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Global existence for a quasilinear wave equation
outside of star-shaped domains

Hart F. Smith

Abstract

This talk describes joint work with Chris Sogge and Markus Keel, in
which we establish a global existence theorem for null-type quasilinear wave
equations in three space dimensions, where we impose Dirichlet conditions
on a smooth, compact star-shaped obstacle I C R3. The key tool, following
Christodoulou [1], is to use the Penrose compactification of Minkowski space.
In the case under consideration, this reduces matters to a local existence
theorem for a singular obstacle problem. Full details will appear in our joint
paper of the same title.

We consider a quasilinear system of equations of the form

Pu— Au = F(u,du,d*u), (t,z) € R, x R3\K

u(t, - )]ox =0 (1)
U(O,-):f7 atu((),-)zg,
where v = (uy,... ,uyn).

The obstacle I is assumed to be smooth, compact, and strictly star-shaped with
respect to the origin.

The quasilinearity assumption means that F', which is assumed to be a smooth
function of its arguments, is linear with respect to second order derivatives of u, so
that

F'(u, du, d*u) = G* (u, du) + Z ALk (u, du) 0;0u’, 1< T < N.

0<7,k<3

We also assume that the nonlinearities satisfy the null condition of Christodoulou
[1] and Klainerman [3]. This first of all implies that F' vanishes quadratically in its
arguments,

F(0,0,0) =0, and F’(0,0,0)=0.

It also requires that the quadratic terms of F' be independent of u, so that they
take the form
s(du, du) + k(du, d*u)
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where s and k are bilinear forms.

The null condition then can be stated as requiring that the symbols of s and k&
vanish on null covectors. As shown in [1] and [3], this can equivalently be stated as
requiring the semilinear form s to be a linear combination of the basic null forms

3
qo(du’ , du™) = dyu” Oyu™ — Z 8ju‘] ﬁjuK ,
j=1

and
gij(du’, du®) = O’ O™ — dpu” O™, 0 <i,j <3,

and the quasilinear form £ to be a linear combination of terms of the form
q(du’,doju’), 0<j<3,
where ¢ is a basic null form as above, along with terms of the form
du’ (Ffu" — Au'), 0<j<3.

Under the null hypothesis, Christodoulou [I] and Klainerman [3] established
independently the existence of global solutions to (1) for small initial data f and g in
the case that K is not present. (In the absence of the null condition global existence
can fail, as shown by an example of John [2].) Klainerman established this result
by exploiting favorable commutation behavior of the wave operator with a certain
family of vector fields, in order to establish weighted energy estimates. Together
with weighted Sobolev estimates, this establishes sufficient decay of the solution to
yield global existence. The technique of Christodoulou was to compactify Minkowski
space via the Penrose transform, and to use the fact that null equations behave well
under this compactification, to reduce the problem to one of local existence on a
curved space, the so called Einstein diamond. Our work follows more closely the
method of Christodoulou.

For our work, as in [I], the data f and ¢ for (1) are assumed to be small in
appropriate weighted Sobolev spaces. As in [1], let

al+i | qa 2 1/2
e = 32 ([ @+ o) Iz P ar)

laj<m

In addition, we need to assume that f and g satisfy certain compatibility conditions
at the boundary of K. These are induced by the requirement that 9Fu must vanish
on OK for k of whatever order the restriction makes sense. Since dFu(0,x) for
0 < k < m can be expressed in terms of derivatives of f and g of order at most
m, this implies that the data must satisfy certain nonlinear relations among their
derivatives, known as the compatibility conditions of order m.

Our main theorem can now be stated as follows.

Theorem 1 Assume that K and F(u,du,d?u) are as above. Assume further that
(f,g) € C=(R3\K) satisfy the compatibility conditions to infinite order. Then there
exists eg > 0, such that if

| fll o3 msvicy + [l gl zso@sviy < €0,
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then there is a unique solution u € C*°(Ry x R*\K) of (1). Furthermore, for all
o >0, there exists C, < 00, such that

lu(t, )| < Cp (148114t — || [) 7.

We remark that we also establish global existence of solutions u of limited reg-
ularity for general data f and ¢ of small norm as above, which are assumed to
satisfy the compatibility condition of order 8. One should be able to replace 9 and
8 respectively by 4 and 3 and let 0 = 0, as is the case in [1], but our proof does not
show this.

The main tool in proving Theorem 1 is Penrose’s conformal compactification of
Minkowski space. This is a map P : R x R® — R x S3, whose image is the set

{(T,X)€ (—m,m)x S*: [T|+R<n7}.

To define the map, let (R,w) denote geodesic polar coodinates about the north pole
(1,0,0,0) € S®. If z = rw denotes polar coodinates in R?, then the Penrose map
preserves the angular variable w, while the remaining variables are related by

R = arctan(t + r) — arctan(t — r),
T = arctan(t + r) + arctan(t — ).

Under this map the pushforward of the Minkowski metric dt? — dz? is related to
the Lorentz metric dT? — dX? on (—m, ) x S? as follows,

dT? — dX?* = Q*(dt* — dz?)

where the conformal factor €2 is given by the formula

2
I+ (E+r)2) 2L+ (t—r)2)12”

Q=cosT +cosR =

with (7, R) and (¢,7) being identified as above.
Continuing, let
I:] - 3% - A53

be the D’Alembertian coming from the standard Laplace-Beltrami operator Ags on
53, If we let O denote the D’Alembertian on R**3, then the two wave operators are
related as follows,

O+1=07°0Q,

with the additive constant 1 arising because of the non-zero scalar curvature of S3.
Equivalently,

Oi=F <= (O+1)u=F with & =Quand F=Q3F.

Consequently, if
K.=P(R xK)
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is the pushforward of the obstacle K, then proving existence of global solutions to
the system (1) for small Cauchy data reduces to showing that we can find solutions
for time T' € (—m, ) for small Cauchy data to the system

O+ Du=Q3F(Qu,d(Qu),d*(Qw)), (T,X) € (—mm) xS\ K,
uw(T,X)=0, (T,X)e€oK..

The first issue to be dealt with is to show that the nonlinearity is actually a
smooth expression in u and its derivatives in the (7', X') variables, which is not imme-
diate due to the term Q~3, which is singular at T+ R = 7. It is the quadratic terms
in F' that thus present a possible obstruction to global solvability. Christodoulou [!]
showed that the transformed quadratic terms extend smoothly to R x S® precisely
when the null condition is verified (see [1], p. 277-278), from which global existence
for the obstacle-free case follows by local existence for smooth quasilinear equations
on S3.

This proof breaks down for our problem due to the fact that the transformed
obstacle K, is a time-dependent obstacle which collapses to a point as T — .
Indeed, for some constant C', we have that for 0 < T < 7,

CHr—T)?<dist(X,1) < C(r—-T)* if (T,X)edk,,

with 1 denoting the north pole on S3.
The start of the proof for the obstacle case is that the energy inequality holds
in the above setting provided that I is star-shaped. To state this, we let

Y = (—m,m) x S*\ K..

Theorem 2 Suppose that K C R3 is star-shaped with respect to the origin. Suppose
also that uw € C? and w(T,X) =0 if (T,X) € 9Y, and let

F=0u.
Then, for 0 <T < 7,

T
1w (T, M2y < |IU’(07-)||L2(YO>+/ ECS, L2 v 45
0

Here, v’ denotes the (T, X) gradient of u. The proof of Theorem 2 follows from the
fact that the energy flux across dY has the correct sign if K is star-shaped. This
proof still holds under small perturbations of the metric, and hence will hold for the
perturbed equation on Y.

To obtain C? bounds on solutions u, which are neccessary to close the loop so we
may apply the energy inequality, we need to control the L? norm of higher derivatives
of u. Since the obstacle IC, is time-dependent, the T" derivatives of v do not satisfy
the Dirichlet condition, and so we cannot use the standard trick of controlling 9% .
The one vector field at our disposal which does preserve Dirichlet conditions is the
pushforward of 9;. Since this field vanishes as (7 — T')?, we consequently end up
controlling only powers of the weighted derivatives

Z = (7'(' - T)26T7X .
With this notation we establish the following.
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Theorem 3 Assume that the system (1) satisfies the null condition. Then there
exists 0g > 0, so that if

1F o) + llgll 53y < o,

then the pushforward of the system (1) via the Penrose transform has a solution u
on'Y with Cauchy data (f,g) which verifies

sup 3 (1220 oy + 20T s, )

<
0 T<7r| <8

+ sup ( Z 127 u( ')HLOO(YT) <

<
0 T<71' la]<5

forall o > 0.

We remark that the pointwise bounds on u in the theorem do not follow directly
from the stated L? and L® bounds on u. To establish the pointwise bounds, we resort
to the equation, and use L' — L* bounds for the non-perturbed wave equation on
(—m, ) xS The proof also exploits the fact that the coefficients of the push forward
of a null quasilinear equation, in addition to being smooth in the (7, X) variables,
also vanish suitably at the tip of the diamond 7" = 7, R = 0. For example, the
coefficients v/7*(T, X;u,du) of the second order derivatives in 7" and X for the
pushed forward equation satisfy the bounds

|Zy1I%| < ( Z 2|+ (n =T Z | Z7u|+
[v1<]el [vI<]e]
> (<7r ~ TR 120l + (x = 1) 2)) ((x = T2 127 + (= T)* |27

[v1|+]v2| <l

assuming that
(r=T)* > |2l <B,
[yI<1+|al/2
where B is a fixed constant.

These bounds also show that the mild blowup of v as T — 7w does not lead to
blowup of the coefficients /7.
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