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Abstract
In this paper we established the Carleman estimate for the two dimen-
sional Lamé system with the zero Dirichlet boundary conditions. Using this
estimate we proved the exact controllability result for the Lamé system with
with a control locally distributed over a subdomain which satisfies to a certain
type of nontrapping conditions.

Introduction

This paper is concerned with a Carleman estimates for the 2-D non stationary Lamé
system with the Dirichlet boundary conditions. Starting from the pioneering works
of Carleman the theory of Carleman’s inequalities has been rapidly developed over
the last forty years and now for a single partial differential equations many general
results are available (see [HO, 7, 2], [?].) On the other hand, for the systems of
partial differential equations the situation is much less understood. To our best
knowledge the most general result in case of systems of P.D.E. is the Calderon’s
uniqueness theorem (see e.g. [[1, Zui]). The technique, developed by Calderon re-
duces the system of partial differential equations to the system of pseudodifferential
operators of the first order: j—;o = M(z,D,)v + f where M(z, D,/) is the matrix
pseudodifferential operator. After that by some change of variables v = Q(x, D,/ )0
this matrix P.D.O. M will be reduced to QM@ which consists of blocks of a small
size located on the main diagonal, such that in each block the principal symbols
of all operators located below the main diagonal are zero. In order, to construct
the matrix @) the eigenvalues and eigenvectors of the matrix M (x,&’) should be the
smooth function of the variables z and £ and eigenvalues should not change the
multiplicity. This condition proved to be restrictive, especially in case when we are
looking for a Carleman estimate near boundary, and therefore choice for a variable
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xg is limited. (For example the non stationary Lamé system in general it does not
satisfy to this condition.)

On the other hand, it is well known that thanks to the special structure of the
isotropic Lamé system div u, rotu satisfy to scalar wave equations (modulo lower
order terms.) The system of partial differential equations for a functions u, div u,
rot u is coupled via first order terms. This allows to apply the Carleman estimates
for a scalar hyperbolic equations in case when the function u has a compact support.
(see | ]). There are many results on uniqueness of the Cauchy problem for the
stationary Lamé system (see [DRR, , W2]). Therefore the goal of this paper is
to obtain the Carleman estimate for v which does not vanish near boundary but
satisfies only to the zero Dirichlet boundary condition. The structure of the proof
is in principle similar to the paper [Y1]. We work with two hyperbolic equations for
the functions 219, = e**divu and 2z, = e**rotu : Pyio,(z, D, 8)z2r42, = (div f)e?
; Py(z,D,s)z, = (rot f)e**. The main difficulty one should overcame is that there
are no boundary conditions for these functions. This problem is fixed in following
way. Microlocally, operators for zg could be decomposed ,expect for a small set
in T*(Q), into the product of two pseudodifferential operators of the first order
Ps(z,D,s) = P_g(x, Dy, s)Py g(x, Dy, s) where Py 3 = D,, —Ffﬁc(x, D, s), and x9
is normal to the boundary 9€2. Since the principal symbol of the operator I'; (z, ', s)
satisfies the inequality —ImT';(z,&,s) > C?|s| we have the a priori estimate for
P, 5(x, Dy, 8)25|y=0 in L2 These estimates combined with zero Dirichlet boundary
condition, for stress tensor u provide the H' boundary a priori estimates for zg.
The set on which the decomposition at least one of the operators Ps(z, D, s)in the
product of the first order operators is impossible is studied in sections 3,4.

Among the applications of the Carleman estimate obtained in this paper first
we mention the controllability results for the Lamé system. First controllabil-
ity /observability results for the isotropic Lamé system with the constant coefficients
were obtained by J.L. Lions in [L.i] using the multiplies methods and HUM method.
Later controllability and stabilizability properties for isotropic Lamé system and
related models were studied by J.L. Lions and J. Lagnese in [LL] and [La]. Also we
mention work [Y2], of K.Yamamoto where he studied the dissipation of the energy
of Lamé system outside the convex obstacle. The results obtained in this paper
could be easily converted in controllability results for the Lamé system using the
HUM method. Recently, the technique developed in [Li] were applied by Alabau
and Komornik | , ] to prove the controllability /observability estimates were
obtained for symmetric anisotropic Lamé system with the constant coefficients. In
(B3], M. Bellassoued proved the approximate controllability for the isotropic Lamé
system with the control distributed on an arbitrary small portion of the boundary.

Another possible application of the Carleman estimate is the inverse problem of
the determination of the Lamé coefficients (3, u, A using the finite number of mea-
surements on a subdomain @),. (The corresponding problem when a finite number
of measurements are available on the whole [0, 7] x 092 was treated in [I1Y].)

There are many papers concerning the uniqueness of the Cauchy problem for
the Lamé system.( [DR, B3, ). The survey of resent results on the unique
continuation for the stationary Lamé system given in [W2].
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1. Main Result

Let us consider the 2-D Lamé system

Pu = p(a:')g%g — (2 )Au — (u(2") + M"))Vdivu
—divuVA(2') — (Vu+ (V)" Vu(@) = f inQ=[0,T] xQ, (1)
ulomyxon =0, w(T,2") = ug (T, 2") = u(0,2") = uy, (0,2) =0, (2)

where u = (u1,us), f = (f1, f2) are the vector functions, {2 is a bounded domain in
R? with 00 € C3,x = (xg,2'), 2’ = (71, 33). Coefficients p(z'), u(z'), \(z') € C*(Q)
are assumed to be the positive functions

p(z") >0, p@)>0, Xz')>0 in Q. (3)

The goal of this paper is to establish a Carleman estimate for a system (1), (2).
Let w C €) be an arbitrary fixed subdomain. Denote by v the outward unit normal
derivative to 092. By @, we denote the cylinder @, = (0,7) x w. Let & = (£, &),

¢ = (€0, &1). We set

pi(x,€) = p(a')&5 — () (&) + &)%),
p2(x, &) = p(a")& — (M) 4 2u(2")) (&7 + 1))

For an arbitrary smooth functions ¢(x, &), ¥ (z,£) we define the Poisson bracket by

the formula {¢, ¢y} = 2?20(3_2% — g—ig—z). We assume that the Lamé coefficients

i, A and the domains 2, w satisfy the following condition
Condition 1 There exists a function ¢ € C*(Q) such that
{pr: {pr, 03} (2, 6) > 0 Yk € {1,2}
V6 € RO\ {0} pr(@,§) =< F¢, Vi >=0,2 € Q\ Qo
{pi(x,§ —isVip(x)), py(x, § +isVip(x))}/2is > 0

for all € R3\ {0}, s #0, py(x, &+ isV(z)) =< depy(x, E+isV(z)), Vib(x) >=
0, zcQ\Qu

On the lateral boundary we assume

oY
(@, V)| grx@aesn <0 8ﬁ|(0 Tix@now) < - (4)

Let ¥ (z) be the weight function from Condition 1.1. Using this function we
introduce the function ¢(z) by formula

o(x) =M@ N> 1, (5)

where parameter A will be fixed below.
Now we formulate our main result.



Theorem 1 Let f € L*(0,T;(H'(Q))?), function ¢ is given by (5) and Lamé coef-
ficients satisfy (3). Then there exist \ such that for any \ > \ exists so such that
for any solution u € (H}(Q))>NL2(0,T; (H*(Q))?) to problem (1), (2) the following
estimate holds true

/ (s%|Vul® + s*|ul® + s|Vrotul|? + s*|rotul* + s|Vdivu|* + s*|divul|*)e**?dx
Q

ou d%u ou
50|12 sp|12 3 sp |12
+ 8||$€ (e 0,y x00))2 + 3||ﬁ6 L2 (0. <002 + ||$e L2 (0.1 x00))2
< Ci(sll fe* 120y o)+

Irot fe*?Ifraqye + ldiv fe [ty +/ (8IVul” + s*[ul*)e***da+
Q

w

/ (s|Vrotul® + s3|rotu|? + s|Vdivul|® + s*|divu|?)e**?dr) Vs > so(N), (6)

w

where constant C is independent of s.

For controllability problems we need some variants of Carleman estimate (6). In
addition to Condition 1.1 we assume

0o(T, ') 06(0, ") —
ot <0, e >0 Vze (7)

We have
Theorem 2 Let f € (L*(Q))?, function ¢ is given by (5), satisfies (7) and Lamé
coefficients satisfy (3). Then there exist X such that for any A > X exists sy such

that for any solution u € (H'(Q))? to problem (1), (2) the following estimate holds
lrue

/(|Vu|2 + 2 ul)edz
Q

< Cilll fe? Itz gy +/Q (IVul* + s*[u]*)e**?dz) Vs > so(N), (8)

w

where constant C is independent of s.

Corollary 1 Let f € L*(0,T; (H'(Q))?), function ¢ is gen by (5) satisfies (7)
and Lamé coefficients satisfy (3). Then there exist X such that for any X\ > \ exists
s such that for any solution u € (L*(Q))? to problem (1), (2) the following estimate
holds true

/ lu|?e®*?dx
Q

< Cl(Hf6$¢||%2(0,T;(H—1(Q))2) +/ |U|2€2S¢d$) Vs > s0(A), (9)

w

where constant C is independent of s.
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Now we would like to consider the applications of the Carleman estimates to the
exact controllability problem of the Lamé system:

Pu=f+x,v inQ, u|(0,T)><8Q =0,
u(0,) = uo, Usy(0,-) = ur, w(T,-) = g, (T,-) = 0. (10)

Here the functions wug,uq, f are given and v is a control locally distributed in a
domain @),. The following theorem is the direct corollary of the Carleman estimates
(8), (9) and the Hilbert Uniqueness Method.

Theorem 3 Let function 1) satisfies the Condition 1.1 and there exists 7 € (0,T)
such that

min (7, 2’) > max{w(T '), (=T, 2")}.

z'eQ)
Then
A. Ifug € (HHD))?, uy € (L*(Q))?, f € (L*(Q))? then there exists a solution
to problem (5.45) a pair (u,v) € (HY(Q))?* x (L*(Qu))*
B. Ifuy € (L*())% uy € (H (), f € L*(0,T; (H(Q )) ) then there exists a
solution to problem (10) a pair (u,v) € (L*(Q))? XLQ(O, T; (H7Y(Q))?), suppv C Q.

Proof of Theorem 1.1. Withought the loss of generality we may assume p = 1.
First we note that instead of (6) it suffices to prove more simple estimate

/ (s|Vrot ul® + s*[rot ul® + s|Vdivul® + s*|divul?)e**?dz
Q

[ PPu .
+ 3”56 ¢H%H1((O,T)><89))2 + SHWB ¢”%L2((O,T)><8§l))2 + 83”8_6 ¢” 2((0,T)x5))2

< CQ(SHfeSd)”%LQ((O,T)xaQ))Q + ||r0tf68¢||%L2(Q))2 + [|div fe® ¢H(L2(Q))2

+ / (s|Vrot u|? + s|rot ul? + s|Vdivu|® + *|div ul?)e?*?dz) Vs > so(N). (11)
Qu

This fact is the simple corollary of the following proposition

Proposition 1 There exists A > 1 such that for any X > \ exist So(A) that
/Q(|Vu|2 + s |ul?)e**?dr < Cs(||rotu es¢||%2(Q) + ||dz'vues¢||iz(Q)

n / (Y + PuP)?dn) Vs > so(N),u € (HAQ))

w

82

Denote by Ujs the following hyperbolic operator Ug = - — B(x)A. It is well

known that the functions rot u, div u satisfy the equations

Opotu=¢ inQ, Oypudivu=¢g in@Q, (12)

¢1 = Kjrotu + Kodivu + rotf, ¢ = Ksrotu + Kydivu + divf, (13)
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where K; are the first order differential operators with L* coefficients.
We observe that it suffices to prove Theorem 1.1 only locally, assuming

suppu C B, (14)

where Bs is the ball of the radius 6 > 0 centered at some point y*. When Bs N
(0,7) x 092 = ( the situation is trivial (see e.g. [ H6]). Therefore, without the loss
of generality we may assume that y* = (yg,0,0). Moreover the parameter § > 0
could be chosen an arbitrary small. Assume that locally near zero the boundary 02
is given by equation zo — ¢(x1) = 0. Moreover since the function @ = Ou(t, O~ 'z)
satisfies the system (1),(2) with f = Of(t, O 'z) for any orthogonal matrix © we
may assume that

(0) = 0.

Making the change of variables y; = x1,ys = o — £(x1) we reduce equations (1) to
the form

82U1 82’&1 82u1 62U1 1 8u1
— — 20 + 1+ () P) =) + il (y1)=—
2 11( o (yl)aylay2 (L4 €' (y1)] )ayg )+ n (yl)@y2
0 . 8ul , 0 . 8u1 N !

— A+ p)—divu — —0)+ (A4 p)—(divu — —0)' = f4,
32u2 62U2 y 82U2 , 2 82u2 1 3u2
_ _9 1 Z “2
o 11 o (y1)8y18y2 + (1 + € ()] )8y§ )+l (y1)8y2

8 . 8u1
— A+ p)=—(divu — =—0') = f,
( lu)ay2< v ayz ) f2

where by fi, fo we denote f after the change of variables. After the change of
variables equations (12), (13) have the form

822’1 8221 8221 822’1
P - -~ -t / 1 é/ 2 e
fizal ayg :U’( ay% <y1)0y10y2 +( + | (y1)| ) 8y§ )
el )L =y i G AR x 0,7,
0y
82 2 8222 8222 8222
P = — A +2u) (== -2/ 1+ |0 (y1)]?
s = (A + u)(ay% ( 1)8y18 + (1 + ()] )ayg)
p 0
+ (20 ()5 =my in G,
Y2

and mq, my are the functions ¢, ¢» after the change of variables.
Without the loss of the generality we may assume & = 1. Next we introduce the
operators

T e L O Lt
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Now we note that in order to prove estimate (11) it suffices to establish the following
estimate for the function w = (wy, we):

lwllZ = sllwl[E gy + 5 1wz + 8|| || (2002 + 1wl 062
E ow
5. H 209y < Call|Payap, swllm + || Puswrllizg) + sll9lfrecogyq

+ SHWH(Hl(gw))? + SSH’LUH(Lz(gu))Q) Vs > So()\),

and for all w € H*(G), w(-,T) = w(-,T) = wy,(+,0) = wy, (-, T) = 0 such that
Owy A+ 2p 0w,y
Dya w0y
Ows o Owy

ayQ = _)\+2M 8y1 +3¢y2(y >w2+8

)\—|—2u

+ Sy, (Y ) w1 — s———y, (Y )w2 + g1, on G,

)\ ‘l— 2 gbyl( )wl + g2, on ag

We denote as p,, (v, &0, &1, €2), Pareu(y, &0, &1, &) respectively the principal symbols of
the operators P,, P\;2,. Then the principal symbols of the operators P, P xy2,
principal are given by formulas

pu(% 50 + i‘8|¢y07 51 + i‘5|¢y17£2 + i|5|¢y2)7
Par2u(V, §o + 1|8|dyy, &1+ i|s|dy,, §a + is|dy,).
In order to prove the Carleman estimate it is convenient for us to introduce new

variable ¢ and consider s as a dual variable to o. Following [T1, Chapter 14] we
consider the pseudodifferential operators

Pﬁ(va DyovDyUD )
/3pﬁ(y7£0+i’8|¢y07£1+i’8‘¢y17Dy2 +Z|5’¢y2) ( 50;51792) (<Y &'>+0s) dO'dg
R

where & = (£0,&),y = (yo,v1). Let v(o,y) = (vi(0,y),v2(0,y)) be the function
with the domain @ = R? x Rl x RY(X = 9Q.) and w(s,y) = (wi(s,y), wa(s,y)) be
the Fourier transform of v respect to the variable o. Let h(s) = (1 + s2)1. Using
the method developed in [T'1] we obtain that in order to prove (11) it suffices to
establish the following estimate

1
2o 2o ov
IIvII* ZHh(DU)“ Ve o) Do)V 1 Eags (w2 1 R(Ds )@H (12(2)?
< Cio([Parou(ys D)vrll72g) + IPuly, )vzlliz
+ 1h(Ds)dllfrsyyz + ||V|| (i) (19)

Wh'ere g = \/% fj;o qe*is"da‘, suppv C (—09,00) X Bs with the parameter oy > 0
which can be chosen an arbitrary small, and

8w1+)\—|—2,u8w2 )\+2,u

Bl(w17w2) £ - Gy y
2

¢y1( )w2 = 01, on 27
(16)

+ 8|0y, (y*)wr — |s|——



N 8’[02 " awl
 Oyy A+2u 0y + [8]y, (¥ )wa + [ 8| ~——7—

B2<w17w2) ¢y1( ) wy = g2, on Ev

(17)

)\—|—2

where

1 +o00 )
W= —— ve “do.
Vor /oo

This fact can be proved in exactly the same way as in [T1, Chapter 14 ;section 2].

Consider the finite covering of the unit sphere s* + &5 + &7 = 1: S? C Upreg2{¢ =
(s5,&0,&1) € S?||C—C*| < 01} and submitted to this covering partition of unity x, (¢):
S X (€) = 1for any ¢ € S% and supp x,, C {¢ € S?||¢—(F| < 6;}. We extend this
function on the set || > 1 as the homogeneous function of the order zero in a such a
way that suppy, C O(6,) = {¢||& H —(*| < 61}. Let us consider the pseudodifferential
operator x, (D) and the function y,(D)v. Obv1ously equalities (16), (17) holds true
with w, = Wf Xv(D)ve 7da, g, = = [ %, (D)ge ™" do.

We claim that 1nstead of (15) it suffices to prove the following estimate

[ (D)VII] < Cro() ([P r+2ux0 (D) V][ 22(0) + [P (D) V] £2(g)
+ 1A(De)xo (D)l z2(s) + VIl ar@)y2), (18)

where
Bl(wl,uawZV) = J1,v, B2(w1,u7w2,u) =92, (19)
The principal symbol of the operator Pg has the form

p(y> 5750751) = _(60 + i’8‘¢y0)2 + ﬁ[(gl + Z-‘S|¢yl)2 - 26/(51 + i‘3‘¢y1)(£2 + i‘8‘¢y2)
+ (& +ilslow)*IGI), (20)

where |G| = 1+ (¢)?. The roots of this polynomial respect to variable &, are
F?;(Z/a S?f(%él) = _i’5|¢y2 +a§<y737€07€1)7 (21)

0 (g5, 60,61 = ST Z'j’éf'yl)g W) 4 fr s 60 6. (22)

ol = (G 10w = 6 PG 906 o P

Denote v = (y*, (*). Suppose that r5(7) # 0. Now we claim that there exists §y > 0
such that for all 6,0, € (0,dy) there exists a constant Cy4 > 0 such that for one of
the roots of the polynomial (20) , which we denote as I'; we have

_Imr/g(ya S7507§1) > CA'14|S| v(y7 8750’51) € Bs X O(5l>

In some situations we may represent the operator P as a product of two first order
pseudodifferential operators.
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Proposition 2 Let r3(v) # 0 and supp V C O(6,). Then we could decompose the
operator P g into the product of two first order P.D.O.

PgV = (Dy, =I5 (y, D))(Dy, = T3 (y, D))V + TV, (24)
where Ty 1s the continuous operator
Ty : L*(0,1; HY(R?)) — L*(0,1; L*(R?)).
Let us consider the equation
(Dy = T35 D)V =a, Vper =0,
For solutions of this problem we have the a priori estimate:
Proposition 3 There exists a constant Ci5 > 0 such that
1M(Do)V]y=0ll 2(es) < Chsllallz2(0)

Let 3 > 0 and w(s,y) be a function which for almost all s € R! satisfies the
scalar second order hyperbolic equation

ow

8_|y2:1 = W|y=1 =0, suppw C Bs x R".
Y2

Pssw=¢q ingG,
Let Pj, be the formally adjoint operator to P g, where 3 € [u, A +2pu]. Set Ly 5 =

(Ps s + P* ;)/2and L_ 3= (Ps, — Pj,)/2. One may easily check that the operator
L_gis glven by the formula

ow

L_pw |5’¢y0 0

0y
D ow 0w
+ﬂ(2\s|¢yla =2l ) (B + 0 ) + 205l (1 ) )

Obviously Ly g + L_ g0 = q. For almost all s € R! the following equality holds
true

Bs + HLf,,B@H%%g) + HL+,BU~)H%2(g) + Re([L+,g, L— g0, W) 2(g) = HQHL2
where
Bo=Re [ polu Vo.~2)(s1s(0. 9) 550, V6. V)i dody
#Re | uly. Vi) i, (25)
=(0,0,1) and
ey, £,6) = &obo — Bl — (1) (€262 + &) + (14 € (11)[)€26a)-
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It is convenient for us to rewrite (25) in the form

Bs =B + BY,

= 90 (520 o
By —Re/yz:02|8|50y2(5ay1¢y1( )+5 bez( ) — ayocbyo(y ))dyody,
O O O
[ 80 = BT+ 15
— |s]*(¢2, (y*) — B(oy, (") + &2, (y™) 0] ) dyody:.

and

ow
IBY| < eols || ||L2(Bg + Is[[[ @131 a6y + 18110117 2(06))- (26)

It is known (see e.g. [lmn]) that there exists a parameter A > 1 such that for any
A > A there exists so(A) such that

1L 50|72y + 1 L+,50| 2y + Re([Ly g, L g0, @) r2(g) >
Cus(sll @[3 (gy + [sP [0l 72g)) Vs = so(A). (27)
where Cyg > 0 is independent of s. Denote by Z3 = [~ Bgds, Eéj) =7 Bg)ds
j = 1,2. Therefore integrating (27) respect to s on R! we have
Cro([lh()D |7 ) + 13 (s)0I72(0)) + Z5 < llallz2(g) + Cooll @7 (q). (28)
where C9 > 0, and by (26)

ow
= L €ll(=—,w)||%, 29
’ 8 ’ EH( Ea )HX (29)

where
o _ ow . .
|Gy @)1 = () 5 g + 1)@ sy + I1(5) sy

and the parameter € could make an arbitrary small taking ¢ in (14) sufficiently small.

Later we will need to apply (28), (29) to the functions w; , = Fyx,(D)vy, we, =
F,xu(D)vy, since we would like to take the advantage of (18). Formally it is
impossible since the condition supp x,(D)v C Bs x R! in general does not hold
true. On the other hand using the fact that

WA (s) Y [D%w;, Pdyodyrds < Cor|[VI[E1 0y
/RQ\BQ(; /Rl |az<2 (H1(Q))
we obtain slightly modified analog of (28), (29):

C22(||h(5)wi,u||§{1(g) + th(s)wi,uHZm(Q)) + 25 < ||P,8,sw1,u||%2(g) + C23HVH?H1(Q))2
(30)

where Cyy > 0, and S =pfori=1, =X+ 2u fori =2

ow;
—(2 LY
12571 < el wia) e + ol o (31)
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2. Case r, # 0 and 7)o, # 0.

In this section we consider the conic neighborhood O(d;) of the point (y*,(*) such
that

ru(y™, O # 0 and [ragau(y®, ¢7)| # 0. (32)

In that case thanks to (32) and Proposition 1.2 decomposition (24) holds true for
B = pand = X+ 2u. Therefore we have

(Dyz - F:(y’ D))U17V|y2:0 = V/j_('v 0)7 (33)
(Dyz - F;\r—i—Qu(y? D))U27V|y2=0 = V>\+—&-2M<'7 0)' (34>

By Proposition 1.3 we have the a priori estimate

1R(Do) V(- 0)[Z2sy + [17(Do) Vi, (5 0) 122y
< Cl(HP)\-i-qu?”QL?(Q) + ||P;ﬂ’1||%2(g) + ||V||%H1(Q))2)' (35)

Using (19) we may rewrite (33), (34) as

A+ 2u ,0vg, . .
1 ( 8y1 - |DU|¢y1 (y )2}211,) - ZO‘:(% D)UL,, = V;_(" O) —qLu;
i 0vy . .
(_ + ‘DU|¢y1 (y )UI,V) - ZOéL_zu(y, D)UQ,V = V/\++2u('7 O) —q2v-

Let B(y, D) be the matrix P.D.O. with the symbol

B(y.¢) = ( g (y,Q) (G |s|¢y1>> |

)\+N_2M(_Z£1 + ’5‘¢y1) _iaj\r+2u(y7 C)
By (22), (23) the set {¢* € S?|det B(y*,(*) = 0} is empty.

Then there exists a parametrix of the operator B(y, D) (see [12]) which we
denote as B™*(y, D) such that

(Ul,w UQ,V) = B_l(y, D)(V;;L(': 0) — 41, V>\+_|_2#('7 O) - QZ,V) + K(Ul,w UQ,V)? (36)

where

K (LX(Q)) — (H'(Q)),
By (35), (36)

|Zul + 15520l < CoIPuvillT2(0) + P rs2uvallZz o) + 11(8)g 1z + V1T (0)y2)-
(37)

By (37), (28), (29) we obtain (18).
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3. Case r, = 0.

In this section mainly we treat the case when supp x, C O(d1), and v = (y*,(*) be
a point on ¥ x S? such that r,(y) = 0.
We remind that by (30), (31) there exists C; > 0,Cy > 0 such that

—_ awl,y
Cr([1p(s) w1l o) + 112 (s)wnulZ2(0) + Z57 < ColPuon|2o) + 6(5>H(3—y2’ wiw) %,
(38)

and the parameter € could be taken sufficiently small, if we decrease §. Note that

E’ftl) could be written in the form

_ « awl,y *
210 = [ sl ) G+ 1o 0 o)

8wly ows owy ,,
+ Re | 2R o () 5 = ) G

T / 5l (5) (€ — uEl — 26 (") + SPudh, ()i |25 =
Ji+ J2+ J5. (39)

We shall consider the two cases. Let us introduce the set M by formula

M={C=(5.60.6) € 0<51>|§¢y2< Cs

(y) (y*) ) , ,
|¢y2(y)!§1+4\¢y2( )|fo+(\€o\ +lald)}), (40)

where C' = minye g, {—p1(y, Vo) }. From (4) it follows that C' is positive.

42

Case A. Assume that
supp v, C O(6;) C M.

Applying the Cauchy-Bunyakovskii inequality and using (40) and (4) we obtain that
there exists a constant C3 > 0 such that

[1]

a sV * * *
/ 516204, (57) G = Il Tl
> W) |
)]
P50, () Clh o 5.
(41)

8w1 ¢2( ) 8w1 awl
_ Zls 2 ) * ,l/2+48 2 y1 1/2_'_4 1,2
/22| 007 P Al T g e e g

811}1’1, |2 |

1
ZC/—S 2¢2 *
322!|u e (7)) o

8w1 v

2
2 4lsl|

8w1,,,

SH Iy

We remind that by (19) we have the equality

aUJQ N 811}1’”

= Loty )wn = 55 (o

A4 2p

= 1oy (y")wr) + g2,
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Taking the L? norm of the left and right hand sides of this equality and using the
estimate (35) we obtain

/Zh<s>|%w—;;| ), (1) wau [ dS

< C4< + A9l {2 ) +6(Uo)H( )llx
/la 21/’2 Q(y*)’w2,u’2dz)7

where €(0g) — 0 as gp — 0. By (40), (19)

6w2 811)2
h Y2 217)de < C h 2
[ T2 + 15522 ) 43 < o (50 + o)l
MWy o | 22 2
[ 2R 4 262 (Yl dD). (42
[ 152 + 6 7k a5)- (42
If we consider (30) with 5 = A + 2 then (38), (41), (42) immediately imply (18).

Now we assume that supp v, C O(6;) and r,,(7) = 0. The parameter §; > 0 we’ll
fix later. By (21)-(23) there exists Cs > 0 such that

&6 — 5°00 () — &t + us” o ()| + [€osdy, () — pséady, (y7))
< 8HCs(|& ) + &P+ 87, V(e O(01). (43)

Now we suppose that d; is assumed to be a sufficiently small, such that there exists
a constant C7; > 0 such that

6> < Cr(l&1? +8%) V¢ € O6).

Next we introduce the set M by formula

M= {¢ = (5:60.6) € 00| 0(y")Cs” <

¢z, (y") o ()
4 2 4 2 2 2 ]
W o g + (Gl + 161}
Obviously O(8;) € MU M.
By (43)
awly

sl < 016y (97152 w5 (44)

Case B. Assume that )
suppVv, C M.

We observe that decomposition (24) with 3 = A + 2u holds true. We set V" Loy =
(Dy, = T35, (y, D))va,. Then

Piouv2, = (Dy, = Ty 10, (Y, D) Vyig, + Tarouvo,
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where T\ o, € L(H'(Q),L*(Q)). This decomposition and the Proposition 1.2 im-
mediately imply

Hh(DU) (Dy2 - F:\:zu(ya D))U2,V|y2:0‘

L*(%)

< C5(\|P/\+2u,sw2,uHL2(Q) + HV||(H1(Q))2)‘
Now we need again to estimate = ,Sl). In view of (44) it suffices to estimate the term
Ja.

Let us consider the equation

o, 0vry, . i R
_>\ + 2,“( 3y1 - |DU|¢y1 (y )ULV) - ZO‘)\+2M(y’ D)UQ,V - ZV)\JrQ,u('vO) -

q2.v
(45)

A+ 20

Since 7y12,(7) # 0 then aj\;%(’y) # 0. Therefore by Proposition from [12] there
exists a parametrix of the operator ay ,, ,(y, D) which we denote as (ay,,(y, D))"
From (45) we obtain

a'Ul WV
oy

a0 = — (01,0, D) (L

_ D *
X+ 2 | 0|¢y1(y )UI,V)

U
v) +Tove,, (46
o ) + Tova,, (46)

where Ty € L(L*(X), H'(X)). Using (46), (19) we may transform J, to the form

Slgn(gl) A + K a’Ul v * 8Ul v
= 2 D — — D —_— *
T Re/Z [ Dol === ’/A+2u( By, | Doy, (") v1,0) (1 i Gy (¥)

0”01 v

(byo( *))dX + Reks.
where
|kl < EH(a—Z,wu)Hi + Cro(I7()gllfzamye + 1Prszuswn (o))
Since J, = Reks we have
| J2| < EH(({;_Z:’ w,) |5 + Cn(Hh(S)QH?L?(E))? + ||P>\+2u,sw2,l/||%2(g) + ||V||%H1(Q))2>7

(47)
Next we observe that there exists C' > 0 such that

H(g“; Ak < Cm(/z(h(S)]aé”leu (s)lwe, 1) + |h(s)gllfr2(mye)- (48)

Inequalities (38), (39), (44) (47), (48) imply

ow,,
”(_a ;w5 + () wiwllF o) + 1R2 (s)wiwllizg) < 6||( = w1 %+
Y2 y2

Cralvlita @y + 11()gulliizisye + 1 Puswzolliz))-
From this inequality and (30) with 8 = A 4+ 2u we obtain (18). |
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4. Case ry;9, = 0.

Let v = (y*,¢*) be a point on X x 52 such that ry;2,(y) = 0 and supp x, C O(d1).
We consider several cases.

Case A. Assume that
s*=0 and CILHCI* Imr,(y*, ¢)/|s| = 0.
In that case there exists a constant Cs > 0 such that
—Im T} (y, ¢) > Cols| Y(y,¢) € Bs x O()
provided that [6] 4 |d;| is sufficiently small. We set V¥ = (D,, =i (y, D))v1,,. Then
Pvi, = (Dy, — T (y, D))VE+ T oy,

where TF € L(H'(Q), L*(Q)). This decomposition and the Proposition 1.2 imme-
diately imply

1R(Dg)(Dy, — T (y, D)) vrulya=ollzzey < CallPpvrulize) + IVIiaroy2). (49)
Obviously

VE(,0) =V, (+,0) = (e (y, D) — o, (y, D))y, on X

Since af (y*, (*) — a,, (y*,(*) = 4/7u(y*, ¢*) # 0 by (49) and Garding’s inequality

owy owy ,,
/(h( ) 2|2 4| al %) + W2 (s) w1 [*)dE < Cs(|| Py swr w7200y + 1V I ye)-
) n Yo

(50)
From this inequality and (49) we obtain the estimate for 8;);2’” :
dwy 2 2
Ol P < Co([| PuswinlTzio) + V1T @p2)- (51)

And finally (50), (51) combined with (19) give the estimate

8w2 v

(G

wa)IIx < CrlllPuswinlizgo) + VG @2 + 17()gllfrsy)- (52)

By (50)-(52), (30), (31) we obtain (18).
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Case B. Assume that

s*=0 and Chlr? Imr,(y*,¢)/|s| # 0.

In that case first we note that since s* = 0 then Rer,(y*,(*) > 0. Set I =
sign lime_e« Imr,(y*, ¢)/|s|. For all (y,() € Bs x O(d61) we have

TH(y, ¢) = L/ Rery(y*,¢) + ba(y, <), (53)

where for the P.D.O. by (y, D) we have the estimate

3w1 v

12(5)ba (y, DYwr |2y < € (0, o=, = wn)lix (54)

where €(d,01) — 0 as || + |01] — 0.
We may assume that || + [01] is so small that there exists Cs > 0

IImr,(y",Q)/ls) = Cslc| ¥¢ € O(y). (55)

Let us consider formula (32) from the previous section. One may easily see that the
term J3 is nonnegative. On the other hand (53)-(54) imply

kz/mv%m@@WMMﬂMMﬁ@—
>

ows
Coe(0, 01)lI(—5 = =2 )% = Cro(8,60) (|| Pustwr 720y + V1T gyye)- (56)

Inequalities (55), (56) imply

811)1 v |2 8w1 v

Jo > Cn/h(S)(| B 2 J |2) +h3(8)|w1,y|2d2
by hn

| o
3101 W 2
— Coe(9, 61) H wLu)HX — C10(0,00) (| Puswr w1720y + 1V I (0y2)-

By (56) we have that there exists a constant Ci4 > 0

owy
= > Cull(5 !

cwi)|x = Cuo(8,00) (1 Puswrnl72(0) + 1V IT g)y2)-

This inequality and (19)

- w,

=0 2 Cl5||(a—y27wu)||§( — C16(0, 1) (1 Puswrn 120y + 1h(8)g L2y + VI (0)y2)-
(57)

From (57), (30), (31) we obtain (18).
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Case C. Assume that s* # 0. Then if 9; > 0 is small enough there exists a

constant Cj7 > 0 such that

(€003, () — (A + 21)&10, ()|* < 01C1s (|61 + 57).
By (30) there exists Cig > 0 such that

Hl
E\0s, + Crs(1h()wa |31 o) + I1W3(8) w2 | 22(0))

< Cro(IPryauvallTaco) + VI p2) + €|

Note that = /(\22# could be written in the form

2\ = i+ Jo + s,

an,V ‘2

Ji = / 51N+ 200y, (y7) | == + [sP(A + 20)° 0}, (") [ [ 4,
b

8w2 v 8w211,

Yo

. Ows,
Ja = Re | 205100+ 200 G2 (A 2000, () G2 = (7)) .

Jy = /Z |sI(A 4 20) ¢y, () (65 — (A +200)&F — s ¢y0(y*)

+ 52N+ 2u), (y")) [02, | dX.

By (58), (??) we have

awg v

o+ Al < Ot | Gt )

By (60) we obtain from (59) that there exists a constant C > 0 such that

—(1) awzy
H/\+2M > — ” Oy W2,y HX

es /z B(s) (A + 200y, (47)|

8w2’l,

2

From (61), inequality (49) for V.7 (-,0) and (19) we obtain the estimate

SNt 2 027H w)x

- 028(5, 00) (1 Puswr T2y + I10()glIELa sy + V1T 0)y2)

where Cy7 > 0. From (62), (30), (31) we obtain (18). H
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