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Asymptotics and stability for global solutions to
the Navier-Stokes equations

Isabelle Gallagher Dragoș Iftimie Fabrice Planchon
Résumé

On étudie des solutions a priori globales des équations de Navier–Stokes
incompressibles en trois dimensions d’espace. On montre qu’elles se com-
portent en grand temps comme des solutions petites, et en particulier elles
décroissent vers zéro quand le temps tend vers l’infini. En utilisant ce résul-
tat, on démontre que l’ensemble des données initiales générant des solutions
globales est ouvert.

Abstract
We study a priori global strong solutions of the incompressible Navier-

Stokes equations in three space dimensions. We prove that they behave for
large times like small solutions, and in particular they decay to zero as time
goes to infinity. Using that result, we prove a stability theorem showing that
the set of initial data generating global solutions is open.

1. Introduction

Let us consider the Navier-Stokes equations in R3,

(NS)


∂tv −∆v + v · ∇v = −∇p

∇ · v = 0
v|t=0 = v0.

We recall that (NS) describes the movement of an incompressible fluid, whose
velocity is v and whose pressure is p; note that one can eliminate ∇p from the
equation by projecting it onto the space of divergence free vector fields. Before
explaining the aim of our study, let us make some general comments on (NS). Two
different kinds of results exist on the Cauchy problem for that system, linked to
two important features of (NS): conserved quantities and scaling. An easy, formal
computation shows that the L2 norm of the initial data is conserved, due to the
following cancellation for any smooth, divergence free vector field u:∫

R3

(u · ∇)u · u dx = 0. (1.1)
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Using that conservation, J. Leray [11] proved the following result: if the initial
data v0 is in L2, then there is a global solution v to (NS) associated with the
data v0, satisfying

∀t ≥ 0, ‖v(t)‖2
L2 + 2

∫ t

0

‖∇v(s)‖2
L2 ds ≤ ‖v0‖2

L2 . (1.2)

That solution is not known to be unique, except in two space dimensions. Now
let us turn to scaling considerations. The scaling of (NS) is the following: if v

solves (NS) with the data v0, then vλ(t, x)
def
= λv(λ2t, λx) solves (NS) with the

data v0,λ(x)
def
= λv0(λx). It is natural to try and solve (NS) in a scale–invariant

function space. The typical result in such a space X is that if v0 ∈ X is a divergence
free vector field, then one can solve (NS) on a finite time interval, and the solution
is unique. The solution is known to be global only for small initial data (in which
case the norm of the solution decays to zero as time goes to infinity). Examples of
such spaces are

Ḣ1/2 ↪→ L3 ↪→ Ḃsp
p,∞|p<+∞

↪→ BMO−1.

where from now on we define sp
def
= −1+3/p. We refer to [6], [9], [5], [3], [12] and [10]

for precise statements in those function spaces. For global existence to hold, the
point in those “strong solution” theorems is that the smallness assumption enables
one to get rid of the non linear term, which can be absorbed by the Laplacian. In
the Leray theorem, that non linear term is simply made equal to zero, by means
of the energy estimate and the cancellation (1.1). Thus the Leray theorem holds
specifically for the Navier–Stokes equations, whereas the “strong solution” theorems
hold for a larger class of equations, since the special structure of the bilinear term
is not used.

As we shall be using them in the following, let us recall the definition of Besov
spaces, using Littlewood–Paley theory.

Definition 1 Let φ be a function in S(R3) such that φ̂ = 1 for |ξ| ≤ 1 and φ̂ = 0
for |ξ| > 2. Define also φj(x) = 23jφ(2jx). Then the frequency localization operators
are defined by

Sj = φj ∗ ·, ∆j = Sj+1 − Sj.

Let f be in S ′(R3). Then f is in Ḃs
p,q(R3) if and only if

• The sum
∑m

−m ∆j(f) converges towards f as a tempered distribution if s < 3
p

and after taking the quotient by polynomials if not.

• The sequence 2js‖∆j(f)‖Lp is in `q.

Our aim in this paper is to consider a priori global strong solutions of the Navier–
Stokes equations, without assuming any sort of smallness on the initial data (such
solutions may or may not exist, unless one imposes some additionnal symmetry on
the data and the solution). We are interested in the behaviour for large times of
such solutions, as well as in their stability. Before stating the result, let us give the
following definition; we refer to [4] for the introduction of that type of space in the
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context of the Navier–Stokes equations. The proposition following that definition is
classical, we refer for instance to [8] for a proof.

Definition 2 Let u be in S ′. We will say that u ∈ L̃ρ([a, b], Ḃs
p,q) if and only if

2js‖∆ju‖Lρ([a,b],Lp) = εj ∈ `q,

and we define
‖u‖fLρ([a,b],Ḃs

p,q)

def
= ‖2js‖∆ju‖Lρ((a,b),Lp)‖`q .

Proposition 1 There is a positive real number ε0 such that the following holds.
Let u0 ∈ Ḃ

sp
p,q with 1 ≤ p, q < +∞ be a divergence free vector field. There exists a

unique solution to (NS) associated with u0, satisfying for some time T > 0

u ∈ C0([0, T ], Ḃsp
p,q) ∩ L̃r([0, T ], Ḃ

sp+ 2
r

p,q ) ∀ r ∈ [1, +∞].

Moreover if ‖u0‖Ḃ
sp
p,q
≤ ε0, then one can take T = +∞.

We shall prove the following theorem.

Theorem 1 Let u0 ∈ Ḃ
sp
p,q, with 1 ≤ p, q < +∞ be a divergence free vector field,

and suppose its associate solution is global, u ∈ C0(R+, Ḃ
sp
p,q), and unique (unique-

ness is guaranteed for instance as soon as u ∈ L̃r
loc(R+, Ḃ

sp+ 2
r

p,q ), for some r ∈
(2, 2/(1− 3/p))). Then

lim
t→∞

‖u(t)‖Ḃ
sp
p,q

= 0. (1.3)

Let us make a few comments on that result. Theorem 1 means that all global
solutions of (NS) are in fact small solutions after some time, and satisfy all the
properties linked to small data theory; in particular they decay to zero for large
times. As we shall see later on, such a result is obvious if the initial data is supposed
to be also in the energy space L2. In fact the proof of Theorem 1 shows that
everything takes place as though there was finite energy, although initially the data
is not of finite energy: the first step of the proof, following an idea of C. Calderón [2],
consists indeed in bridging the gap between energy and scaling. Theorem 1 enables
one to prove the following stability result.

Theorem 2 Under the assumptions of Theorem 1, there is an η0 (depending on p, q
as well as on ‖u‖fLr(R+,Ḃ

sp+2
r

p,q )
), such that for any divergence free vector field v0 ∈ Ḃ

sp
p,q

satisfying ‖v0 − u0‖Ḃ
sp
p,q
≤ η0, its associate solution v satisfies

v ∈ C0(R+, Ḃsp
p,q) ∩ L̃ρ(R+, Ḃ

sp+ 2
ρ

p,q ) ∀ρ ∈ [1, +∞],

with
sup
t≥0

‖v(t)− u(t)‖Ḃ
sp
p,q

+ ‖v − u‖fLr(R+,Ḃ
sp+2

r
p,q )

≤ Cu‖v0 − u0‖Ḃ
sp
p,q

, (1.4)

and where Cu depends on p, q and ‖u‖fLr(R+,Ḃ
sp+2

r
p,q )

.

Note that our results are not stated for the space BMO−1; however using a
similar method of proof, the same result in the BMO−1 case was obtained recently
by P. Auscher, S. Dubois and P. Tchamitchian [1].
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2. Proof of Theorem 1

2.1. Large time asymptotics in an easy case

To give an idea of the proof of Theorem 1, let us start by considering an easy
case: suppose that u0 is in the inhomogeneous space H1/2, and that its associate
solution is global in time, u ∈ C0(R+, Ḣ1/2). Since the initial data is of finite
energy, it is classical that u is in L∞(R+, L2)∩L2(R+, Ḣ1). Interpolation yields u ∈
L4(R+, Ḣ1/2), which means that for a large enough time, u is sufficiently small
in Ḣ1/2 for small data theory to apply. In particular u goes to zero in Ḣ1/2 as time
goes to infinity.

2.2. Proof of Theorem 1

To prove Theorem 1, our aim is to try to use the easy remark made in the above
Section 2.1. We indeed have two cases when the asymptotics is known: the case of
small initial data, and the case of finite energy solutions. The way to link the two
is simply to decompose the initial data in the following way, following an idea of C.
Calderón [2] (for weak solutions in Lp with 2 < p < 3; see also [7] where the method
was used to prove global existence of infinite energy solutions in two dimensions):

u0 = v0 + w0 with v0 ∈ L2 and ‖w0‖Ḃ
sp
p,q
≤ ε0.

The idea is now to consider the global solution of (NS) associated with w0, which
satisfies

w ∈ C0(R+, Ḃsp
p,q) ∩ L̃r(R+, Ḃsp+2/r

p,q ) ∀r ∈ [1, +∞], t1/2‖w(t)‖L∞ ∈ L∞(R+),

and lim
t→∞

‖w(t)‖Ḃ
sp
p,q

= 0.

In particular we have
sup
t>0

t1/2‖w(t)‖L∞ ≤ ε0. (2.1)

Note that in the following, we will note by ε0 any “small” constant, which can
change from line to line.

Now we need to study the (perturbated) equation satisfied by v
def
= u− w:

∂tv −∆v + u · ∇v + v · ∇w = −∇p,
∇ · v = 0,

v(x, 0) = v0(x).

We know that v ∈ C0(R+, Ḃ
sp
p,q)∩ L̃r

loc(R+, Ḃ
sp+ 2

r
p,q ) since that result holds for both u

and w. Now let us suppose that we have proved that

v ∈ L∞(R+, L2) ∩ L2(R+, Ḣ1). (2.2)

Then as in Section 2.1, v will be small in Ḣ1/2 after a long enough time (hence
in Ḃ

sp
p,q by Sobolev embeddings) and u = v+w will be small enough in Ḃ

sp
p,q for small

VI–4



data theory to apply. The key point is therefore to prove that v is of finite energy
for a large time (we shall not in fact need the global estimate (2.2), a local estimate
for a large enough time will do). We shall skip the details here (we refer to [8] for
the proof), and simply sketch the steps of the proof.

The first step consists in the proof of the following lemma, which shows that the
solution v is of finite energy for a small time.

Lemma 1 There is a time T ∗ > 0 such that the function v satisfies

v ∈ C0([0, T ∗], L2) ∩ L2([0, T ∗], Ḣ1).

The proof of Lemma 1 follows from a fixed point procedure, and we shall omit it
(see [8]). It is here that there is some work to be done, as the usual fixed point
procedure in a scale–invariant space first has to be adapted due to the presence of u
and w in the equation, and then the energy norm has to be propagated.

Once that lemma is proved, one is in position to show that the solution v is
of finite energy in fact for all times. The method consists in writing an energy
estimate, which is possible since the solution v is for a short time in the energy
space by Lemma 1. That energy estimate is in fact quite straightforward if one
starts the computation at a small time t0 > 0, so let us give the details here. One
writes indeed, for t0 < T ∗,

‖v(t)‖2
L2 + 2

∫ t

t0

‖∇v(s)‖2
L2 ds = ‖v(t0)‖2

L2 − 2

∫
R3

∫ t

t0

(v · ∇w) · v dsdx. (2.3)

But after an integration by parts and Hölder’s inequality, we come up with∣∣∣∣∫
R3

∫ t

t0

(v · ∇w) · v dsdx

∣∣∣∣ ≤ ∫ t

t0

‖v(s)‖L2‖∇v(s)‖L2

√
s‖w(s)‖L∞

ds√
s
·

But (2.1) implies that
√

s‖w(s)‖L∞ is uniformly bounded by ε0, so we get∣∣∣∣∫
R3

∫ t

t0

(v · ∇w) · v dsdx

∣∣∣∣ ≤ 1

2

∫ t

t0

‖∇v(s)‖2
L2 ds +

ε2
0

2

∫ t

t0

‖v(s)‖2
L2

ds

s
·

Plugging that estimate into (2.3) and using Gronwall’s lemma, we infer the following
estimate:

‖v(t)‖2
L2 +

∫ t

t0

‖∇v(s)‖2
L2 ds ≤ ‖v(t0)‖2

L2

(
t

t0

)ε2
0

.

Now by Sobolev embeddings and interpolation we have∫ t

t0

‖v(s)‖4
Ḃ

sp
p,q

ds .
∫ t

t0

‖v(s)‖4
Ḣ1/2 ds ≤

∫ t

t0

‖v(s)‖2
L2‖∇v(s)‖2

L2 ds,

which by the above estimate yields

(t− t0) inf
[t0,t]

‖v(s)‖4
Ḃ

sp
p,q

. ‖v(t0)‖4
L2

(
t

t0

)ε2
0

.
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So we can write, for all t ≥ t0 + 1,

inf
[t0,t]

‖v(s)‖Ḃ
sp
p,q
≤ C(t0)‖v(t0)‖L2tε

2
0−1/4,

which can be made arbitrarily small for ε0 < 1
2

and t large enough. It follows that
one can find a time τ0 such that ‖v(τ0)‖Ḃ

sp
p,q
≤ ε0 and since ‖w‖L∞(R+,Ḃ

sp
p,q) ≤ ε0 we

infer that ‖u(τ0)‖Ḃ
sp
p,q

is smaller than 2ε0. We conclude by the small data theory that

lim
t→∞

‖u(t)‖Ḃ
sp
p,q

= 0

and the theorem is proved.

3. Proof of Theorem 2

This section is devoted to the proof of Theorem 2: consider a divergence free vec-

tor field u0 in Ḃ
3
p
−1

p,q generating a global solution u ∈ C0(R+, Ḃ
3
p
−1

p,q ). Under the
assumptions of the theorem, one can prove (see [8]) that

u ∈ L̃ρ(R+, Ḃ
3
p
+ 2

ρ
−1

p,q ) (3.1)

for all ρ ∈ [1, +∞]. It is to prove (3.1) that the result of Theorem 1 is used (to
transform the local space-time norms into global ones).

Now let v0 be another divergence free vector field in Ḃ
3
p
−1

p,q . Its associate so-
lution, which a priori only has a finite life span, is called v, and we have v ∈
L̃ρ([0, T ], Ḃ

3
p
+ 2

ρ
−1

p,q ), for all ρ ∈ [1, +∞] and for some time T > 0. We fix for the rest

of the proof some r ∈ (2, 2/(1 − 3/p)) so that s
def
= sp +

2

r
∈ (0,

3

p
). If w is defined

by w
def
= v − u, then it is enough to prove that for ‖w|t=0‖Ḃ

sp
p,q

small enough, we

have w ∈ C0(R+, Ḃ
sp
p,q)∩ L̃r(R+, Ḃs

p,q). The function w satisfies the following system:
∂tw −∆w + w · ∇w + u · ∇w + w · ∇u = −∇p

∇ · w = 0
w|t=0 = u0 − v0.

The following estimate is the key to the proof of the theorem. We shall however
not prove it here, as the proof is slightly tedious, but we refer to [8] for details. We
have:

‖w‖gLr′ ([α,β],Ḃs′
p,q)

≤ K2(‖w(α)‖Ḃ
sp
p,q

+ ‖w‖2fLr([α,β],Ḃs
p,q)

+ ‖w‖fLr([α,β],Ḃs
p,q)‖u‖fLr([α,β],Ḃs

p,q))

(3.2)
for some constant K2 > 1 and all times α and β. The constant s′ is arbitrary in

[sp, s] and r′ is determined by s′ = sp +
2

r′
·

Now we claim that there exist N real numbers (Ti)1≤i≤N such that T1 = 0
and TN = +∞, satisfying

R+ =
N−1⋃
i=1

[Ti, Ti+1] and ‖u‖fLr([Ti,Ti+1],Ḃs
p,q) ≤

1

4K2

∀i ∈ {1, . . . , N − 1}. (3.3)
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Indeed since q < +∞, there exists some integer M such that uM def
=

∑
|j|≥M

∆ju

satisfies
‖uM‖fLr(R+,Ḃs

p,q) ≤
1

8K2

,

and to obtain the desired time decomposition for u− uM , we use the fact that r <
+∞ and that one is only summing over a finite number of j’s. The result (3.3)
follows.

Now suppose that

‖w0‖Ḃ
sp
p,q
≤ 1

8K2N(2K2)N
· (3.4)

By time continuity we can define a maximal time T ∈ R+ ∪ {∞} such that

‖w‖fLr([0,T ],Ḃs
p,q) ≤

1

4K2

· (3.5)

If T = +∞ then the theorem is proved. Suppose now that T < +∞. Then we can
define an integer k ∈ {1, . . . , N − 1} such that Tk ≤ T < Tk+1, and plugging (3.3)
and (3.5) into (3.2) with s′ = s we get for any i ≤ k − 1

‖w‖fLr([Ti,Ti+1],Ḃs
p,q) ≤ K2‖w(Ti)‖Ḃ

sp
p,q

+
1

4
‖w‖fLr([Ti,Ti+1],Ḃs

p,q) +
1

4
‖w‖fLr([Ti,Ti+1],Ḃs

p,q),

so finally
‖w‖fLr([Ti,Ti+1],Ḃs

p,q) ≤ 2K2‖w(Ti)‖Ḃ
sp
p,q

. (3.6)

From relation (3.2) with s′ = sp we also get

‖w‖gL∞([Ti,Ti+1],Ḃ
sp
p,q) ≤ 2K2‖w(Ti)‖Ḃ

sp
p,q

, (3.7)

which implies in particular that

‖w(Ti+1)‖Ḃ
sp
p,q
≤ 2K2‖w(Ti)‖Ḃ

sp
p,q

.

A trivial induction now shows that

‖w(Ti)‖Ḃ
sp
p,q
≤ (2K2)

i−1‖w0‖Ḃ
sp
p,q

∀i ∈ {1, . . . , k − 1},

and we conclude from (3.6) and (3.7) that

‖w‖fLr([Ti,Ti+1],Ḃs
p,q) ≤ (2K2)

i‖w0‖Ḃ
sp
p,q

and ‖w‖gL∞([Ti,Ti+1],Ḃ
sp
p,q) ≤ (2K2)

i‖w0‖Ḃ
sp
p,q

for all i ≤ k − 1. The same arguments as above also apply on the interval [Tk, T ]
and yield

‖w‖fLr([Tk,T ],Ḃs
p,q) ≤ (2K2)

k‖w0‖Ḃ
sp
p,q
≤ (2K2)

N‖w0‖Ḃ
sp
p,q

and
‖w‖gL∞([Tk,T ],Ḃ

sp
p,q) ≤ (2K2)

k‖w0‖Ḃ
sp
p,q
≤ (2K2)

N‖w0‖Ḃ
sp
p,q

.

Finally we have

‖w‖fLr([0,T ],Ḃs
p,q) ≤ ‖w‖fLr([T1,T2],Ḃs

p,q) + · · ·+ ‖w‖fLr([Tk,T ],Ḃs
p,q)

≤ N(2K2)
N‖w0‖Ḃ

sp
p,q

.

Under assumption (3.4) this contradicts the maximality of T as defined in (3.5). So
the theorem is proved.
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