∈ L2(Ω)},

is H2∩H1
0. Such subsets are for example the domains with compact regular boundary

and convex polygons bounded or unbounded.
As in the Rn case, the following lemma, due to Weinstein, gives us the general

behavior of a blowing-up solution of critical mass.
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Lemma 1.2 (Weinstein [21]) Let uk ∈ H1(R2) be a sequence of functions of critical
mass satisfying {

βk = ‖∇uk‖2 −→
k→∞

∞
E(uk) −→

k→∞
c <∞

Then there exist points xk ∈ R2 and θk ∈ R such that in H1(R2)

eiθk

βk
uk

(
x

βk
+ xn

)
−→
k→∞

1

ω
Q(ωx),

where ω = ‖∇Q‖2.

Let u be a solution of (SΩ) that blows up at the finite time T , that is

λ(t) =
‖∇u(t)‖2

‖∇Q‖2

−→
t→T

∞.

By combining Lemma 1.2 for families uk = u(tk) with tk sequences convergent to T
with the result of Kwong on the uniqueness of the ground state ([10]), there exist
θ(t) real numbers and x(t) ∈ R2 such that in H1(R2)

eiθ(t)

λ(t)
u

(
t,

x

λ(t)
+ x(t)

)
−→
t→T

Q(x), (1)

where u is continuated by zero outside Ω. Then, in the space of distributions,

|u(t, ·+ x(t))|2 −→
t→T

‖Q‖2
2 δ0. (2)

In this paper we concentrate on the further analysis of the blowing-up solutions
with critical mass on a plane domain. The results are the following.

Theorem 1.3 Let u be a C([0, T [,H1
0) solution of the Schrödinger equation (SΩ),

which has critical mass and blows up at the finite time T .
i) For bounded domains, the blowing-up rate is lower bounded by

1

T − t
. ‖∇u(t)‖2.

ii) If there exist solutions u of critical mass blowing up at a finite time T on the
boundary of Ω, that is if the concentration parameter x(t) converges as t→T to a
point on the boundary, then the blowing-up rate satisfies

lim
t→T

(T − t)‖∇u(t)‖2 = ∞.

Let us notice that for the Schrödinger equation posed on a domain, the conservations
of the mass and of the energy of the solutions are still valid, but the conservation
of the derivative of the first momentum and the virial identity fail. In order to
avoid these difficulties, we shall use systematically in the proof of Theorem 1.3 a
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Cauchy-Schwarz type inequality derived from Weinstein’s inequality. Precisely, we
show that if v is a H1(R2) function of critical or subcritical mass, then∣∣∣∣∫ =(v∇v )∇θdx

∣∣∣∣ ≤ (
2E(v)

∫
|v|2|∇θ|2dx

) 1
2

for all real function θ. This inequality allows us to estimate the virial, that we shall
assume to be localized if Ω is unbounded (see Remark 1.6). The lower bound for
the blowing-up rate is the same as the one found by Antonini on the torus ([1]).

By following the approach of Weinstein in [22], and the recent results of Maris
in [13], we analyze the convergence to the ground state of the modulations of the
solutions (1), and we obtain, for bounded domains, the following additional infor-
mations.

Proposition 1.4 i) The blow-up rate verifies∫
|u(t)|2|x− x(t)|2dx ≈ 1

‖∇u(t)‖2
2

.

ii) The concentration parameter x(t) can be chosen to be as the first order momentum

x(t) =

∫
|u(t)|2xdx
‖Q‖2

2

.

Corollary 1.5 If the equation (SΩ) is considered to be invariant under rotations,
then x(t) can be chosen 0, and we have

g(t) ≈ 1

‖∇u(t)‖2
2

.

Remark 1.6 For unbounded domains, if the solution concentrates at one point, that
is if x(t) converges as t→T , then the first assertion of Theorem 1.3 is true, and so
are the assertions of Proposition 1.4, for the virial and the first order momentum
localized at the blow-up point.

There is no known example of a solution of nonlinear Schrödinger equation with
a blow-up rate larger than 1

T−t , neither in the case of supercritical mass, nor in the
case of supercritical nonlinearities.

Therefore we expect that the blowing-up rate grows exactly like 1
T−t and that

the profiles are the ones on R2 modulo an exponentially decreasing in H1 function.
Since it is not likely that the blowing-up rate at the boundary grows strictly faster

than 1
T−t , we also expect that there are no solutions blowing-up on the boundary of

a domain. This is confirmed for certain simple cases by the following result.

Theorem 1.7 If Ω is a half-plane or a plane sector, then there are no solutions
blowing-up in a finite time on the boundary of the half-plane or in the corner of the
sector respectively.
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Indeed, under these geometric hypotheses on Ω, the boundary terms which ap-
pear in the second derivative of the virial associated to a blowing-up solution of
(SΩ) cancel, so we have, as on Rn, the virial identity

∂2
t g = 16E(u).

The proof then follows the one by Merle in [14] for the equation posed on Rn, and
we obtain that

E(ei
|x|2

4(T−t)u(t, x)) = 0,

and by the variational characterization of the ground state, u(t) must be of the type
of the critical mass explosive solutions on R2. Therefore we arrive at a contradiction
by looking at the support of the solution.

We shall give in the following the proof of the Theorem 1.3. The first section
§2 contains some results on general domains. We prove the Cauchy-Schwarz type
inequality already mentioned, and we calculate the derivative in time for a virial
type function. In §3, by studying the virial, the lower-bound of the blowing-up rate
is proved for bounded domains Ω. In §4, by introducing a localized virial, we find
the same lower-bound for the blowing-up rate for unbounded domains. The last
section §5 contains the results regarding the explosion on the boundary of Ω.

I thank my advisor Patrick Gérard for having introduced me to this beautiful
subject and for having guided this work.

2. Results on general domains

2.1. A Cauchy-Schwarz inequality for subcritical mass func-
tions

Lemma 2.1 Let θ be a real valued function. All v ∈ H1(R2) with critical or sub-
critical mass satisfy

(∗)
∣∣∣∣∫ =(v∇v )∇θdx

∣∣∣∣ ≤ (
2E(v)

∫
|v|2|∇θ|2dx

) 1
2

Proof. The precised version of the Gagliardo-Nirenberg inequality, presented in the
introduction, is, for function w in H1(R2),

‖w‖4
4 ≤

2

‖Q‖2
2

‖w‖2
2‖∇w‖2

2.

As a consequence, if
‖w‖2 ≤ ‖Q‖2,

then the energy of w is positive.
Therefore on one hand

0 ≤ E(eiαθv)

for every real number α and for all real function θ. On the other hand

E(eiαθv) =
1

2

∫
|iα∇θ v +∇v|2dx− 1

4

∫
|v|4dx =
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=
α2

2

∫
|v|2|∇θ|2dx− α

∫
=(v∇v )∇θdx+ E(v)

Thus the discriminant of the equation in α must be non positive and we obtain the
claimed Cauchy-Schwarz type inequality (∗).

�

2.2. Derivatives of virial type functions

Let u be a solution of (SΩ) and let h be a C∞(R2) function. Then, by using the fact
that u satisfies (SΩ), we obtain

∂t

∫
Ω

|u(t)|2hdx = 2

∫
Ω

< (u(t)ut(t))hdx = 2

∫
Ω

= (u(t)∆ut(t))hdx.

Since u cancels on the boundary of Ω, by integration by parts

∂t

∫
Ω

|u(t)|2hdx = −2

∫
Ω

= (u(t)∇ut(t))∇hdx. (3)

3. The blow-up rate on bounded plane domains

3.1. The convergence of the concentration points x(t)

From (2) it follows that for a test function ψ,∫
Ω−x(t)

|u(t, x+ x(t))|2ψ(x)dx −→
t→T

‖Q‖2
2ψ(0).

If ψ is chosen such that ψ(0) 6= 0 then, since the set Ω is bounded, it follows that

lim sup
t→T

|x(t)| <∞.

We shall show that x(t) has a limit at the time T .
The first order momentum

f(t) =

∫
Ω

|u(t, x)|2xdx,

stays finite in time since Ω is bounded and u conserves its mass. By using the
formula (3) for vector-valued functions h, one can calculate the derivative

f ′(t) = −2

∫
Ω

=(u(t)∇u(t) )dx.

The inequality (∗) in the special case θi(x) = xi implies that this derivative is
bounded in time

|f ′(t)|2 ≤ 4
∑
i∈{1,2}

∣∣∣∣∫
Ω

=(u(t)∇u(t) )∇θidx
∣∣∣∣2 ≤ 16E(u)‖u‖2

2.
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Therefore f admits a limit at the time T . Let us define x0 by

f(T ) = x0‖Q‖2
2.

Using the convergence (2) and the fact that Ω − x(t) is a uniformly bounded set,
one has

f(t)− x(t)‖Q‖2
2 =

∫
Ω−x(t)

|u(t, x+ x(t))|2xdx −→
t→T

0.

Therefore the point x0 is the limit of x(t), and the square of the solution behaves
like a Dirac function

|u(t, ·)|2 −→
t→T

‖Q‖2
2 δx0 . (4)

Up to a translation, one can suppose that the solution blows up in 0 ∈ Ω.

3.2. Lower bound for the blow-up rate

The derivative in time of the the virial,

g(t) =

∫
Ω

|u(t, x)|2|x|2dx,

can be calculated with the formula (3) with h(x) = |x|2, and

g′(t) = −4

∫
Ω

=(u(t)∇u(t) )xdx.

Therefore the inequality (∗) in the case θ(x) = |x|2 implies that

|g′(t)| ≤ 4
√

2E(u)g(t).

The concentration result (4) of the former subsection gives

g(T ) = 0,

and one can now write√
g(t) = −

∫ T

t

g′(τ)

2
√
g(τ)

dτ ≤
∫ T

t

2
√

2E(u) = 2
√

2E(u)(T − t),

and obtain
g(t) ≤ 8E(u)(T − t)2.

Then the uncertainty principle(∫
R2

|u|2
)2

≤
(∫

R2

|u|2|x|2
) (∫

R2

|∇u|2
)

gives us a lower bound of the blow-up rate

‖Q‖2
2

2
√

2E(u)(T − t)
≤ ‖∇u(t)‖2,

so the first assertion of Theorem 4.1.2 is proved.
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4. The blow-up rate on unbounded plane domains

Consider now the equation (SΩ) on an unbounded domain of the plane or on a
surface. Let u be a critical mass solution that blows up in an interior point x0 of Ω,
that is

x(t) −→
t→T

x0.

Up to a translation, we can suppose that x0 is zero and so,

|u(t, x)|2 −→
t→T

‖Q‖2
2 δ0.

Let φ be a C∞0 function, equal to 1 on B(0, R). Let us introduce the localized
virial of the solution

gφ(t) =

∫
|u(t, x)|2φ2(x)|x|2dx.

Then, using (3) with h(x) = φ2(x)|x|2, one has

g′φ(t) = −2

∫
=(u(t)∇u(t))∇(φ2|x|2)dx.

The inequality (∗) with θ(x) = φ2(x)|x|2 gives us

|g′φ(t)|2 ≤ 8E(u)

∫
|u|2|∇(φ2|x|2)|2dx

Since ∇(φ2|x|2) is a C∞o (R2) function cancelling at 0, and since the square of |u|
behaves like a Dirac distribution, it follows that

g′φ(T ) = 0.

Then, as in the former section, and using the existence of a positive constant C such
that

|∇(φ2|x|2)|2 ≤ Cψ2|x|2,
one has

gφ(t) . (T − t)2.

The uncertainty principle reads(∫
|u|2φ2dx

)2

≤
(∫

|u|2φ2|x|2dx
) (∫

|∇(uφ)|2dx
)
.

By integrating by parts the last term and by using the fact that φ is equal to 1 on
B(0, R), it follows that(∫

B(0,R)

|u(t)|2
)2

≤ gφ(t)

(∫
|∇u|2φ2dx−

∫
|u|2φ∆φdx

)
.

Since φ is a C∞0 function,(∫
B(0,R)

|u(t)|2
)2

≤ gφ(t)

(
C

∫
|∇u|2dx−

∫
|u|2φ∆φdx

)
.
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On the one hand the L2 norm of u is conserved. On the other hand, the behavior
of |u|2 as a Dirac distribution implies that the norm of its restriction outside a
neighborhood of zero tends to 0 in time. So we have

∫
B(0,R)

|u(t)|2 = O(1)∫
|u(t)|2φ∆φdx = o(1)

,

and since gφ is bounded in time,

1 .
√
gφ(t)‖∇u(t)‖2

Then the decay of gφ gives us the lower bound of the blow-up speed

1

T − t
. ‖∇u(t)‖2,

and the first assertion of Theorem 4.1.2 is completely proved.

5. Blow-up on the boundary

5.1. Necessary condition for blow-up on the boundary

Let us first introduce a notion of limit of sets, as in [5].

Definition 1 A sequence of open sets Mm is said to tend to an open set M of R2

if the following conditions are verified.
i) For all compact K ⊂M , there exist nK ∈ N, such that for all n ≥ nK, K ⊂Mn.
ii) For all compact K ⊂c M , there exist nK ∈ N, such that for all n ≥ nK, K ⊂c Mn.

Let us suppose that there exists an explosive solution u of the equation (SΩ) at
0 ∈ ∂Ω. The convergence (1) implies that

λ(t)(Ω− x(t)) −→
t→T

R2.

As in [5], the limit set depends on the position of x(t) with respect to the boundary
of Ω. If there is a positive number C such that for all t

λ(t)d(x(t), ∂Ω) ≤ C,

then λ(t)(Ω− x(t)) tends to a half-plane and blow-up cannot occur. Also, if

λ(t)d(x(t), ∂Ω) −→
t→T

∞,

and x(t) is not in Ω, then λ(t)(Ω − x(t)) is a set that moves to infinity and does
not cover at the limit time the whole plane. Therefore the only possibility to have
explosion on the boundary is that x(t) ∈ Ω and

λ(t)d(x(t), ∂Ω) −→
t→T

∞.
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In particular, since 0 is on the boundary,

|λ(t)x(t)| −→
t→T

∞. (5)

We have

|x(t)|2
∫
B(x(t), C

λ(t)
)

|u|2 ≤ 2

∫
B(x(t), C

λ(t)
)

|u|2|x− x(t)|2 + 2

∫
B(x(t), C

λ(t)
)

|u|2|x|2.

On the one hand, by using the Weinstein relation (1), one has

|x(t)|2
∫
B(x(t), C

λ(t)
)

|u|2 ≈ |x(t)|2.

On the other hand, using again (1),∫
B(x(t), C

λ(t)
)

|u|2|x− x(t)|2 .
1

λ(t)2
.

In view of (5), these two facts imply

|x(t)|2 .
∫
B(x(t), C

λ(t)
)

|u|2|x|2 . gψ,

where gψ is the localized virial function defined in §4.4.2. In the previous section it
was proved that

gψ . (T − t)2,

so it follows that
|x(t)| . T − t.

By using again (5),
1

T − t
� λ(t),

and the second assertion of Theorem 4.1.1 is proved.

References

[1] C. Antonini, Lower bounds for the L2 minimal periodic blow-up solutions
of critical nonlinear Schrödinger equation, Diff. Integral Eq. 15 (2002), no.
6, 749-768.

[2] H. Brézis, T. Gallouët, Nonlinear Schrödinger evolution equation, Nonlinear
Analysis, Theory Methods Appl. 4 (1980), no. 4, 677-681.

[3] N. Burq, P. Gérard, N. Tzvetkov, Two singular dynamics of the nonlinear
Schrödinger equation on a plane domain, Geom. Funct. Anal. 13 (2003),
1-19.

I–12



[4] T. Cazenave, An introduction to nonlinear Schrödinger equations, Textos de
Métodos Matemáticos 26, Instituto de Matemática-UFRJ, Rio de Janeiro,
RJ (1996).

[5] I. Gallagher, P. Gérard, Profile decomposition for the wave equation outside
a convex obstacle, J. Math. Pures Appl. (9) 80 (2001), no. 1, 1-49.

[6] J. Ginibre, G. Velo, On a class of Schrödinger equations. I. The Cauchy
problem, general case, J. Funct. Anal. 32 (1979), no. 1, 1-71.

[7] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for
nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), no. 9, 1794-1797.

[8] T. Kato, On nonlinear Schrödinger equations, Ann. I. H. P. Physique
Théorique 46 (1987), no. 1, 113-129.

[9] O. Kavian, A remark on the blowing-up of solutions to the Cauchy problem
for nonlinear Schrödinger equations, Trans. Amer. Math. Soc. 299 (1987),
no. 1, 193-203.

[10] M. K. Kwong, Uniqueness of positive solutions of ∆u − u + up = 0 in RN ,
Arch. Rat. Mech. Ann. 105 (1989), no. 3, 243-266.

[11] P. L. Lions, The concentration-compactness principle in the calculus of
variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non
Linéaire 1 (1984), no. 2, 109-145.

[12] P. L. Lions, The concentration-compactness principle in the calculus of vari-
ations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non
Linéaire 1 (1984), no. 4, 223-283.

[13] M. Maris, Existence of nonstationary bubbles in higher dimensions, J. Math.
Pures. Appl. 81 (2002), 1207-1239.

[14] F. Merle, Determination of blow-up solutions with minimal mass for non-
linear Schrödinger equation with critical power, Duke Math. J. 69 (1993),
no. 2, 427-454.

[15] F. Merle, P. Raphaël, Blow-up dynamic and upper bound on blow-up rate
for critical non linear Schrödinger equation, Université de Cergy-Pontoise,
preprint (2003).

[16] F. Merle, P. Raphaël, On blow-up profile for critical non linear Schrödinger
equation, Université de Cergy-Pontoise, preprint (2003).

[17] T. Ogawa, T. Ozawa, Trudinger type inequalities and uniqueness of weak
solutions for the nonlinear Schrödinger equations, J. Math. Anal. Appl. 155
(1991), no. 2, 531-540.

I–13



[18] T. Ogawa, Y. Tsutsumi, Blow-up solutions for the nonlinear Schrödinger
equation with quartic potential and periodic boundary conditions, Springer
Lecture Notes in Math. 1450 (1990), 236-251.

[19] M. V. Vladimirov, On the solvability of mixed problem for a nonlinear
equation of Schrödinger type, Dokl. Akad. Nauk SSSR 275 (1984), no. 4,
780-783.

[20] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolate
estimates, Comm. Math. Phys. 87 (1983), no. 4, 567-576.

[21] M. I. Weinstein, On the structure and formation of singularities in solutions
to nonlinear dispersive evolution equations, Comm. Part. Diff. Eq. 11 (1986),
no. 5, 545-565.

[22] M. I. Weinstein, Modulation stability of ground states of nonlinear
Schrödinger equations, Siam. J. Math. Anal. 16 (1985), no. 3, 472-491.

[23] V. E. Zakharov, Collapse of Lagmuir waves, Sov. Phys. JETP 35 (1972),
908-914.

Université de Paris Sud, Mathématiques, bât.425, 91405 Orsay
Valeria.Banica@math.u-psud.fr

I–14

mailto:Valeria.Banica@math.u-psud.fr

	Introduction
	Results on general domains
	A Cauchy-Schwarz inequality for subcritical mass functions
	Derivatives of virial type functions

	The blow-up rate on bounded plane domains
	The convergence of the concentration points x(t)
	Lower bound for the blow-up rate

	The blow-up rate on unbounded plane domains
	Blow-up on the boundary
	Necessary condition for blow-up on the boundary


