
Journées Équations aux dérivées partielles
Plestin-les-grèves, 5–8 juin 2002
GDR 1151 (CNRS)

Resolvent estimates and the decay of the solution
to the wave equation with potential

Vladimir Georgiev

Abstract
We prove a weighted L∞ estimate for the solution to the linear wave equa-

tion with a smooth positive time independent potential. The proof is based
on application of generalized Fourier transform for the perturbed Laplace op-
erator and a finite dependence domain argument. We apply this estimate to
prove the existence of global small data solution to supercritical semilinear
wave equations with potential.

In this work we study the following Cauchy problem

∂2
t u + Au = Fp(u),

u(0, x) = u0(x), ∂tu(0, x) = u1(x), (1)

where x ∈ R3 and Fp(u) behaves like |u|p for some p > 1 and A is a self-adjoint
non-negative operator in L2(R3).

In the case A = −∆ the classical results due to F.John in [6] show that (1) has
a global solution when p > p0(3) = 1 +

√
2 and the initial data u0, u1 have compact

support and small Sobolev norms; this critical value p0 = 1 +
√

2. The exponent
p0 = 1+

√
2 is critical in the sense that solutions in general blow up when 1 < p < p0

([6]).
We shall consider a potential type perturbation of the flat Laplace operator

A = −∆ + V (x),

where V (x) is a smooth non-negative potential with compact support:

V (x) ≥ 0 for x ∈ R3. (2)

Our main goal will be to show global existence of small solutions to the semilinear
equation

∂2
t u−∆u + V (x)u = Fp(u) in [0,∞)×R3, (3)
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when p > p0 = 1 +
√

2.
Our essential tool will be a suitable L∞ weighted estimate for the linear equation

∂2
t u−∆u + V (x)u = F in [0,∞)×R3. (4)

We recall the following well known estimate for the solution u = L0(F ) to the
wave equation utt −∆u = fwith zero initial data:

‖τ+τλ
−L0(F )‖L∞([0,T ]×R3) ≤ C1‖τµ

+τ−F‖L∞([0,T ]×R3), (5)

where the weights τ± are defined by

τ± = 1 + |t± |x||,

T > 0 is arbitrary, and C1 is a positive constant depending only on the positive
parameters λ and µ satisfying

λ < 1, µ > 2 + λ. (6)

From the results in ([3]) we can assert that this estimate is fulfilled in the case of
short range potential with compact support. Moreover we have the following variant
of (5): if m > 2 and 0 < λ ≤ m− 1, then

‖τ+τλ
−L0(F )‖L∞([0,T ]×R3) ≤ C2‖〈x〉mτ+τλ

−F‖L∞([0,T ]×R3), (7)

where 〈x〉 =
√

1 + |x|2 and C2 is a positive constant depending only on λ and m.
When V (x) is small, no sign condition is needed. In [12] W.Strauss and K.

Tsutaya proved the existence of small data solutions in the supercritical case (p >
p0 = 1+

√
2) for the semilinear wave equation with small potential of arbitrary sign,

and also blow-up in the subcritical case. Actually, it is not difficult to apply the
estimate (5) to this case. Indeed, let u = L(F ) be the solution to the perturbed
wave equation

∂2
t u−∆u + V u = F in [0,∞)×R3, (8)

u(0, x) = 0, ∂tu(0, x) = 0 in R3. (9)

If the potential V is small, we can rewrite the above equation in the form

∂2
t u−∆u = −V (x)u + F. (10)

The smallness assumption on V (x), x ∈ R3 means that

|V (x)| ≤ δ0(1 + |x|)−m,

where δ0 > 0 is sufficiently small and m > 2. More precisely, we choose δ0 so small
that C2δ0 ≤ 1/2 holds. Here C2 is the constant in (7).

Applying estimates (5), (7) to (10) and using the smallness of V we easily obtain
the estimate

‖τ+τλ
−L(F )‖L∞([0,T ]×R3) ≤ 2C1‖τµ

+τ−F‖L∞([0,T ]×R3), (11)
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provided 0 < λ < 1 and µ > 2 + λ. Here C1 is the constant in (5).
The main goal of this work is to relax the smallness assumption on V and to

show that (11) is still true, when V is arbitrary non-negative smooth function with
compact support.

On the basis of this estimate we prove the existence of a global solution for the
supercritical case p > p0 = 1 +

√
2.

Before stating the main a priori estimate we show the existence of a classical
solution u = L(F ), provided F ∈ C2. More precisely, we have the following

Lemma 1 Assume V ∈ C4
0(R3) and F ∈ C(R; C2(R3)) satisfies

suppF ⊂ KM := {(t, x) ∈ R4 : |x| ≤ |t|+ M} (12)

with some M > 0. Then there exists a unique solution u ∈ C2(R4) to the equation
∂2

t u−∆u + V u = F with zero initial data so that

supp u ⊂ KM . (13)

The main tool to establish existence of small data solution is the following a
priori estimate for the solution u = L(F ) to (8) and (9).

Theorem 1 Assume V ∈ C∞
0 (R3) is non - negative and

F ∈ C2([0, T ]×R3)

satisfies

suppF ∩ {0 ≤ t ≤ T} ⊂ K(M, T ) = {(t, x) ∈ R4 : |x| ≤ t + M, 0 ≤ t ≤ T} (14)

for T > 0 and M > 0. Then for any λ and µ with

0 < λ < 1, µ > 2 + λ, (15)

we have

‖τ+τλ
−L(F )‖L∞([0,T ]×R3) ≤ C3‖τµ

+τ−F‖L∞([0,T ]×R3). (16)

Here C3 = C3(λ, µ, V ) is a positive constant independent of T .

Moreover, we have the following estimate, corresponding to (7).

Theorem 2 Let the assumptions of Theorem 1.1 be satisfied. If 0 < λ < 1 and
m > 2, then we have

‖τ+τλ
−L(F )‖L∞([0,T ]×R3) ≤ C4 ln3(2 + T )‖〈x〉mτ+τλ

−F‖L∞([0,T ]×R3). (17)

Here C4 = C4(λ, m, V ) is a positive constant independent of T .
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Since no explicit representation of the fundamental solution is available, in order
to prove the above theorem we express the solution to (4) (with zero initial data)
by

u(t, x) =
∫ ∫

K(t− s, x, y)F (s, y)dyds, (18)

where K(t, x, y) is the kernel of the operator

sin(t
√
−∆ + V )√

−∆ + V
. (19)

We have the following (formal) oscillatory integral

K(t, x, y) =
∑
±

∫
ei(x−y)ξ±it|ξ|a±(x, ξ)dξ. (20)

This construction, typical for microlocal analysis, is quite simple, when t, x
are bounded. Unfortunately, for large t, x some anomalies in the behaviour of
the amplitude a±(x, ξ) arise; in particular, the amplitude is not a classical symbol.
Such non-standard symbols were studied by H. Isozaki (see [5]). To overcome this
difficulty we introduce a new class of (degenerate) symbols.

Definition 1 Let A(x, ξ) ∈ C(R3
x; C

∞(R3
ξ)) and m ∈ R. We say A(x, ξ) ∈ Σm

if and only if for any non-negative integer k, there is a positive number C = C(k)
such that

|∂α
ξ A(x, ξ)| ≤ C〈ξ〉m for 0 ≤ |α| ≤ k.

We use only derivatives with respect to ξ, since we prove an uniform L∞ bound of
the solution by estimating the integral (20). A direct integration by parts argument
will not assure convergence in (20), since a±(x, ξ) ∈ Σ−1 and any ξ derivative of
a±(x, ξ) can not improve the decay in ξ ; hence, the above class of symbols is quite
delicate and needs some new specific tools in order to establish the desired decay.

Our main idea is to apply weighted resolvent estimates that have been intensively
studied for the case of potential perturbation of Schrödinger equation (see [4], [1]).
The result of H. Isozaki in [5] shows that the weighted resolvent

〈x〉−s(z + ∆− V )−1〈x〉−s,

is a bounded operator in L2(R3) for any real s > 1/2 and for any complex z with
Rez > 0. Moreover, the L2 norm of the operator

〈x〉−s(z + ∆− V )−l〈x〉−s, l = 1, 2, · · ·

is bounded from above by C/zl/2 for s > 1/2 + l − 1(See also C. Morawetz in [10]
for l = 1 and [9]). The corresponding estimate, obtained in [3] plays a crucial role
in the proof of the fact that the amplitude has high frequency part in the class of
symbols introduced in Definition 1. Moreover, we have a corresponding asymptotic
symbol expansion

a±(x, ξ) ∼ a−1(x, ξ) + a−2(x, ξ) + · · ·
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Here the symbols ak(x, ξ) ∈ Σk, k = −1,−2, · · · , have explicit representation involv-
ing the unperturbed resolvent (z + ∆)−1.

The second point in the proof of (16) is a decomposition of the kernel K(t, x, y)
of the operator

sin(t
√
−∆ + V )√

−∆ + V
.

Namely, we have

K(t, x, y) = Kfree(t, x, y) + Kpert(t, x, y),

where Kfree(t, x, y) is the fundamental solution of the free wave equation, while
Kpert(t, x, y) is an oscillatory integral with symbols in Σk, k ≤ −1. Using the asymp-
totic expansion of Theorem 2.1 in [3] and stationary phase method, we obtain a
pointwise estimate of the kernel Kpert(t, x, y) for points far away from the cone
{t = |x− y|}. From this estimate and standard finite dependence domain argument
we arrive at (16).

With our a priori estimate in hand, we can now consider the global existence
of small solutions to the supercritical perturbed equation (3). More precisely, we
assume that Fp ∈ C2(R) satisfies

Fp(0) = F
′

p(0) = F
′′

p (0) = 0, (21)

and that there is a positive constant Λ > 0 such that for |u| ≤ 1, |u∗| ≤ 1

|F ′′

p (u)− F
′′

p (u∗)| ≤ ΛGp(u, u∗) (22)

where

Gp(u, u∗) =
{ |u− u∗|p−2 if 2 < p ≤ 3
|u− u∗|(|u|+ |u∗|)p−3 if p > 3

.

Typical examples are Fp(u) = |u|p and Fp(u) = |u|p−1u with p > 2.
Further, we assume that the initial data,

u(0, x) = εf(x), ∂tu(0, x) = εg(x) (23)

satisfy f ∈ C3(R3), g ∈ C2(R3) and

suppf, suppg ⊂ {x ∈ R3 : |x| ≤ M} (24)

with some M > 0.
The next step is to introduce a function space X of solutions to (3); given any

positive number T this space is

X = X(T ) = {u ∈ C([0, T ]; C2(R3)) :
∑
|α|≤2

|||∂α
x u|||T < +∞}, (25)

where
|||u|||T = ‖τ+τλ

−u‖L∞([0,T ]×R3),
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and λ is a real number satisfying

1/p ≤ λ < p− 2, λ < 1. (26)

Note that the interval (1/p, p− 2) is non - empty if and only if p > p0.
The norm in X is obviously ∑

|α|≤2

|||∂α
x u|||T .

The main existence result is the following.

Theorem 3 Let V (x) be a smooth compact supported non - negative potential and
let Fp ∈ C2(R) satisfy (21), (22) with p > p0 = 1+

√
2. Assume that (24) is fulfilled

for f ∈ C3(R3), g ∈ C2(R3). Then there exist ε0 > 0 and C > 0, such that for any
T > 0 and ε with 0 < ε ≤ ε0, the problem (3), (23) has a unique classical solution

u ∈ X(T ) ∩ C2([0, T ]×R3)

such that u is supported in KM and the inequalities

|||u|||T ≤ 2Cε,
∑

1≤|α|≤2

|||∂α
x u|||T ≤ Cε ln6(2 + T )

hold for 0 < ε ≤ ε0 with some constant C > 0 independent of T > 0.
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