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Generalizations of Melin’s inequality to systems

Raymond Brummelhuis

Abstract
We discuss a recent necessary and sufficient condition for Melin’s inequal-

ity for a class of systems of pseudodifferential operators.

1. Introduction

Let V be a finite dimensional Hermitian vectorspace, and let LH(V ) be the space of
Hermitian operators on V . We will be interested in lower bounds for pseudodiffer-
ential operators with symbols in the space Sm

phg(T
∗Rn, LH(V )) of polyhomogeneous

(or classical) LH(V )-valued symbols. Recall that a C∞-function A : T ∗Rn is in
Sm

phg(T
∗Rn, LH(V )) iff A can be written as an asymptotic sum

A(x, ξ) ' Am(x, ξ) + Am−1(x, ξ) + Am−2(x, ξ) + · · ·

with Am−j(x, ξ) homogeneous of degree m − j in ξ for |ξ| ≥ 1/2, say. To such a
symbol A we can associate the operator Aw = Aw(x, D) defined by Weyl quantisa-
tion:

Aw(x, D)u(x) = (2π)−n

∫
Rn

A

(
x + y

2
, ξ

)
u(y)ei<x−y,ξ>dξ,

acting on, for example, the space C∞
c (Rn; V ) of V -valued C∞ functions on Rn. We

will denote by Ψm
phg(Rn, L(V )) the set of all such Weyl operators with symbols in

Sm
phg(T

∗Rn, LH(V )). One of the advantages of using the Weyl calculus is that all
operators in this set are formally self-adjoint.

If dim (V ) = 1, that is, if we are dealing with scalar symbols and operators, we
will systematically denote them by lower case letters a = a(x, ξ), aw = aw(x, D), to
distinguish from the systems case.

We will be interested in generalizing Melin’s inequality to systems. We begin by
recalling Melin’s theorem (Melin [12] ; cf. also [8], [10]):
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Theorem 1.1. Let a ∈ Sm
phg(T

∗Rn; C) be a scalar symbol such that am(x, ξ) ≥ 0 on
Rn. Then

∀ε > 0∃Cε∀u ∈ C∞
c (Rn) : (aw(x, D)u, u) ≥ −ε||u||2((m−1)/2) + Cε||u||2((m/2)−1) (1)

if and only iff for all (x0, ξ0) in T ∗Rn,

am(x0, ξ0) = 0 ⇒ 1

2
Tr +Q(x0,ξ0)(am) + am−1(x0, ξ0) ≥ 0 (2)

Here Q(x0,ξ0)(am) denotes the Hessian of am in (x0, ξ0), considered as a quadratic
form on the tangent space. The Tr + of such a form Q = Q(x0,ξ0)(am) on W =
T(x0,ξ0)T

∗Rn ' T ∗Rn can be defined either purely algebraicly or analytically, which
is a point to keep in mind when looking for generalizations. The algebraic definition
(which precedes the statement of Melin’s theorem in text books, like Hörmander [10],
Taylor [14]) is the following: let FQ : W → W is the Hamiltonian map associated
to Q: σ(w, FQ(v)) = Q(v, w) (where the right hand side is the symmetric bilinear
form associated to Q). Then

Tr+Q :=
∑

µ > 0,
iµ eigenvalue of FQ

µ,

For our purposes the analytic definition will turn out to be more usefull : it simply
states that

Tr+Q = inf Spec Qw(y, Dy),

where Qw(y, Dy) is the Weyl quantisation of the quadratic form Q(y, η) in arbitrary
linear symplectic coordinates on W . (We recall that operators associated to different
symplectic linear coordinates are unitarily equivalent, by the metaplectic invariance
of the Weyl-calculus ; cf. for example theorem 18.5.9 in [10]). So an equivalent
formulation of Melin’s theorem 1.1 is that (1) is equivalent to the non-negativity of
the principal symbol Am and of all model operators Q(x0,ξ0)(am)w +am−1(x0, ξ0), for
characteristic (x0, ξ0).

A word about terminology: we will call inequality (1), by itself, Melin’s inequal-
ity, although in the litterature the term "Melin’s inequality" is often used for the
whole of theorem 1.1, that is, for the equivalence of (1) with (2).

Remark 1.2. Melin’s inequality can be looked upon as being, in some sens, the
weakest possible improvement of the sharp Gårding inequality (Hörmander [5], Lax
and Nirenberg [11]), which is basically (1) for a fixed, aw-dependend ε, under the
sole hypothesis of non-negativity of am. For scalar operators other, stronger gener-
alizations are known, for example Hörmanders 6/5-th inequality (Hörmander [9]),
the Fefferman-Phong inequality and the SAK-principle (cf. Fefferman [4] and it’s
references, and, more recently, Heraut [5]). These will not be considered here and
we only note that their correct generalization to systems is a difficult problem.

It is easy to show that the necessary condition for Melin’s inequality immediately
generalizes to systems. If Aw ∈ Ψm

phg(Rn, LH(V )), let

Σ(Am) := {(x, ξ) ∈ T ∗Rn : Ker Am(x, ξ) 6= 0}
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be the characteristic set of the system Aw and, for an (x0, ξ0) ∈ Σ(Am), let Π(x0,ξ0)

be the orthogonal projection of V onto Ker Am(x0, ξ0). If Am(x, ξ) ≥ 0 pointwise
(as an Hermitian operator on V ), then

Q(x0,ξ0)(Am) = Hessian in (x0, ξ0) of Π(x0,ξ0)Am(x, ξ)Π(x0,ξ0), (3)

will be an invariantly defined LH(V )-valued quadratic form on T(x0,ξ0)(T
∗Rn), with

values in the non-negative operators in LH(V ). We then have that

Aw satisfies Melin’s inequality (1) ⇒ Am ≥ 0 and

∀(x0, ξ0) ∈ Σ(Am) :
1

2
Q(x0,ξ0)(Am)w(y, Dy) + Π0Am−1(x0, ξ0)Π0 ≥ 0, (4)

as a densely defined operator on L2(Rn; V ).

We note in passing that there exist simple 2×2 systems Aw = Aw
2 , homogeneous

of order 2 and with A2 ≥ 0, such that at some points of the characteristic set,
Q(x0,ξ0)(Am)w is not non-negative (cf. [5], or [1], [2]), in marked difference to the
scalar case.

The necessary condition (4) can be considerably strengthened at points (x0, ξ0)
of the characteristic set for which Am(x0, ξ0) is not the 0-operator (Hörmander [8] if
the kernel has dimension at most 1, Brummelhuis [1], [2] in general). To state this
new condition, we will write Π0 = Π(x0,ξ0), to simplify notations. We first note that

A#
m(x0, ξ0) : Im Am(x0, ξ0) = (Ker Am(x0, ξ0))

⊥ → Im Am(x0, ξ0)

is a well-defined isomorphism of vectorspaces. Next, by non-negativity of Am,
Π0dAmΠ0 = 0 in (x0, ξ0), which easily implies that

L(x0,ξ0) : (y, η) → (A#
m(x0, ξ0))

−1/2〈dAm(x0, ξ0), (y, η)〉Π0

is a well-defined operator-valued linear form. The strengthened necessary condition
for Melin’s inequality then is:

Theorem 1.3. Suppose that Aw satisfies Melin’s inequality (1). Then Am ≥ 0 and
for all (x0, ξ0) ∈ Σ(Am),

1

2
Q(x0,ξ0)(Am)w(y, Dy) + Π0Am−1Π0 − Lw

(x0,ξ0)(y, Dy)
∗Lw

(x0,ξ0)(y, Dy) ≥ 0. (5)

The proof of this theorem is based on a micro-local decoupling argument near
a given point (x0, ξ0) of the characteristic set: one shows that one can find, micro-
locally, an orthogonal projection-valued symbol in S0

phg(T
∗Rn, LH(V )), commuting

with the principal symbol Am, such that Π(x0, ξ0) is the orthogonal projection onto
the kernel of Am(x0, ξ0) and such that (I − Π)Am(I − Π) is elliptic in (x0, ξ0).
One then easily proves that, again micro-locally, Aw satisfies Melin’s inequality iff
ΠwAwΠw does, and the theorem follows by applying (4) to the latter. Hörmander
[8] carried out this argument under the additional hypotheses that Σ(Am) is smooth
and that Am is of constant rank N−1 on the characteristic set, where N = dim(V ),
and stated (5) in a form which does not easily generalize to more singular systems.

To go now in the other direction, and find sufficient conditions for (1), one can
proceed in several ways:
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• Faithfully modelling one’s approach on the one used in the scalar case, one
can start by trying to compute the spectrum, or at least the infimum of the
spectrum, of the model operators (4), (5).

In fact, it suffices, by the proof of theorem 1.3, to understand the spectrum of the
model operators in (4), which are of the form

n∑
j,k=1

AjkDjDk + Bjk(xjDk + Dkxj) + Cjkxjxk + E, (6)

where Dj = i−1∂/∂xj, with Ajk = A∗
kj, Bjk, Cjk = C∗

kj and E all in LH(V ), and with
principal symbol (in S (〈(x, ξ), 〉2, (〈(x, ξ)〉−2(|dx|2 + |dξ|2); LH(V )) ) non-negative,
in the sense of Hermitian operators:

( (
∑
jk

Ajkξjξk + 2Bjkxjξk + Cjkxjxk)v, v) ≥ 0, ∀v ∈ V. (7)

By analogy with the scalar case, such operators were called harmonic oscillator
systems or, more briefly, matrix oscillators, in [1], [2].

However, diagonalizing (6) is a very hard problem, even in the simplest non-scalar
case of n = 1 and V = C2: for example, as mentioned above, the non-negativity
condition (7) is not sufficient for (6) to be non-negative, even if E ≥ 0 (cf. [9]).
There are some examples for which the spectrum can be computed explicitly (cf.
the references of [2]), but nothing conclusive seems to be known.

In [1], [2] we gave a general lower bound for certain subclasses of matrix oscilla-
tors, which included all matrix oscillators in dimension 1, that is, with n = 1. This
lower bound, which is computed as the solution of a certain auxilliary max-min prob-
lem in a space of nN × nN -matrices, is sharp in the trivial case of simultaneously
diagonalizable coefficients, but unfortunately almost never in general. However, be-
ing a lower bound, one might hope to use it for a sufficient (though not necessarily
necessary) condition for Melin’s inequality for systems. This was the approach of
[1], [2]. We only wish to note here that to succeed it was necessary to impose certain
structural conditions on the principal symbol, regarded purely as a matrix valued
C∞ function, without it being clear if such conditions were really necessary, or just
an artifact of the proof. A similar phenomenon will be encountered below. The
conditions of [1], [2] are in general difficult to verify, but examples are known. For
example, the "weak Morse" condition from [2] is automatically satisfied by transver-
sally elliptic systems.

• One can try to circumvent the problem of analyzing the spectrum of these ma-
trix oscillators, by proving directly that non-negativity of the model operators
(5) is also sufficient for Melin’s inequality.

A first result along these lines can be found, among other Gårding inequalities for
systems, in Parenti and Parmeggiani [13], who proved the sufficiency of (5) under
the hypotheses that Σ(Am) is a symplectic submanifold, Am is of constant rank r
along Σ(Am), and that det Am vanishes of order exactly 2(N − r) on Σ(Am), N
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being the dimension of V . We will encounter a significant generalisation of this
result below, where it will turn up as a corollary of yet another approach to Melin’s
inequality, which is the next one:

• Thirdly, acting on a suspicion that non-negativity of the model operators (5)
might not always suffice, one might seek to enlarge the class of the latter.

This is the approach we will explain here. Adapting an idea from Hörmander [7]
(cf. also [10], section 22.4) we will replace the single operator in (5) by a family of
second order operators.

2. Main results

The precise definition of the family of model operators by which we will replace the
single operator in (5) is the following:

Definition 2.1. For (x0, ξ0) ∈ Σ(Am) we define Q(x0,ξ0)(A) to be the set of all
quadratic polynomials Q = Q(y, η) with coefficients in LH(V ) for which there exist
sequences (xν , ξν) → (x0, ξ0), λν → ∞, λν ≥ 0 and orthogonal projections Πν ∈
LH(V ), commuting with Am(xν , ξν), such that

Q(y, η) = lim
ν→∞

λ1−m
ν ΠνA

(
xν + λ−1/2

ν y, λνξν + λ1/2
ν η

)
Πν , (8)

pointwise for (y, η) ∈ T ∗Rn.

The only difference with the analogous definition in [7] is the inclusion of the
projections Πν ; as we will try to explain below, this imposes itself by the proof.

A moment’s thought shows that, assuming that Πν to converge to some orthog-
onal projection Π∞ (as we may do wlog), then

Q = Π∞Q(x0,ξ0)(Am)(y, η)Π∞ + lim
ν→∞

λ1/2
ν Πν〈dx,ξAm, (yν , ην)〉+

lim
ν→∞

λνΠνAm(xν , ξν)Πν + Π∞Am−1(x0, ξ0)Π∞,

where the Hessian Q(x0,ξ0)(Am) was defined in (3) above.

Our main result now is that, together with non-negativity of the principal sym-
bol, non-negativity of all Qw in Q(x0,ξ0)(A) is necessary and sufficient for Melin’s
inequality:

Theorem 2.2. (Brummelhuis and Nourrigat [3], theorem 1.3 and corollary 2.3) Let
Aw ∈ Ψm

phg(Rn, LH(V )). Then

(i) If Aw satisfies Melin’s inequality (1), then Am ≥ 0 and Qw ≥ 0 for all Q ∈
Q(x0,ξ0)(A), (x0, ξ0) ∈ Σ(Am).

(ii) Conversely, suppose that the principal symbol is non-negative and satisfies the
following condition: given (x0, ξ0) ∈ Σ(Am) there exists a constant C > 0 and
a neighborhood of (x0, ξ0) such that, for (x, ξ) in this neighborhood and for v any
eigenvector of Am(x, ξ) ,

||dx,ξAm(x, ξ)v||2 ≤ C(Am(x, ξ)v, v). (9)

Then the necessary condition in (i) is also sufficient.
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A condition which implies (9), and which is somewhat easier to state, is that
there exists a constant C > 0 and a neighborhood such that, pointwise in this
neighborhood (and with a slightly imprecise notation),

dx,ξAm(x, ξ)2 ≤ CAm(x, ξ),

in the sense of Hermitian operators on V . Note that this is always satisfied by
non-negative scalar functions (as is the condition of being "weak Morse" from [2]),
and therefore also by diagonal non-negative matrix functions (contrary being "weak
Morse").

We do not know whether the condition (9) on the principal symbol is really
necessary or not. What is easy to see is that it is not satisfied by all matrix-valued
functions, not even of a single variable: a counter example is given by the function

z →
(

z2 z
z 1

)
, z ∈ R.

Since this example is C∞ diagonalizable, it also shows that (9) is not invariant with
respect to conjugation by a unitary matrix function.

Apart from having to impose this condition (9), another inconvenient of theo-
rem 2.2 is that it might be difficult, for a given operator Aw, to determine the set
Q(x0,ξ0)(A). Happily, there exists a situation where we can both replace this set by
a single second order operator, and where we do not need to check (9):

Theorem 2.3. ([3], theorem 3.1) Let N = dimV and let Aw ∈ Ψm
phg(Rn, L(V )) be

such that:

(i) The rank of Am is constant on the characteristic set: rank(Am) ≡ r on Σ(Am).

(ii) The determinant of Am vanishes to order exactly 2(N − r) on Σ(Am), in the
sense that for each compact K there exists constants C1, C2 > 0 such that if
d(x, ξ) is the distance of (x, ξ) to Σ(Am), then

C1d(x, ξ)2(N−r) ≤ det (Am(x, ξ)) ≤ C2d(x, ξ)2(N−r), (x, ξ) ∈ K.

Then Aw satisfies Melin’s inequality iff (5) holds, for all (x0, ξ0) ∈ Σ(Am).

This theorem generalizes the result of Parenti and Parmeggiani [13] quoted
above. Note that we do not make any assumption on the structure of Σ(Am) any-
more.

3. Proofs

We will limit ourselves to some remarks on the proofs of theorems 2.2 and 2.3, which
will hopefully help to clarify the origen of the projections Πν in definition 2.1, and
of the condition (9).

The proof of theorem 2.2 is in fact faithfully modelled on Melin’s original proof in
[12]: one can use his S0

1/2,1/2-partition of unity arguments to reduce the sufficiency of
2.2(i) to the following statement, where we will suppose, for simplicity (and without
essential loss of generality), that Am−1 = 0, and where we write A

(α)
m(β) for ∂α

ξ ∂β
x :
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Claim 3.1. Suppose that there exist ρ0 > 0, sequences (xν , ξν) in a compact of
T ∗Rn \ 0, λν →∞ and vν ∈ C∞

c (B(0, 1)) such that( ∑
|α|+|β|≤2

λ1−(|α|+|β|)/2A
(α)
m(β)(x, ξ)

yβηα

α!β!

)w

(y, Dy)v, v

 ≤ −ρ0||vν ||2(4) (10)

(the norm on the right being a Sobolev norm). Then there exists a Q ∈ Q(x0,ξ0)(A)
such that Qw is not non-negative.

To prove the claim, one first shows that λνAm(xν , ξν) and ||vν ||(4) stay bounded.
By compactness, we can then assume that vν → v0 in the Sobolev space of order 3,
with v0 6= 0 (e.g. since we can assume all vν to have L2-norm equal to 1). We can
also assume that (xν , ξν) → (x0, ξ0). By the above,

(Am(xν , ξν)v0, v0) → 0.

Now in the systems case this does not necessarily imply that Am(x0, ξ0) = 0. How-
ever, using the fact that Am(x, ξ) can be continuously diagonalized in a neighbor-
hood of (x0, ξ0), one can construct a sequence of orthogonal projections Πν → Π∞
such that

λνΠνAm(xν , ξν)Πν

stays bounded. In fact, Πν will project exactly onto the span of those eigenvectors
of Am(xν , ξν) for which the component of v0 along that eigenvector does not tend
to 0 as ν → ∞ ; in particular, Π∞v0 = v0. One next shows that this sequence of
Πν ’s can be used to construct an element Q of Q(x0,ξ0)(Am). The final step of the
proof then is to show that

(Qwv0, v0) < 0.

This is not a trivial consequence of the hypothesis of the claim, since we need to
show that we can replace vν by Πνvν in (10), and it is in the verification of this
point (and only there) that we need condition (9). We refer to [3] for details.

Turning next to theorem 2.3, it’s proof uses theorem 2.2, but instead of applying
the latter directly, we apply it to the operators ΠwAwΠw from the proof of theo-
rem 1.3. Using the constancy of rank assumption (i), the principal symbol of the
latter vanishes on Σ(Am). We can then reduce theorem 2.3 to the special case where
r = 0, basically since we can reduce Melin’s inequality for Aw to Melin’s inequal-
ity for ΠwAwΠw. Condition 2.3(ii) then becomes a transversal ellipticity condition,
which can be used to show that Am satisfies (9) and that (5) (which, in this case,
is just (4)) implies positivity of all Qw, Q ∈ Q(x0,ξ0)(A). An appeal to theorem 2.2
then finishes the proof.
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