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Port d’Albret, 7 juin–11 juin 2010
GDR 2434 (CNRS)

Around Nash inequalities
Dominique Bakry François Bolley Ivan Gentil

Introduction
In the Euclidean space Rn, the classical Nash inequality may be stated as

‖f‖1+n/2
2 ≤ Cn‖f‖1‖∇f‖n/22 (0.1)

for all smooth functions f (with compact support for instance) where the norms are
computed with respect to the Lebesgue measure. This inequality has been intro-
duced by J. Nash in 1958 (see [9]) to obtain regularity properties on the solutions
to parabolic partial differential equations. The computation of the optimal constant
Cn has been performed more recently in [6].

This inequality may be stated in the general framework of symmetric Markov
semigroups, where it is a simple and powerful tool to obtain estimates on the asso-
ciated heat kernel. In this context, one replaces ‖∇f‖22 by the Dirichlet form E(f, f)
associated with the semigroup, and the Lebesgue measure by its reversible measure.
Moreover, the power function xn in the inequality is replaced by a more general
convex function Φ, and under this form it can be valid (and useful) even in infinite
dimensional situations such as those which appear in statistical mechanics. One can
also give weighted forms of these inequalities : they also lead to precise estimates
on the semigroup, or on the spectral decomposition of the generator.

The aim of this short note is to explain how Nash inequalities lead to such esti-
mates in a general setting and also to show simple techniques used to establish the
required Nash inequalities. There is no claim for originality, most of the material
included here may be found in various papers such as [1, 2, 5, 7, 13].

Nash inequalities belong to the very large family of functional inequalities for
symmetric Markov semigroups which have led to many recent works. Many of these
inequalities compare Lp norms of functions to the L2 norms of their gradients, which
in this context is called the Dirichlet form; this is the case of the simplest ones, the
spectral gap (or Poincaré) inequalities. But one may also consider L1 norms of the
gradients, in the area of isoperimetric inequalities, or Lp norms, even L∞ norms,
when one is concerned with estimates on Lipshitz functions, for instance in the area
of concentration of measure phenomena.

Here, we shall concentrate only on L2 norms of gradients. Even in this setting,
there exists a wide variety of inequalities, which are adapted to the kind of measure
one wants to study on one side, and to the properties they describe on the other. For
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example, measures with polynomial decay are not covered by the same inequalities
as measures with exponential, or square exponential decay.

The family of Nash type inequalities we present here belongs to the wide family
of the Sobolev type inequalities. Their main interest is that they easily provide good
(and sometimes almost optimal) control on heat kernels. Starting from the classical
inequality, we shall show how to extend them first by the introduction of a rate
function Φ, and then by the extra introduction of a weight function V (a Lyapunov
function). As we shall see, the link between Nash inequalities and estimates on
the semigroup spectrum is very simple and, as usual in the field, roughly relies on
derivation along time and integration by parts. This is why it is tempting to use it
in a wide range of situations.

Then, we shall show how to obtain these inequalities in the simplest models on
the real line. Restricting ourselves to the real line may be thought as looking only
at the easy case. In fact, by choosing various measures, one may produce a lot of
different model cases which really illustrate what may or may not be expected from
these inequalities. Then the extension to higher dimensional situations (like Rn or
manifolds) is very often a pure matter of technicalities, extending in a direct way
the one-dimensional methods.

The paper is organized as follows. In the first section, we briefly present the context
of symmetric Markov semigroups, and particularly diffusion semigroups. Then, we
show different variations of Nash inequalities and how to get estimates on heat
kernels from them. Then, in fine, we show how to produce such Nash inequalities
on the basic models on the real line we are interested in.

1. Symmetric Markov semigroups and difusions
To understand the general context of Markov semigroups, we first consider a measure
space (E,B, µ), where B is a σ-field and µ is a σ-finite measure on it. Although we
shall always focus on examples where (E,B) is Rn equipped with the usual Borel sets
(or some open set in it, or a finite dimensional manifold with or without boundaries),
it may be an infinite dimensional space, as we already mentioned, in which case one
has to be careful about the measurable structure of the space. In any case, one
should always suppose that (E,B, µ) is a "reasonable" measure space : we shall not
say in details what we mean by "reasonable", but results such as the decomposition
of measure theorems should be valid, which covers all cases one could look at in
practise.

Given (E,B, µ) a symmetric Markov semigroup is a family (Pt)t≥0 of linear oper-
ators mapping the set of bounded measurable functions into itself with the following
properties:

(i) Preservation of positivity : if f ≥ 0, so is Ptf .

(ii) Preservation of constant functions : Pt 1 = 1.

(iii) Semigroup property : Pt ◦ Ps = Pt+s.

(iv) Symmetry : Pt maps L2(µ) into itself and, for any pair (f, g) ∈ L2(µ), one has∫
E
Ptfg dµ =

∫
E
fPtg dµ.
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(v) Continuity at t = 0 : P0 = Id and Ptf → f when t→ 0 in L2(µ).

Such semigroups naturally appear in probability theory as Ptf(x) = E(f(Xt)/X0 =
x) where (Xt)t≥0 is a Markov process. The symmetry property does not always hold
and it is equivalent to the reversibility of the process. They also appear in many
situations when one solves a "heat equation" of the form

∂tF (x, t) = LF, F (x, 0) = f(x);
here L is a second order sub-elliptic (or hypo-elliptic) differential operator, in which
case Ptf is the solution F (x, t) at time t when the initial value is F (x, 0) = f(x).

Let us start with some elementary preliminary remarks.

(a) Since Pt is symmetric, and Pt 1 = 1, one gets
∫
E Ptfdµ =

∫
E fdµ by taking g = 1

in the property (iv): µ is invariant under the semigroup.

(b) Since Pt is linear and positivity preserving, |Ptf | ≤ Pt|f |. This implies that Pt
is a contraction in L1(µ) by invariance of the measure.

(c) By the same argument, Pt is also a contraction in L∞(µ) and therefore, by
interpolation, Pt is a contraction in Lp(µ) for any p ∈ [1,∞].

(d) Since (Pt)t is a semigroup of contractions in L2(µ), by the Hille-Yoshida theory,
it admits an infinitesimal generator L, which is densely defined by Lf = ∂tPtf
at t = 0. Then Ptf is the solution at time t of the heat equation ∂tF = LF ,
given F (x, 0) = f(x) at time t = 0.
Formally, any property of the semigroup may be translated into a property of the
generator L, and vice versa. For instance, the preservation of constants property
translates into L1 = 0. Also, the symmetry translates into the fact that L is
self-adjoint, that is, ∫

E
fLg dµ =

∫
E
gLfdµ.

The positivity preserving property is more subtle. In general, it is translated
into a maximum principle of the generator. But this requires a bit more than
just a measurable structure on the space, and we prefer to translate this into
the positivity of the carré du champ operator, see point (k) below.

(e) The measure µ being symmetric (or "reversible") is in general unique up to a
normalizing constant (it is however a restrictive condition that such a measure
exists : see formula (1.2) below). When the measure is finite, we may therefore
normalize it as to be a probability measure, and we shall always do it. In this
case, the constant function 1 is always a normalized eigenvector, associated with
the eigenvalue 0 which is the smallest value of the spectrum of −L. In the infinite
case, there is no canonical way of choosing a good normalization.

(f) Since the measure space (E,B, µ) is a "reasonable" space, any such operator Pt
which preserves the constants and positivity may be represented as

Ptf(x) =
∫
E
f(y)Pt(x, dy),

where Pt(x, dy) is a kernel of probability measures, that is, a probability measure
on E depending on the parameter x ∈ E in a measurable way. This enables for
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example to apply to Pt any generic property of probability measures, such as
the variance inequality Pt(f 2) ≥ (Ptf)2.

(g) Very often (and we shall see that Nash inequalities provide a useful criterium
for this), this kernel has a density with respect to the reversible measure µ, that
is

Pt(x, dy) = pt(x, y)µ(dy);
here pt(x, y) is a non negative function which is defined almost everywhere (with
respect to µ ⊗ µ) on E × E. Then the symmetry property (iv) is equivalent
to the symmetry of this kernel pt(x, y) = pt(y, x). Much attention has been
brought over the last decades to various estimates on this kernel density (in
particular in Riemannian geometry, for heat kernels on Riemannian manifolds,
using tools from geometry like curvature, Riemannian distance, etc). Once again,
Nash inequalities may provide good such estimates, as we shall see later on.

(h) When we have such densities, the semigroup property translates into the Chapman-
Kolmogorov equation

pt+s(x, y) =
∫
E
pt(x, z)ps(z, y)µ(dz).

Hence, by the Cauchy-Schwarz inequality,
p2t(x, y)2 ≤ p2t(x, x) p2t(y, y).

As the consequence, the maximum of pt(x, y) is always obtained on the diagonal.

(i) The generator L being self-adjoint has a spectral decomposition with a spectrum
in (−∞, 0] according to (1.1).

(j) It may be the case that the spectrum is discrete, and that we have a complete
sequence of orthonormal eigenvectors (fn) in L2(µ), with eigenvalues −λn for L.
In this situation, the kernel density pt(x, y) is given by

pt(x, y) =
∑
n

e−λntfn(x)fn(y).

Then we have the trace formula∫
E
pt(x, x)dµ(x) =

∑
n

e−λnt.

Once again, Nash inequalities will provide uniform (or non uniform) bounds on
the densities, and therefore bounds on the counting function of the sequence
(λn).

(k) By derivation at t = 0 the variance inequality Pt(f 2) ≥ (Ptf)2 gives the inequal-
ity

L(f 2) ≥ 2fLf.
In particular ∫

E
fLfdµ ≤ 0 (1.1)

by invariance of µ. Of course, one has to take care about which functions these
do apply. In general, we assume that there is an algebra of functions A dense
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in the domain of L, for which this is valid. In this case, one defines the carré du
champ as the bilinear form

Γ(f, g) = 1
2
(
L(fg)− fLg − gLf

)
.

It satisfies Γ(f, f) ≥ 0, and in some sense this characterizes the positivity pre-
serving property of Pt.

The Dirichlet form associated to Pt is finally defined by

E(f, g) = −
∫
gLfdµ = −

∫
fLg dµ =

∫
Γ(f, g)dµ.

The last identity is based on the identity
∫
E L(fg)dµ = 0 and is called the integration

by parts formula. The Dirichlet form is in general defined on a larger domain than
the operator L itself (formally, it requires only one derivative of the function to be
in L2(µ) instead of 2 for the generator).

The knowledge of the measure and of the carré du champ (or of the Dirichlet
form) entirely describes the operator L (and therefore the semigroup), since L may
be defined from Γ and µ through the integration by parts formula (see (1.2)).

The basic example of such semigroups is of course the standard heat kernel in
the Euclidean space Rn; for t > 0, its density pt(x, y) with respect to the Lebesgue
measure dy is

pt(x, y) = 1
(4πt)n/2 exp(−|x− y|

2

4t ).

Here, µ(dy) = dy, L = ∆ and
Γ(f, f) = |∇f |2.

This corresponds to the case studied by Nash in [9]. It is one of the very few examples
where one explicitly knows Pt, since in general we only know L, and the issue is to
deduce as much information as possible on Pt from the knowledge of L.

Another model case is the Ornstein-Uhlenbeck semigroup on Rn, for which

Lf(x) = ∆f(x)− x · ∇f(x), Γ(f, f) = |∇f |2, µ(dx) = 1
(2π)n/2 exp(−|x|2/2)dx.

Its density with respect to the Gauss measure µ(dy) is

pt(x, y) = (1− e−2t)−n/2 exp
[
− 1

2(1− e−2t)(|y|2e−2t − 2x · ye−t + |x|2e−2t)
]

and it behaves in a very different way from the previous example as long as functional
inequalities are concerned.

In the two previous cases, the carré du champ is the same (and the semigroups
only differ by the measure µ(dx)). Observe that Γ(f, g) is in both cases a first
order differential operator in its two arguments. They both belong to the large
class of diffusion Markov semigroups, which are semigroups such that for all smooth
functions φ

Γ(φ(f), g) = φ′(f)Γ(f, g)
or equivalently

Lφ(f) = φ′(f)Lf + φ′′(f)Γ(f, f).
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This property is called the change of variable formula for L and is an intrinsic way
of saying that L is a second order differential operator. The fact that L(1) = 0 says
that there is no 0-order term in L. One may easily check that among all differential
operators on Rn (or a manifold) with smooth coefficients, only the second order
ones may satisfy Γ(f, f) ≥ 0, provided the matrix of the second order terms is
positive-semidefinite at any point.

Non diffusion cases are of considerable interest since they are related to Markov
processes with jumps and also naturally appear when one looks at subordinators.
However we shall concentrate here on the diffusion case, even though the Nash
techniques may be used in the same way in the general case.

In general, a second order differential operator without 0-order terms of the form
Lf =

∑
ij

aij(x)∂2
ijf +

∑
i

bi(x)∂if

has a carré du champ given by
Γ(f, g) =

∑
ij

aij(x)∂if∂jg = ∇f · A(x)∇g.

Therefore the positivity of Γ is equivalent to the fact that at any point x the matrix
A(x) = (aij(x)) is positive-semidefinite. Conversely, when the carré du champ is
given (on a open set in Rn or on a smooth manifold in local coordinates) by

Γ(f, g) =
∑
ij

aij(x)∂if∂jg,

with positive-semidefinite matrices (aij(x)) having smooth coefficients, and when
the reference measure µ(dx) has a smooth positive density ρ(x) with respect to the
Lebesgue measure, it corresponds to a unique symmetric diffusion operator L which
is

Lf = 1
ρ(x)

∑
i

∂i

(
ρ(x)

∑
j

aij(x)∂jf
)
. (1.2)

In other words, Γ codes for the second order part of the operator while µ codes
for the first order terms. Observe also that each (Γ, µ) leads to unique symmetric L,
but possibly several non symmetric L.

A model case on which we shall focus is the case when E = R and Γ(f, f) = f ′2.
We shall look at the measures

µ(dx) = C exp(−|x|a)dx, (1.3)
where a > 0 and C is a normalizing constant. In order to avoid irrelevant difficulties
due to the non smoothness of |x| at 0, we shall replace |x| by

√
1 + x2. Depending

on the value of a, the corresponding semigroups present diverse behaviours.
For a = 2, the celebrated Nelson theorem [10] asserts that the Ornstein-Uhlenbeck

semigroup is "hypercontractive", which means that Pt is bounded from L2(µ) to
Lq(t)(µ) for all t > 0 and some q(t) > 2. This is equivalent to the also famous Gross
logarithmic Sobolev inequality [8]∫

f 2 log f 2dµ ≤
∫
f 2dµ log

( ∫
f 2dµ

)
+ CE(f, f). (1.4)

When a > 2, the semigroup is "ultracontractive", which means that Pt maps
L1(µ) into L∞(µ) for any t > 0, while it is not even hypercontractive for a < 2.
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Nevertheless, for 1 < a < 2, it has a discrete spectrum and it is Hilbert-Schmidt,
and we shall see below how to get estimates on the spectrum through weighted Nash
inequalities.

For a = 1, the spectrum is no longer discrete and the only property left is the
existence of a spectral gap : the spectrum of −L lies in {0}∪ [A,∞) for some A > 0,
and this property is equivalent to a spectral gap (or Poincaré) inequality∫

f 2dµ ≤
( ∫
fdµ

)2
+ 1
A
E(f, f). (1.5)

When a < 1, even the spectral gap property is lost.
Of course, one may look at similar models in Rn, or on Riemannian manifolds

with density measures (with respect to the Riemann measure) depending on the
distance to some point. In this latter case, one would get more complicated results,
since in general one has to take into account lower bounds on the Ricci curvature,
and even more if one works with boundaries (with Neumann boundary conditions).
We shall not develop this here.

2. Nash inequalities
In the context of Dirichlet forms associated to symmetric Markov semigroups as
described above, a Nash inequality is an inequality of the form

‖f‖1+n/2
2 ≤ ‖f‖1‖

[
C1‖f‖22 + C2E(f, f)

]n/4
; (2.1)

here the norms Lp are of course computed with respect to the reversible measure µ
and n is any positive parameter (that we call the dimension in the Nash inequality,
since in the classical case the unique possible value for n is really the dimension of
the space). This inequality should apply for any f in the Dirichlet domain, but it is
enough to check it in a dense subspace of it which, in many examples, will be the
set of smooth compactly supported functions.

It is worth mentioning that when µ is a probability measure, then C1 ≥ 1 (as can
be seen by choosing f = 1), while for example in Rn with the Lebesgue measure,
one may have C1 = 0, as it is the case for the classical Nash inequality.

When µ is a probability measure and C1 = 1, we say that the inequality is tight.
It then implies a spectral gap inequality, as one may see by applying the inequality
to 1 + εf and letting ε go to 0.

Conversely, if (2.1) is valid with C1 > 1 and with µ being a probability measure,
together with a spectral gap inequality, then a tight Nash inequality holds (see
[1] for example). In general, we say that a functional inequality is tight when one
may deduce from the inequality that {E(f, f) = 0}=⇒{f = constant}. Here, when
C1 = 1, this is ensured by the equality case in the inequality ‖f‖1 ≤ ‖f‖2. As we
shall see, tightness may be used to control the convergence to equilibrium, that is
the asymptotic behaviour when t → ∞, while the general inequality is useful to
control the short time behaviour. Most of functional inequalities may be tightened
in presence of a spectral gap inequality, as it is the case here.

In the case of an infinite measure, tightness corresponds to the case when C1 = 0,
as in the Euclidean case.

However, there is a strong difference between the forms that the Nash inequalities
may take according to whether the measure is finite or not. We know that a tight
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Nash inequality holds true in the Euclidean space, but it can be proved that the
tight Nash inequality (2.1) may not be valid on a finite measure space unless the
space is compact. More precisely, when one has a tight Nash inequality (2.1) on a
finite measure space, one may get a bound on the oscillation of Lipchitz functions,
whence a bound on the diameter of the space (this diameter being measured in
terms of an intrinsic distance associated with the carré du champ [4]). This explains
why below we introduce the extended Nash inequalities (2.3) and (2.4), which may
be valid on finite measure spaces with unbounded support, as we shall see.

When n > 2, the Nash inequality (2.1) is one of the many forms of the Sobolev
inequality

‖f‖22n/(n−2) ≤ C1‖f‖2 + C2E(f, f).
Indeed, observe first that this and Hölder’s inequalities lead to the Nash inequality
(2.1) with the same "dimension" n and the same constants C1 and C2. The way
back is a little more subtle: the argument in [3] is based on applying the Nash
inequality to the sequence of functions fn = min{(f−2n)+, 2n}, adding the obtained
estimates and using the identity ∑

n E(fn, fn) = E(f, f). This enables to keep the
same dimension n, but not the constants C1 and C2.

In the context of Dirichlet forms, such Sobolev inequalities may appear under
different forms such as Energy-Entropy, Gagliardo-Nirenberg, Faber-Krahn etc in-
equalities. We refer to [3] for full details. The connection between Sobolev (and
Nash) inequalities and various bounds on heat kernels has been explored by many
authors, see [1, 7, 11] for example.

We have the following

Theorem 2.1. Assume that inequality (2.1) holds. Then,

‖Ptf‖2 ≤ C(t)‖f‖1, (2.2)

where

C(t) =
(

max{2C1,
2nC2

t
}
)n/4
.

Conversely, if (2.2) holds with C(t) ≤ a + bt−n/4, then a Nash inequality (2.1)
holds with the same dimension n and constants C1 and C2 depending only on n, a
and b.

Proof — Let us rewrite the inequality under the form(
‖f‖22
‖f‖21

)1+2/n

≤ C1
‖f‖22
‖f‖21

+ C2
E(f, f)
‖f‖21

.

Now, choose a positive function f and apply the preceding bound to Ptf . We know
from invariance of µ that

∫
E Ptfdµ =

∫
E fdµ.

Let us set H(t) = ‖Ptf‖22
‖Ptf‖21

= ‖Ptf‖22
‖f‖21

. We have

∂t‖Ptf‖22 = 2
∫
PtfLPtf dµ = −2 E(Ptf, Ptf).

Therefore, H is decreasing and

H ′(t) = −2E(Ptf, Ptf)
‖Ptf‖21

,
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and the Nash inequality (2.1) becomes

H1+2/n ≤ C1H − 2C2H
′.

Now, as long as H ≥ (2C1)n/2, one has H1+2/n ≥ 2C1H, and we get

H1+2/n ≤ −4C2H
′,

and this differential inequality (with the fact that H is decreasing) gives the result.
To see the reverse way, we may observe that, for a general symmetric Markov

semigroup, the function t 7→ K(t) = log ‖Ptf‖22 is convex. Indeed, the derivative
of K1(t) = ‖Ptf‖22 is −2

∫
PtfLPtfdµ, while the second derivative is 4

∫
(LPtf)2dµ,

and therefore by Cauchy-Schwarz inequality one has

K
′2
1 ≤ K1K

′′
1 ,

which says that logK1 = K is convex. Then so is the function h(t) = log ‖Ptf‖
2
2

‖Ptf‖21
=

logH(t), so that

H ′(0) ≤ H(0)
t

log H(t)
H(0) .

Now, if we have a bound of the form H(t) ≤ a + bt−n/2, we may plug this upper
bound in the previous inequality, and then optimise in t to get the result.

In fact, having a bound for Pt as an operator from L1 into L2, we are very close
from a uniform bound on the kernel pt. Indeed, if Pt is bounded from L1 into L2

with norm C(t), then by symmetry and duality, it is also bounded from L2 into
L∞ with norm C(t), and therefore by composition and semigroup property P2t is
bounded from L1 into L∞ with norm C(t)2.

Conversely, by the Riesz-Thorin theorem, if Pt is bounded from L1 into L∞ with
norm C1(t), being bounded from L1 into itself with norm 1, it is also bounded from
L1 into L2 with norm C1(t)1/2. In the end, we have obtained the following

Theorem 2.2. A Nash inequality (2.1) holds with dimension n if and only if Pt is
bounded from L1 into L∞ with norm bounded above by a+ bt−n/2.

Of course, in the case when C1 = 0, which corresponds to the classical Euclidean
Nash inequality, the equivalence is valid with a bound of the form C(t) = at−n/2.

Moreover, a very general fact (valid on "reasonable measure spaces" (E,B, µ))
asserts that an operator K is bounded from L1(µ) into L∞(µ) if and only if it
may be represented by a bounded kernel density k : K(f)(x) =

∫
E k(x, y)f(y)µ(dy).

Moreover, the norm operator of K is exactly the L∞ norm of k (on E × E).
So we have seen that a Nash inequality is equivalent to a uniform bound on the

kernel of Pt (and also carries the existence of such kernel), with very few assumptions
on the space.

Observe that there is no reason why we should restrict ourselves to the case of
power functions in Nash inequalities. One may consider extensions of the form

Φ
(‖f‖22
‖f‖21

)
≤ E(f, f)
‖f‖21

, (2.3)

valid say whenever ‖f‖2 > M‖f‖1. Here Φ is a smooth convex increasing function
defined on an interval (M,∞). (It does not require formally to be convex increasing,
but it is really useful only in this case).
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Such inequalities have been introduced by F.-Y. Wang in [12] under the form
‖f‖22 ≤ aE(f, f) + b(a)‖f‖21,

called super Poincaré inequalities. These inequalities may be optimized under the
parameter a to give

‖f‖22
‖f‖21

≤ Ψ
(E(f, f)
‖f‖21

)
with some concave function Ψ, which is equivalent to inequality (2.3).

Then, one can write the argument of Theorem 2.1 with (2.3) instead of (2.1) and
we see that the key assumption is

∫∞ 1
Φ(s)ds <∞ :

Theorem 2.3 (Wang). Assume that an extended Nash inequality (2.3) is valid with
a rate function Φ defined on some interval (M,∞) and such that

∫∞ 1
Φ(s)ds < ∞.

Then we have
‖Ptf‖2 ≤ K(2t) ‖f‖1

for all t > 0 and all functions f ∈ L2(µ); here the function K is defined by

K(x) =


√
U−1(x) if 0 < x < U(M),√
M if x ≥ U(M)

where U denotes the (decreasing) function defined on (M,+∞) by

U(x) =
∫ ∞
x

1
φ(u)du.

In particular, the density pt(x, y) is bounded from above by K(t)2.
Conversely, if there exists a positive function K defined on (0,∞) such that

‖Ptf‖2 ≤ K(t)‖f‖1
for all t > 0, then the Nash inequality (2.3) holds with M = 0 and function

Φ(x) = sup
t>0

x

2t log x

K(t)2 , x ≥ 0.

With the techniques presented in the next section, we may see that such extended
Nash inequalities with functions Φ of the form x(log x)α are adapted to the study of
the the measures µa described in (1.3) for a > 2 : as we already mentioned, because
of non compactness, there is no hope in this case to have a classical Nash inequality
(2.1) with a power function Φ.

In the case when the measure is finite (and therefore a probability measure), then
we know that ‖f‖2/‖f‖1 ≥ 1. For such a general inequality, tightness corresponds
to the fact that Φ(x)→ 0 when x→ 1. (Of course, this supposes that M = 1 in the
previous theorem).

In this situation, assume that Φ(x) ∼ λ(x− 1) when x→ 1 and 1/Φ is integrable
at infinity. This is the case in particular for the tight form of the classical Nash
inequality (2.1). Then K(t) ∼ 1 + Ce−λt when t → ∞. This shows that the kernel
pt(x, y) is bounded from above by a quantity which converges exponentially fast
to 1 as t goes to infinity. This is what may be expected, since Ptf → µ(f) when
t→∞. In the case of a classical tight Nash inequality (which can only occur when
the measure has a bounded support), then one may also deduce a lower uniform
bound on the kernel pt which also goes exponentially fast to 1, but this requires
some other techniques (see [1]).
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The different Nash inequalities introduced so far may only carry information on
the heat kernel in case of ultracontractivity, that is, when the kernel density is
bounded. In the general case when it is not bounded we may still use this method
with the trick of introducing an auxiliary Lyapunov function V and weighted Nash
inequalities.

For us, a Lyapunov function V is simply a positive function V on E such that
LV ≤ cV for some constant c. We shall require those functions V to be in L2(µ)
and in the domain to get interesting results, but it is not formally necessary.

Being a Lyapunov is not a very restrictive requirement for smooth functions in
the examples below, as long as we do not ask c < 0 (in which case it cannot be true
for any function V in the domain).

The weighted Nash inequality takes then the form

Φ
(
‖f‖22
‖fV ‖21

)
≤ E(f, f)
‖fV ‖21

(2.4)

for all functions f in the domain of the Dirichlet form such that ‖f‖22 > M ‖fV ‖21,
where the rate function Φ is defined on (M,∞) and such that Φ(x)/x is increasing.

Theorem 2.4 (Wang). Assume that a weighted Nash inequality (2.4) holds with a
rate function Φ defined on some interval (M,∞) such that

∫∞ 1
Φ(s)ds <∞. Then

‖Ptf‖2 ≤ K(2t)ect ‖fV ‖1
for all t > 0 and all functions f ∈ L2(µ), where K is defined as in Theorem 2.3. In
particular, the kernel density pt(x, y) satisfies

pt(x, y) ≤ K(t)2ectV (x)V (y).
Conversely, if there exists a positive function K defined on (0,∞) such that

‖Ptf‖2 ≤ K(t)‖fV ‖1
for all t > 0, then the weighted Nash inequality (2.4) holds with M = 0 and rate
function

Φ(x) = sup
t>0

x

2t log x

K(t)2 , x ≥ 0.

Proof — It is given in detail in [2]. It follows the proof of Theorem 2.1 by replacing

the function K(t) = ‖Ptf‖
2
2

‖f‖21
by K̂(t) = ‖Ptf‖

2
2

‖V f‖21
. Now, the quantity

∫
PtfV dµ is no

longer invariant in time. But by properties of the Lyapunov function we have

∂t

∫
E
V Ptfdµ = ∂t

∫
PtV fdµ =

∫
PtLV fdµ ≤ c

∫
E
V Ptfdµ, (2.5)

from which we get ∫
E
PtfV dµ ≤ ect

∫
V fdµ.

Using this, we get again a differential inequality on K̂ when we apply the Nash
inequality (2.4) to Ptf , and the L1 → L2 boundedness result follows.

To get the (non uniform) bound on the kernel, it remains to observe that if a
symmetric operator K satisfies ‖Kf‖2 ≤ ‖fV ‖1, the norms being considered with
respect to a measure µ, then the operator K1 defined by

K1(f) = 1
V
K(fV )
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is a contraction from L1(ν) into L2(ν), where dν = V 2dµ. Moreover,K1 is symmetric
in L2(ν), and therefore K1 ◦K1 is a contraction from L1(ν) into L∞(ν). It follows
that it has a density kernel bounded by 1 with respect to ν; and this amounts to say
that K has a density kernel with respect to µ bounded above by V (x)V (y), since

the kernel of K1 with respect to ν is k(x, y)
V (x)V (y) , where k is the kernel of K with

respect to µ.
Observe that Theorem 2.4 produces non uniform bounds on the kernel. Moreover,

when V ∈ L2(µ), then the operator P2t is Hilbert-Schmidt so has a discrete spectrum
and we get an estimate on the eigenvalues −λn of L :∑

n

e−λnt ≤ K2(t)ect‖V ‖22.

3. Weighted Nash inequalities on the real line.
As already mentioned, we shall mainly concentrate on model examples on the real
line, and show elementary techniques to obtain weighted Nash inequalities for mea-
sures with density ρ with respect to the Lebesgue measure and the usual carré
du champ Γ(f, f) = |∇f |2 = f ′2. These techniques may be easily extended to the
n-dimensional Euclidean space, and with some extra work to Riemannian manifolds.

Let us first state a universal weighted Nash inequality in the Euclidean space.
We consider the case when Γ(f, f) = |∇f |2 and µ(dx) = ρ(x)dx. We are mainly
interested in the case when µ is a probability measure. Recall that in this situation,
there may not exist any classical Nash inequality (classical means with a power
function as rate function Φ) unless the measure is compactly supported.

Here, the symmetric operator associated with the corresponding Dirichlet form is
Lf = ∆f +∇ log ρ · ∇f.

We may always choose V = ρ−1/2 : it is not hard to check that LV ≤ cV for some
constant c to get the universal weighted Nash inequality (with respect to µ)

||f ||2+ 4
n

2 ≤ C
4
n
n ||f V ||

4
n
1

(
E(f, f) + c

∫
Rn
f 2 dµ

)
.

Here Cn is the constant for the Nash inequality in the Euclidean space with the
Lebesgue measure.

To see this, we just apply the Euclidean Nash inequality (0.1) to g = f√ρ, where
f is a smooth compactly supported function, and observe that∫

Rn
|∇g|2 dx =

∫
|∇f |2ρdx+

∫
Rn

LV

V
f 2 dµ = E(f, f) +

∫
Rn

LV

V
f 2 dµ,

through integration by parts. Unfortunately, this bound is not very useful since
V /∈ L2(µ). Nevertheless, with some care to justify the integration by parts in (2.5),
(with extra hypotheses like uniform upper bounds on the Hessian of log ρ), it may
lead to an upper-bound on the kernel density.

Of course, this method has nothing particular to do with the Euclidean case.
It extends a Nash inequality (without weight) with respect to a measure µ to a
weighted Nash inequality with respect to the measure ρdµ with weight V = ρ−1/2,
as soon as the inequality LV ≤ cV is satisfied.

For example, one gets with this simple argument
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Corollary 3.1. In Rn, with ρ(x) = (1+|x|2)−β with β > n or ρ(x) = exp(−(1 + |x|2)a/2)
with a > 0, there exists a constant C such that for all t > 0 and x, y ∈ Rn the kernel
density pt satisfies

pt(x, y) ≤
C

tn/2
eCtρ−1/2(x) ρ−1/2(y).

But since V /∈ L2(µ), this may never produce any bound on the spectrum for
example. So one has to look for more precise Lyapunov functions.

This is what we now perform on our model examples on the real line : we write
T (x) =

√
1 + x2 and consider the measure

µa(dx) = Ca exp(−T (x)a)dx,
where a > 0 and Ca is a normalizing constant. We denote by ρa the density
exp(−T a). Here, the associated operator is

L(f) = f ′′ − aT a−1T ′f ′.

In this context, it is not hard to check that, for any β ∈ R,
V = T−β/√ρa (3.1)

is a Lyapunov function. If β > 1/2, this function is in L2(µa). The issue is then to
choose the smallest possible V ∈ L2(µa) and still have a weighted Nash inequality
with rate function Φ such that 1/Φ is integrable at infinity.

The main result on this example is the following

Theorem 3.2 ([2]). If a > 1, then for any β ∈ R and V chosen as in (3.1), there
exist constants C and λ ∈ (0, 1) such that

‖f‖22 ≤ C
[(∫
|f |V dµa

)2
+
(∫
|f |V dµa

)2(1−λ)
E(f, f)λ

]
(3.2)

for all functions f . This corresponds to the rate function

Φ(x) =
(
x

C
− 1

)1/λ
, x > C.

Although tractable, the explicit value of λ in terms of the parameters a and β
is not so simple. The assumption a > 1 is necessary, since for a ≤ 1 the spectrum
is no longer discrete (and therefore no weighted Nash inequality could occur with
any L2(µa) weight V ). What has to be underlined here is that the introduction of
a weight allows us to get polynomial rate functions Φ, although we know that such
polynomial growth is forbidden for non compactly supported finite measures in the
absence of weights. Of course, to get these polynomial growths, one has to choose
weights which are quite close to the universal weights 1/√ρ described before. If one
chooses much smaller weights, the rate function will be smaller. For example, when
a > 2, one may choose V = 1, and in this case one has Φ(x) = x(log x)α.

The argument of Theorem 3.2 is based on a tail estimate of the measure µa. If
qa(x) =

∫∞
x µa(dy), then, for some constant C, one has

qa(x) ≤ C
ρa(x)
T (x)a−1 . (3.3)

One first proves a Nash inequality for smooth compactly supported functions such
that f(0) = 0. We start with
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Lemma 3.3. Let a ≥ 1, β ∈ R and V given in (3.1). For all smooth compactly
supported functions f such that f(0) = 0 one has∫

f 2dµa ≤ CE(f, f)γ
(∫
|f |V dµa

)2(1−γ)

where γ = 1− 2 a− 1
3(a− 1) + 2β ∈

(1
3 , 1

]
.

The proof is based on cutting the integral on [0,∞) (for instance) as∫ ∞
0
f 2dµa =

∫ ∞
0
f 21l{

f
‖f‖ 2
≤V Z−1/2

}dµa +
∫ ∞

0
f 21l{

f
‖f‖ 2
>V Z−1/2

}dµa.
for a suitably chosen Z > 0. Then both terms are controlled by the estimate (3.3),
replacing f 2 by 2

∫ x
0 f(t)f ′(t)dt in the second integral and using Fubini’s theorem.

It remains to get rid of the assumption f(0) = 0. For this purpose, with the same
kind of techniques one may prove the following

Lemma 3.4. Let a > 0, β > 3−a
2 and V given in (3.1). Then there exist θ ∈ (0, 1)

and C such that∫
|f − f(0)|V dµa ≤ C

[∫
|f |V dµa +

(∫
|f |V dµa

)1−θ
E(f, f)θ/2

]
for all nonnegative smooth compactly supported f on R.

Although quite similar, this lemma is more restrictive on the values of β than the
previous one. Passing from functions which vanish in 0 to the general case is indeed
the hard step. We refer the reader to [2] for details on the proofs. It remains to plug
together those inequalities to obtain Theorem 3.2.

Corollary 3.5. Let a > 1 and let (Pt)t≥0 be the Markov generator on R with gen-
erator

Lf = f ′′ − aT a−1T ′f ′,

and reversible measure dµa(x) = ρa(x)dx = Ca exp(−(1 + |x|2)a/2)dx.
Then for all real β there exist δ > 0 and C such that, for all t, Pt has a density
pt with respect to the measure µa, which satisfies

pt(x, y) ≤
CeCt

tδ
ρ−1/2
a (x)ρ−1/2

a (y)
(1 + |x|2)β/2(1 + |y|2)β/2

for almost every x, y ∈ R.
Moreover, the spectrum of −L is discrete and its eigenvalues (λn)n∈N satisfy the

inequality ∑
n

e−λnt ≤ Ce
Ct

tδ

for all t > 0.

When a > 2, the same techniques also lead to a Nash inequality for µa with
rate function Φ(x) = C x (log x)2(1−1/a), and weight V = 1. This recovers the ul-
tracontractivity result mentioned earlier. Recall that when a = 2 the semigroup
is no longer ultracontractive, but only hypercontractive, the Nash inequality with
rate Φ(x) = x log x corresponds in fact to another form of the Logarithmic Sobolev
inequality.
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