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Geometrical methods in hydrodynamics

Adrian Constantin

Abstract
We describe some recent results on a specific nonlinear hydrodynamical

problem where the geometric approach gives insight into a variety of aspects.

1. Introduction

The geometric approach to hydrodynamical problems, initiated by Arnold [1], has
the appealing feature that it represents the Lagrangian formulation of the mechan-
ical problem. There is an extensive literature on geometric fluid mechanics (see
the survey [3]) but the theory remains somewhat unsatisfactory. The description of
ideal fluid flows by geometrical means consists mainly in formulating facts for the
infinite-dimensional configuration space of fluid flows using established results from
the finite-dimensional situation of classical Riemannian geometry cf. [3]. To circum-
vent the serious analytical difficulties encountered in working rigorously with the
actual configuration space, Ebin and Marsden [13] enlarged this configuration space
to spaces with a more convenient structure where a rigorous study can be pursued.
Their work was further developed and prompted a variety of papers on the subject.
Some significant recent contributions were made by Brenier [5] and Shnirelman [24]
who introduced and studied generalized flows. However, the passage from results
in weakened spaces of fluid configurations to the actual configuration space of the
physical model remains an open question. Our aim is to describe1 the rigorous study
of a specific hydrodynamical problem in configuration space. In doing so we hope to
bring out several points of interest supporting the claim that certain hydrodynami-
cal problems can be addressed through elegant geometrical methods. The obtained
mathematical results have direct physical interpretations and illustrate the useful-
ness of the geometrical approach. This seems to be the first example where the
geometric approach is put on a rigorous mathematical foundation but it is hoped
that the present techniques will prove useful in a wider range of physical problems.

We consider a model for the unidirectional propagation of periodic shallow water
waves - the Camassa-Holm model [6], a re-expression of the geodesic flow on the

1Throughout the presentation we give only an outline of the main ideas and refer to the appro-
priate papers for the full details.
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group of diffeomorphisms of the circle with the Riemannian structure induced by
the H1 right-invariant metric [22]. The core of the presentation is the rigorous
geometric approach outlined in Section 3, approach that proves to be very useful in
the qualitative study of the model. We discuss the question whether two arbitrary
nearby fluid configurations can always be successive states of the flow cf. [9] and
we describe the impact of the geometrical approach from [9] on the problem of
the existence of local solutions. Section 2 is of a different nature and is not a
prerequisite for Section 3. Its aim is to highlight the usefulness of geometrical
considerations in making approximate models for physical processes: we discuss a
derivation (alternative to the original derivation [6]) of the model from the governing
equations for the water-wave problem by a variational approach cf. [7].

2. A shallow water model

2.1. The governing equations for the water-wave problem

Consider the propagation of a periodic plane progressive wave of small amplitude
in the x-direction over water. The water surface is stationary in its undisturbed
state2 and the effects of surface tension are ignored. Let (u(t, x, z), v(t, x, z)) be
the velocity of the water - no motion takes place in the y-direction so that there
is only one horizontal component (in the direction of propagation) and the vertical
component of the velocity field to be taken into account. The periodicity assumption
means a periodic dependence in the x-variable (of, say, period one) of the velocity
field. Let z = h0 +η(t, x) be the water’s free surface. The exact equations of motion
for the velocity field are the equation of mass conservation

∂u

∂x
+

∂v

∂z
= 0 (2.1)

and Euler’s equation of motion{
Du
Dt

= −1
ρ
Px,

Dv
Dt

= −1
ρ
Pz − g,

(2.2)

where P (t, x, z) denotes the pressure, g is the gravitational acceleration constant,
ρ is the (constant) density, and D/Dt is the material time derivative, Df

Dt
= ∂f

∂t
+

u∂f
∂x

+ v ∂f
∂z

. The boundary conditions are the dynamic boundary condition

P = p0 on z = h0 + η(t, x), (2.3)

p0 being the constant atmospheric pressure, decoupling the motion of the air from
that of the water, together with the kinematic boundary conditions

v = ηt + u ηx on z = h0 + η(t, x), (2.4)

and
v = 0 on z = 0. (2.5)

2The wave being created by, say, the action of the wind blowing over the still water surface,
z = 0 being the flat bottom and z = h0 being the undisturbed water surface for a constant h0 > 0.
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expressing the fact that the same particles always form the free water surface, i.e.
D
Dt

(z−h0−η) = 0, respectively the fact that there is no flow normal to the horizontal
bed. The general description of the propagation of a plane progressive wave is
encompassed by the equations (2.1)-(2.5) cf. [17].

It is convenient to express (2.1)-(2.5) in terms of some fundamental parameters
appearing after scaling the nondimensional form of the problem. Introducing a typ-
ical wavelength L and a typical amplitude of the wave a, the set of nondimensional
variables is

x 7→ Lx, z 7→ h0z, t 7→ L√
gh0

t, u 7→ u
√

gh0, v 7→ vh0

√
gh0/L, η 7→ aη;

x is replaced by Lx, so that afterwards the symbol x stands for a nondimensional
variable etc.

x0

z

L

h
0

a

The nondimensional pressure variable p measures the deviation from the hydrostatic
pressure distribution p0 + ρgh0(1 − z) for a nondimensionalized z (the hydrostatic
pressure occurs if the water is stationary i.e. u ≡ v ≡ 0),

P = p0 + ρgh0(1− z) + ρgh0p.

The problem (2.1)-(2.5) becomes

ut + uux + vuz = −px,

δ2(vt + uvx + vvz) = −pz,

ux + vz = 0,

p = εη on z = 1 + εη

v = ε(ηt + uηx) on z = 1 + εη

v = 0 on z = 0

(2.6)

in nondimensional variables, where ε = a/h0 is the amplitude parameter and δ =
h0/L is the shallowness parameter. Note that both v and p, if evaluated on z =
1+ εη, are essentially proportional to ε. This observation is consistent with the fact
that as ε → 0 we must have v → 0 and p → 0 (with no disturbance the free surface
becomes a horizontal surface on which v = p = 0) and leads to the scaling of the
nondimensional variables

p 7→ εp, (u, v) 7→ ε(u, v).
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Avoiding the introduction of a new notation, the problem (2.6) becomes

ut + ε(uux + vuz) = −px,

δ2{vt + ε(uvx + vvz)} = −pz,

ux + vz = 0,

p = η on z = 1 + εη

v = ηt + εuηx on z = 1 + εη

v = 0 on z = 0

(2.7)

In respect of the well-posedness for the initial-value problem for (2.7) there has
been significant recent progress [25] but some degree of mathematical intractability
seems inevitable if one seeks a rigorous theory yielding an explanation of aspects of
water waves that have been uncovered experimentally (e.g. wave interaction, wave
breaking) by working with the governing equations (2.1)-(2.5).

2.2. Derivation of the shallow water model

The main impetus for a theory of shallow water waves that are periodic comes from
the observation that, as a matter of common experience, the waves observed in a
channel are approximately periodic.

A vast amount of theoretical work has been done to find schemes of approxi-
mation for replacing (2.1)-(2.5) with model equations that can be more effectively
studied. The derivation of approximate models is based on formal perturbation
schemes but, once a model equation is adopted, it is desirable to draw rigorous
conclusions from it, confirmed as far as possible in experimental contexts. Water
waves, which are considered a prime example of observability because they are easy
to see and enjoy, are actually very difficult to be measured accurately in quantitative
detail. This makes an answer to the question of preferability between alternative
models very difficult3. At this point, let us recall that the virtue of the Lagrangian
mechanics lies in the ease with which it can be used to formulate the equations of
motion for complex mechanical problems. Lagrangian mechanics is based on a trans-
lation of the physical circumstances in abstract mathematical terms by describing
motions of mechanical systems with no external forces as paths on a configuration
space obtained from a variational principle4. Let us now describe how this approach
leads to the derivation of an unidirectional shallow water model from the governing
equations (2.1)-(2.5).

The shallow water limit corresponds cf. [17] to the condition δ → 0, so pz =
O(δ2) from the second equation in (2.6). Ignoring corrections of order δ2 we make
the simplifying assumption that p is independent of z. Then, from the first equation
in (2.6) we infer that the horizontal acceleration Du

Dt
= 0 for all particles in a plane

x = constant. Since the water was at rest in its undisturbed state, we find that
3However, a natural requirement should be that the model is amenable to a rigorous qualitative

theory predicting properties of water waves that were established empirically.
4In Newtonian mechanics, the motion is the effect of certain forces while in Lagrangian me-

chanics the motion is a result of the attempt of Nature to minimize a functional - the physical
laws of motion are replaced by a single postulate, the Action Principle.

II–4



u is the same for all particles in such a plane, so that u is independent of z, i.e.
u = u(t, x). The third and last equation in (2.6) yield

v = −zux, (2.8)

that is, the vertical velocity of any particle is proportional to its height above the
bottom. The approximation on the free surface for small ε, taking into account
(2.8), is ut + ηx = 0 and ηt + ux = 0 (neglect ε in the first and fourth relations from
(2.7)). The general solution of this simple system is η = u = F (x − t) where F is
any differentiable function, and thus

η ≈ u (2.9)

to a first approximation. By consistently neglecting the ε contribution we will
present derivation5 of the Camassa-Holm equation from (2.7) by using variational
methods in the Lagrangian formalism.

For a progressive plane wave no motion takes place in the y direction and, as
a particle on the surface will always stay on the surface, we may regard the mo-
tion as that of a one-dimensional compressible membrane6. >From the Lagrangian
viewpoint the motion of a mechanical system is described by a path of diffeomor-
phisms γ(t, ·) of the ambient space - the knowledge of γ(t, ·) giving the configuration
of the particles at time t. The Lie group D of smooth orientation-preserving dif-
feomorphisms of the circle S represents the configuration space for the spatially
periodic motion of one-dimensional mechanical systems. The material velocity field
is (t, x) 7→ γt(t, x) while the spatial velocity field is given by w(t, y) = γt(t, x) where
y = γ(t, x), i.e. w(t, ·) = γt ◦ γ−1. In terms of w we have the Eulerian description
(from the viewpoint of a fixed observer) while in terms of (γ, γt) we have the La-
grangian description (the motion as seen from one of the particles). The velocity
phase space is the tangent bundle TD of D. Let G be the tangent space at the
identity Id. The Lagrangian is a scalar function L : TD → R and the action along
a path {γ(t) : 0 ≤ t ≤ T} in D is defined as a(γ) =

∫ T

0
L(γ, γt) dt. The Action

Principle [2] states that the equation of motion is the equation satisfied by a crit-
ical point of the action in the space of paths {γ(t), 0 ≤ t ≤ T} on D, with fixed
endpoints γ(0) = γ0 and γ(T ) = γ1. Note the following right-invariance property: if
we replace the path t 7→ γ(t) by t 7→ γ(t) ◦ γ0 for a fixed time-independent γ0 ∈ D,
then the spatial velocity w = γt ◦ γ−1 is unchanged. This suggests to consider a
right-invariant Lagrangian L : TD → R by transporting a certain inner product
K : G → R to all tangent spaces of D by means of right translations. The most
natural choice for K is the kinetic energy7. Taking into account (2.8), the kinetic

5We refer to [6] for the original derivation.
6Incompressibility in one dimension would mean linear motion. The incompressibility of the

whole water body is expressed by (2.8).
7With this choice, for the case of a perfect fluid moving in a bounded smooth domain M ⊂

Rk, k = 2, 3, having the group of all volume-preserving diffeomorphisms of M as configuration
space, the critical point condition for the action is Euler’s equation cf. [3]. A simple change of
variables will confirm that the incompressibility condition is equivalent to the fact that the kinetic
energy 1

2

∫
M
|V (t, ξ)|2 dξ, V being the velocity field, is right-invariant.
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energy on the surface (over one period) is

K =
1

2

∫
S
(u2 + v2) dx =

1

2

∫
S

(
u2 + (1 + εη)2u2

x

)
dx ≈ 1

2

∫
S
(u2 + u2

x) dx

to the order of our approximation. Transforming K to a right-invariant Lagrangian
L, the action on a path {γ(t) : 0 ≤ t ≤ T} on D is

a(γ) =
1

2

∫ T

0

∫
S

{
(γt ◦ γ−1)2 + [∂x(γt ◦ γ−1)]2

}
dx dt.

Let us now find the condition for a path γ : [0, T ] → D, parametrized by arc length,
to be a critical point of the action in the space of paths with fixed endpoints, i.e.

d

d ε
a(γ + εα)

∣∣∣
ε=0

= 0

for every path α : [0, T ] → C∞(S) with endpoints at zero and such that γ + εα is a
small variation of γ on D. A lengthy calculation (see [7]) yields

d

d ε
a(γ + εα)

∣∣∣
ε=0

= −
∫ T

0

∫
S
(α ◦ γ−1) [ut − utxx + 3uux − 2uxuxx − uuxxx] dx dt.

The resulting Euler-Lagrange equation is the Camassa-Holm equation

ut − utxx + 3uux = 2uxuxx + uuxxx, t > 0, x ∈ S. (2.10)

where u = γt ◦ γ−1 and t 7→ γ(t) ∈ D is the curve (parametrized by arc length)
yielding the critical point of the action functional in the space of paths. In (2.10),
u(t, x) represents the horizontal velocity component of a unidirectional shallow water
flow or, equivalently, the displacement of the free surface from the undisturbed (flat)
state cf. (2.9). This is in agreement with the interpretation of u(t, x) given originally
in [6], where a different approximation procedure was adopted. To interpret γ, let us
look at the movement of the free surface. As time increases, t 7→ γ(t, x) is the path
followed by the fluid particle which is initially located at x, γt(t, x) is the velocity
of the particle at that instant, and u(t, γ(t, x)) is the flow velocity at the location
γ(t, x) at time t. For fixed t, the function γ(t, ·) is an increasing diffeomorphism
of S, representing the rearrangement of the particles with respect to their initial
positions.

3. The geometric approach

The Camassa-Holm equation (2.10) can also be obtained formally as the geodesic
equation for the H1 right-invariant metric8 on D cf. [22]. To describe the rigorous
geometric derivation of (2.10), let us recall the definition of a “natural Lagrangian
system” cf. [2]. If G, a Lie group, is the configuration space of a mechanical

8Hk(S), k ∈ N, stands for the Sobolev space of L2(S)-functions f with distributional derivatives
∂i

xf up to order k in L2(S), endowed with the norm ‖f‖2Hk =
∑k

i=0 ‖∂i
xf‖2L2(S).
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system, the tangent bundle TG of G is the velocity phase space of the system.
For a nondegenerated inner product 〈·, ·〉 on the Lie algebra G (the tangent space
at the neutral element of the group G), the quantity 1

2
〈v, v〉, v ∈ G, is called the

kinetic energy K. Extending K by right-translation to a right-invariant Lagrangian
L : TG → R, we define the action along a path {g(t) : a ≤ t ≤ b} in G as∫ b

a
L(g, gt) dt. The Action Principle [2] states that the equation of motion is the

equation satisfied by an extremal of the action in the space of curves on G with
fixed end conditions g(a) = g0 and g(b) = g1. We say that the Principle of Least
Action holds if the paths described by the motion of a mechanical system are not
only extremals but also (local) minimal values of the action functional cf. [2]. For
the Principle of Least Action to hold, it is necessary that the equation of motion is
the geodesic equation on the configuration manifold. Indeed, if g(t), a ≤ t ≤ b, is
a C1-regular path (i.e. gt 6= 0 on [a, b]) joining g(a) = g0 to g(b) = g1, the action
a(g) = 1

2

∫ b

a
〈gt, gt〉 dt depends on the parametrization of the path but the length

l(g) =
∫ b

a
〈gt, gt〉

1
2 dt (with respect to the defined right-invariant metric on G) does

not depend on the parametrization and l2(g) ≤ 2(b − a) a(g), with equality if and
only if 〈gt, gt〉 is constant on [a, b]. Therefore the (local) minimum of the action is
realized by the curve of minimal length joining g0 to g1.

The group D of smooth orientation-preserving diffeomorphisms of the circle S
(the real numbers modulo 1), the composition of maps being the group operation,
represents the configuration space for the spatially periodic motion of inertial one-
dimensional mechanical systems. D is a connected manifold modelled on the Fréchet
space C∞(S) of smooth maps of the circle (the family of real smooth maps on R of
period one), cf. [15]. A sequence uj → u in C∞(S) if and only if ‖uj − u‖Hn → 0 as
j → ∞ for all the seminorms ‖ · ‖Hn , n ≥ 0. If F1, F2 are Fréchet spaces, U ⊂ F1

is open and f : U ⊂ F1 → F2 is a continuous map, the derivative of f at u ∈ U
in the direction v ∈ F1 is defined by Df(u) v = limt→0

f(u+tv)−f(u)
t

. We say that
f is C1 on U if the limit exists for all u ∈ U, v ∈ F1, and if Df : U × F1 → F2

is continuous cf. [15]. Higher derivatives are defined as derivatives of the lower
ones. The composition and the inverse are both smooth maps from D × D → D,
respectively D → D, so that the group D is a Lie group cf. [15], the bracket on its
Lie algebra TIdD ≡ C∞(S) being

[u, v] = −(uxv − uvx), u, v ∈ C∞(S).

If F(D) is the ring of smooth real-valued functions defined on D and X (D) is the
F(D)-module of smooth vector fields on D, we define for X ∈ X (D) and f ∈ F(D)
the Lie derivative LXf as

LXf(ϕ) = lim
h→0

f(ϕ + hX(ϕ))− f(ϕ)

h
, ϕ ∈ D.

If U ⊂ C∞(S) is open and X, Y : U → C∞(S) are smooth, we denote

DXY (ϕ) = lim
h→0

Y (ϕ + hX(ϕ))− Y (ϕ)

h
, ϕ ∈ D.

The definition of the vector field [X, Y ] = DXY − DY X is covariant and gives
globally the Lie bracket of X, Y ∈ X (D), LXY = [X, Y ]. Note that if XR(D)
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is the space of all right-invariant smooth vector fields on D, then X ∈ XR(D) is
determined by its value u at Id, X(η) = Rηu for η ∈ D, where Rη stands for the
right translation. The bracket [X, Y ] of X, Y ∈ XR(D) is a right-invariant vector
field and [X, Y ](Id) = [u, v], where u = X(Id), v = Y (Id), cf. [21].

A nondegenerate continuous inner product9 can be transported to each tangent
space TηD by right-translation, i.e.

〈V, W 〉(η) :=
〈
V ◦ η−1, W ◦ η−1

〉
for V, W ∈ TηD, (3.1)

and endows D with a right-invariant metric. In principle, we would expect the
corresponding geodesic paths on D to represent the motion of a periodic one-
dimensional mechanical system satisfying the Least Action Principle. To realize
this program one needs to extend methods that have been developed in classical
(finite-dimensional) Riemannian geometry to the present infinite-dimensional set-
ting. To define geodesics we need appropriate notions of parallel transport and
covariant derivative. If conceptually the formal extension of the finite-dimensional
definitions is rather straightforward, the success of the whole approach depends
on whether the existence of geodesics can be proved and whether they are locally
length-minimizing. We would like to point out some problems that have to be ad-
dressed: D is a Fréchet manifold so that the classical local existence theorem for
differential equations with smooth right-hand side and the inverse function theorem
do not necessarily hold [15]. Note that both are tools that are indispensable in
classical Riemannian geometry10. Furthermore, the existence of a metric covariant
derivative is not ensured on general grounds cf. [18] since we deal with a Fréchet
manifold endowed with a weak metric (each open set of the topology induced by
the inner product on C∞(S) is open in C∞(S) but the converse is not true).

A development related to the ideas considered in [1] yields an existence result
for the covariant derivative which preserves a right-invariant metric on D.

Theorem 1. [9] Assume that there exists a bilinear operator B : C∞(S)×C∞(S) →
C∞(S) such that

〈B(u, v), w〉 = 〈u, [v, w]〉, u, v, w ∈ C∞(S). (3.2)

Then there exists a unique Riemannian connection on D associated to the right-
invariant metric 〈·, ·〉. If J ⊂ R is an open interval, a C2-curve ϕ : J → D is a
geodesic if and only if

ut = B(u, u), t ∈ J, (3.3)

where u = ϕt ◦ ϕ−1 ∈ TIdD ≡ C∞(S).
9That is, u 7→ 〈u, u〉 is a continuous (hence smooth) map on C∞(S) and the relation 〈u, v〉 = 0

for all v ∈ C∞(S) forces u = 0. Typical examples are the Hs(S)-inner products with s ≥ 0.
10As an example of the contrast with the finite-dimensional case (for the latter we refer to

[23]), consider the Lie-group exponential map v → expL(v) ∈ D, obtained by evaluating for each
v ∈ TIdD the flow t 7→ η(t, ·) determined by the differential equation

ηt = v(η) in C∞(S)

at t = 1. The Lie-group exponential map is a smooth map of the Lie algebra to the Lie group but,
although the derivative of expL at 0 ∈ C∞(S) is the identity, expL is not locally surjective cf. [21].
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Consider now the right-invariant metric on D defined by the H1 inner product

〈u, v〉H1 =

∫
S

(
u(x)v(x) + u′(x)v′(x)

)
dx, u, v ∈ C∞(S),

on TIdD ≡ C∞(S). A straightforward calculation yields

B(u, v) = − (1− ∂2
x)
−1

(
2vx(1− ∂2

x)u + v(1− ∂2
x)ux

)
, u, v ∈ C∞(S),

so that Theorem 1 ensures the existence of a Riemannian connection. The geodesic
equation for the H1 right-invariant metric is the Camassa-Holm equation11

ut + uux + ∂x (1− ∂2
x)
−1

(
u2 +

1

2
u2

x

)
= 0, (3.4)

where t 7→ ϕ(t, ·) is the geodesic curve starting at time t = 0 at the identity Id in
the direction u0 ∈ TIdD and u = ϕt ◦ ϕ−1, ϕt ∈ Tϕ(t)D. The geodesic equation is
equivalent to the system{

ϕt = u(t, ϕ),

ut + uux + ∂x (1− ∂2
x)
−1

(
u2 + 1

2
u2

x

)
= 0,

(3.5)

with initial data ϕ(0) = Id, u0 ∈ C∞(S). It is convenient to recast (3.5) as{
ϕt = v,

vt = Pϕ(v),
(3.6)

where v = u(t, ϕ) and the operator Pϕ is given by

Pϕ(v) = −
{

∂x (1− ∂2
x)
−1

(
(v ◦ ϕ−1)2 +

1

2
(v ◦ ϕ−1)2

x

)}
◦ ϕ.

To show the existence of geodesics we adopt the following approach: we complete
C∞(S) under the Hk(S)-norm (k ≥ 3), deal with (3.6) on the resulting Hilbert
manifold

Dk = {η ∈ Hk(S), η is bĳective, orientation preserving and η−1 ∈ Hk(S)},

and then we show that the solutions of (3.6) are actually C∞ if the data is smooth.
The map (ϕ, v) 7→ (v, Pϕ(v)) is C1 from a small neighborhood of (Id, 0) ∈ Dk×Hk(S)
to Hk(S) × Hk(S) cf. [9]. Therefore, as a direct consequence of the fundamental
theorem for ordinary differential equations on Hilbert manifolds, given an arbitrary
u0 ∈ Hk(S), the problem (3.5) has a unique solution (ϕ, ϕt) ∈ C1([0, T ));Dk ×
Hk(S)) for some T > 0. This solution depends smoothly on the data. Since the
composition regarded as a map Dk+n × Dk → Dk and the group inverse regarded
as a map Dk+n → Dk are both of class Cn if k > 3/2 and n ≥ 0 cf. [13], the
relation u = ϕt ◦ ϕ−1 yields the following well-posedness result for the Camassa-
Holm equation

11Apply the operator (1− ∂2
x) to recover the form (2.10) derived in Section 2.2.
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Theorem 2. Let k ≥ 3. Given u0 ∈ Hk(S), the Camassa-Holm equation (2.10) has
a unique solution u ∈ C([0, T ); Hk(S) ∩ C1([0, T ); Hk−1(S). Moreover, the solution
depends continuously on the data.

Remark. The previous approach actually works if k > 3/2, the only change being
that for k < 3 we replace (2.10) by the equivalent form (3.4). Theorem 2 was ob-
tained with semigroup methods in [8] and it can be easily verified that the semigroup
approach from [8] is valid also for k > 3/2 (see also [19] for a different approach to
well-posedness in Hk(S) with k > 3/2). Interestingly, the Camassa-Holm equation
is not locally well-posed for k < 3/2 cf. [16].

The existence of solutions to the geodesic equation on the enlarged configuration
spaces being established12, the main question now is how to use this to deduce the
existence of geodesics on D. This is precisely the point where the rigorous approach
usually breaks down and one can not deduce results on the actual configuration
space (see the case of the Euler equation and of other hydrodynamical equations in
[3]). However, in the case of the Camassa-Holm equation it is possible to deal with
the actual configuration space. The essence of the matter is the following result13

Theorem 3. [9] Let k ≥ 3. If u is the solution of (3.4) with initial data u0 ∈ Hk(S),
defined for t ∈ (−T, T ), then

m(t, ϕ(t, x)) · ϕ2
x(t, x) = m0(x), t ∈ (−T, T ),

for m = u− uxx. Here ϕ(t; u0) ∈ Dk is the first component of the solution (ϕ, u) of
(3.5) with data (Id, u0).

A key point consists in the observation that all solutions of the Camassa-Holm
equation with initial data u0 ∈ Hk(S), k ≥ 3, are uniformly bounded and the only
way that a solution fails to exist for all time is that the wave breaks14 cf. [8].
Therefore the maximal existence time does not depend on the degree of smoothness
of u0 ∈ Hk(S), k ≥ 3. This fact, combined with the continuous dependence on
initial data of the solutions to (2.10), ensures that there is some δ > 0 so that all
curves t 7→ ϕ(t; u0) ∈ Dk are defined on [0, 2], provided ‖u0‖H3 < δ.

Theorem 3 is instrumental in proving that if the initial data u0 ∈ Hk(S), k ≥ 3,
does not belong to Hk+1(S), then the corresponding curve ϕ ∈ C2([0, T );Dk) is

12The Hilbert manifolds Dk are well-suited for analytic considerations e.g. for dealing with the
existence of solutions to (3.5). However, it is important to point out that the H1 right-invariant
metric on Dk is not smooth and it has no covariant derivative on Dk cf. [9] so that their geometrical
structure is deficient and they can serve only as tools.

13Theorem 3 is a consequence of the invariance of the metric by the action of the group on
itself. More precisely, any v ∈ C∞(S) ≡ TIdD defines a one-parameter group of diffeomorphisms
hs : D → D, hs(ϕ) = ϕ◦ expL(sv), where expL is the Lie-group exponential map. Since the metric
is by construction invariant under the action of hs, it can be proved (see [9]) using Noether’s
theorem that ∫

S
(u− uxx) · ϕx ◦ ϕ−1 · v ◦ ϕ−1 dx =

∫
S
(u0 − u0,xx) · v dx.

A change of variables and the arbitraryness of v ∈ C∞(S) lead now to the invariance expressed by
Theorem 3.

14This means that the solution remains bounded while its slope becomes unbounded at a finite
time T > 0.
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such that for all t ∈ [0, T ) we have ϕ(t; u0) 6∈ Dk+1. We obtain the existence of
geodesics on D - see [9]. Now we can define the Riemannian exponential map exp

of the H1 right-invariant metric, defined as the time-one map exp(u0) = ϕ(1; u0)
for ‖u0‖H3 < δ. At this point, one proves that exp is a C1 diffeomorphism from an
open neighborhood U3 of 0 ∈ H3(S) to an open neighborhood V3 of Id on D3; we
can take U3 such that at every point of U3, the differential of exp is a bĳection of
H3(S). Note that U = U3 ∩ C∞(S) and V = V3 ∩ C∞(S) are open neighborhhods
of 0 ∈ C∞(S), respectively Id ∈ D. The existence result for geodesics on D ensures
that exp(U) ⊂ V . On the other hand, we know from the previously mentioned result
with regard to no gain of smoothness that if exp(u0) ∈ V for some u0 ∈ U3, then
necessarily u0 ∈ U . Therefore exp is a local bĳection from U to V . Let u0 ∈ U . It is
possible to show that exp is a C1-map on every U3 ∩Hk(S), k ≥ 3, so that Dexpu0

is a bounded linear operator from Hk(S) to Hk(S). At this point, Theorem 3 is
crucial in proving inductively that Dexpu0

is a bĳection from Hk(S) to Hk(S) for all
k ≥ 3. Then, in view of the inverse function theorem for Hilbert manifolds, both exp

and its inverse are C1-maps on small Hk(S)-neighborhoods of u0 ∈ U , respectively
exp(u0) ∈ V . But k ≥ 3 is arbitrary so that exp is a C1-diffeomorphism from U to
V . This is the main approach to the proof of

Theorem 4. [9] The Riemannian exponential map of the H1 right-invariant metric
on D is a C1 diffeomorphism from a neighborhood of zero in TIdD ≡ C∞(S) to a
neighborhood of Id on D.

Pursuing the analysis, one can show that a geodesic is locally the shortest path
between two closeby points of D.

Theorem 5. [9] If η, ϕ ∈ D are close enough then η and ϕ can be joined by a unique
geodesic. This unique geodesic is length minimizing among all piecewise C1-curves
joining η to ϕ on D.

The physical interpretation of Theorem 5 is that a configuration of the system
can be transformed to any nearby configuration by a unique flow of (2.10). Of
all possible paths joining these two configurations, the system selects the one of
minimal action.

Remark. If instead of the H1 right-invariant metric on D we consider the L2 right-
invariant metric, it turns out that the corresponding geodesic equation is the inviscid
Burgers equation ut + 3uux = 0 cf. [3]. The existence of solutions to the geodesic
equation on D can be proved but the Riemannian exponential map is not a C1 local
diffeomorphism cf. [9] and this shows that the geometric approach is not meaningful
in this case.

Appendix

Let us highlight some of the properties of the Camassa-Holm model. Because this
equation is relevant to water waves, we shall mainly review some properties that are
peculiar to it in this respect.
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The prerequisite to the usefulness of any model equation for real wave phenomena
is that solutions exist and are unique for a reasonable class of prescribed data. Also,
the solutions should depend continuously on the data, as do the real phenomena
that are simulated. The well-posedness issue is settled by Theorem 2. We already
pointed out in Section 3 that the only way that a solution for (2.10) fails to exist
for all time is that the wave breaks cf. [8]. Moreover, the solution is defined for all
times if and only if y0 := u0 − ∂2

xu0 does not change properly sign cf. [20].
The discovery that the solitary waves of (2.10) are solitons15 is due to Camassa

and Holm [6]. We refer to [4] for a beautiful description of the soliton interaction.
The solitons are stable (i.e. a wave starting close to a soliton will stay close to some
translate of it and therefore will have approximately the same shape for all times)
cf. [12], a fact that is relevant to the role of (2.10) as a meaningful physical approx-
imation: the solitons (very special solutions) can be detected. The soliton aspect of
the Camassa-Holm equation is related to the fact that the equation has infinitely
many invariants being an integrable infinite-dimensional Hamiltonian system16.
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