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Blow up Dynamic and Upper Bound on the Blow
up Rate for critical nonlinear Schrödinger Equation

Frank Merle Pierre Raphael
Abstract

We consider the critical nonlinear Schrödinger equation iut = −∆u −
|u|

4
N u with initial condition u(0, x) = u0 in dimension N . For u0 ∈ H1, local

existence in time of solutions on an interval [0, T ) is known, and there exists
finite time blow up solutions, that is u0 such that limt→T<+∞ |ux(t)|L2 = +∞.
This is the smallest power in the nonlinearity for which blow up occurs, and
is critical in this sense. The question we address is to understand the blow up
dynamic. Even though there exists an explicit example of blow up solution
and a class of initial data known to lead to blow up, no general understanding
of the blow up dynamic is known. At first, we propose in this paper a general
setting to study and understand small in a certain sense blow up solutions.
Blow up in finite time follows for the whole class of initial data in H1 with
strictly negative energy, and one is able to prove a control from above of the
blow up rate below the one of the known explicit explosive solution, which has
strictly positive energy.

We consider the critical nonlinear Schrödinger equation{
iut = −∆u− |u| 4

N u, (t, x) ∈ [0, T )× RN

u(0, x) = u0(x), u0 : RN → C
(NLS)

with u0 ∈ H1 = H1(RN), in dimension N ≥ 1. This equation is locally well-posed
in H1 from [2]. The problem we address is the one of formation of singularities for
solutions to (NLS). Note that from the conservation of the mass and the energy
(from the Hamiltonian formulation) and Gagliardo-Nirenberg inequality, the power
of the nonlinearity is the smallest one for which blow-up may occur. We will see
that this criticality makes the problem global.

In the energy space H1, (NLS) admits three conservation laws: L2-norm, Energy,
Momentum, and four fundamental symetries: Space-time translation, Phase, Scaling
and Galilean invariances.

At the critical power, special regular solutions play an important role. They are
the so called solitary waves and are of the form u(t, x) = eiωtWω(x), ω > 0, where
Wω solves

∆Wω + Wω|Wω|
4
N = ωWω. (1)
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Equation (1) is a standard nonlinear elliptic equation. There is a unique positive
solution up to translation Qω(x). Qω is in addition radially symmetric. Letting
Q = Qω=1, scaling properties and Pohozaev identity yield |Qω|L2 = |Q|L2 and
E(Qω) = 0. In particular, none of the three conservation laws in H1 sees the
variation of size of the Wω stationary solutions. These two facts are deeply related to
the criticality of the problem. Weinstein in [9] used the variational characterization
of the ground state solution Q to (1) to derive the explicit constant in the Gagliardo-
Nirenberg inequality

∀u ∈ H1,
1

2 + 4
N

∫
|u|

4
N

+2 ≤ 1

2

(∫
|∇u|2

) (∫
|u|2∫
Q2

) 2
N

, (2)

so that for |u0|L2 < |Q|L2 , the solution is global in H1. In addition, blow up in H1

has been proved to be equivalent to “blow up” for the L2 theory from concentration
in L2.

On the other hand, for |u0|L2 ≥ |Q|L2 , blow up may occur. Indeed, for this
special power nonlinearity, (NLS) admits another symmetry which is not in the
energy space H1, the so called pseudo conformal transformation: if u(t, x) solves
(NLS), then so does v(t, x) = ei|x|2/4t

|t|N/2 u(1
t
, x

t
). This additional symmetry yields for

u0 ∈ Σ = H1 ∩ {xu ∈ L2}:

d2

dt2

∫
|x|2|u(t, x)|2 = 4

d

dt
Im

(∫
x∇uu

)
(t, x) = 16E(u0). (3)

Now since E(Q) = 0 and ∇E(Q) = −Q, there exists u0ε ∈ Σ with |u0ε|L2 = |Q|L2 +ε
and E(u0ε) < 0, and the corresponding solution must blow up from viriel identity
(3).

The case of critical mass |u0|L2 = |Q|L2 has been studied by Merle in [5]. The
pseudo-conformal transformation applied to the stationary solution eitQ(x) yields
an explicit solution

S(t, x) =
ei

|x|2
4t
− i

t

|t|N2
Q(

x

t
) (4)

which blows up at T = 0. Note that |S(t)|L2 = |Q|L2 . It turns out that S(t) is the
unique minimal mass blow up solution in H1 in the following sense: let u(−1) ∈ H1

with |u(−1)|L2 = |Q|L2 , and assume that u(t) blows up at T = 0, then u(t) = S(t)
up to the symmetries of the equation.

Another fact suggested by numerical simulations, see [3], is the existence of
solutions blowing up as

|∇u(t)|L2 ∼

√
ln

∣∣ ln |t|
∣∣

|t|
. (5)

These appear to be stable with respect to perturbation of the initial data. In this
frame, for N = 1, Perelman in [8] proves the existence of one solution which blows
up according to (5). Note that such solutions are stable with respect to perturbation
of the initial data from numerics, but are known to be structurally unstable. Indeed,
in dimension N = 2, if we consider the next term in the physical approximation
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leading to (NLS), we get Zakharov equation, and finite time blow up solutions to
Zakharov equation are known to satisfy |∇u(t)|L2 ≥ C

|T−t| .
Our approach to study blow up solutions to (NLS) is based on a qualitative

description of the solution as in [4]. We focus on the case when the nonlinear
dynamic plays a role and interacts with the dispersive part of the solution. This
last part will be proved to be small in L2 for initial conditions which satisfy∫

Q2 <

∫
|u0|2 <

∫
Q2 + α0 and E(u0) < 0 (6)

where α0 is small. Indeed, under assumption (6), from the conservation laws and
the variational characterization of the ground state Q, the solution u(t, x) remains
close to Q in H1 up to scaling and phase parameters, and also translation in the
non radial case. We then are able to define a regular decomposition of the solution
of the type

u(t, x) =
eiγ(t)

λ(t)
N
2

(
Q + ε

)(
t,

x− x(t)

λ(t)

)
where |ε(t)|H1 ≤ δ(α0) with δ(α0) → 0 as α0 → 0, λ(t) > 0 is a priori of order

1
|∇u(t)|L2

, γ(t) ∈ R, x(t) ∈ RN .
In particular, we derive a control from above of the blow rate for such solutions.

More precisely, we claim the following assuming a spectral property on a potential
related to Q and checked in dimension N = 1.

Theorem 1 ([6],[7]) There exists α∗ > 0 and C∗ such that the following is true.
Let u0 ∈ H1 such that

0 <

∫
|u0|2 −

∫
Q2 < α∗, E0 <

1

2

(∣∣ Im
(∫
∇u0u0

)∣∣
|u0|L2

)2

.

Let u(t) be the corresponding solution to (NLS), then:

(i) u(t) blows up in finite time T < +∞ in H1.

(ii) Moreover, |∇u(t)|L2 ≤ C∗( ln|ln(T−t)|
T−t

) 1
2 holds for t close to T .

Comments on the result

1.Blow up rate: Assume that u blows up in finite time. By scaling properties, a
known lower bound on the blow up rate is |∇u(t)|L2 ≥ C∗

√
T−t

.
The problem here is to control the blow up rate from above. Our result is the

first of this type for critical NLS. No upper bound on the blow up rate was known,
not even of exponential type. Note indeed that there is no Lyapounov functional
involved in the proof of this result, and that it is purely a dynamical one with all
dynamical controls exhibited in H1 and not in Σ.

We first prove an upper bound on the blow up rate as |∇u(t)|L2 ≤ C∗√
|E0|(T−t)

.

This bound is optimal for NLS in the sense that there exist blow up solutions with
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this blow up rate, explicitly S(t) of (4) or more generally those build in [1]. Note
nevertheless that these solutions have strictly positive energy.

In our setting of strictly negative energy initial conditions, no solutions of this
type is known, and we indeed are able to improve the upper bound by excluding any
polynomial growth between the pseudo-conformal blow up and the scaling estimate.
It says in particular that there is a large open set of initial data which blow up
with a control from above of the blow-up rate suggested by numerics. This bound
is conjectured to be optimal.

We would like to point out that this improvement of blow up rate control heav-
ily relies on algebraic cancellations deeply related to the degeneracy of the linear
operator around Q which are unstable with respect to “critical” perturbations of
the equation. Indeed, recall for example that all strictly negative energy solutions
to Zakharov equation satisfy the lower bound |∇u(t)|L2 ≥ C

|T−t| . On the other hand,
we expect the first argument to be structurally stable in a certain sense.

2.Blow up result: In the situation
∫
|u0|2 ≤

∫
|Q|2 + α0, we show that blow up is

related to a local in space information, and we do not need the additional assumption
u0 ∈ Σ = H1 ∩ {xu ∈ L2}.
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