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1. Oceanic motions. Orders of magnitude and scalings

In this first chapter, we will introduce both from the physical and the mathematical
points of view some models which are usually considered to describe oceanic motions.

For large-scale motions, physical considerations based on orders of magnitude lead
to some simplifications and therefore to better understood mathematical models.

1.1. Physical observations
1.1.1. Static description

Oceans are huge masses of water delimited by continents, and rotating together with
the earth. The domain occupied by oceans evolves with time (a little bit).

• At the bottom, water is stopped by the earth crust. Because of this fluid-
structure interaction, the bottom topography is expected to play a crucial role
in the dynamics.

Figure 1.1: Bottom topography

• At the surface, water is surrounded by air. The interface is a free surface
with negligible surface tension, constrained by wind forcing. In all the sequel,
we will assume that the wind forcing is known a priori. Considering coupled
models for oceans and atmosphere would me more relevant, but is too much
difficult at the present time.

The density of oceans has very small variations, at least outisde from the pyc-
nocline. In any case, we will neglect the compressibility of water. Under such an
assumption, thermodynamics can be decoupled from dynamics.
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Figure 1.2: Density of water

1.1.2. Kinematic description

The movement of oceans can be described as a superposition of various fluctuations
with respect to the rigid body rotation.

• Oscillating motions with small period (1-10 seconds) : ripples and swell
Ripples are created by some local phenomenon (obstacle or wind for instance),
while swell is the response to some distant or switched-off excitation. The am-

Figure 1.3: Swell

plitude of such waves decreases as depth increases, and is essentially negligible
at a depth equal to one half of the wave length. On lateral boundaries, these
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waves break when the bottom rises abruptly, whereas they go flat in shallow
water.

• Oscillating motions with larger period (1-10 hours) : tides, tsunamis, storm
waves

Storm waves are created by some decrease in atmospheric pressure, then am-
plified by wind and Coriolis force (resonance).

Tsunamis are linked with tectonic phenomena in deep water, they carry a lot
of energy and propagate very fast.

Tides are long waves generated by the moon gravitation, depending also on
the Coriolis force and on the configuration of the coasts (and on the depth).

• Non oscillating motions, namely oceanic currents (independent from tides)

Surface currents are created by wind, then transmitted by Ekman pumping
(to be explained in Chapter 3) around one kilometer deep, and damped by
friction.

In deep water, currents are due mainly to temperature and salinity gradients.

Figure 1.4: Oceanic currents

1.1.3. Dynamic description

Forces which are responsible for the ocean dynamics have been already mentioned
in the previous paragraph. Conservative forces can be classified as follows :
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• Gravity, namely earth gravity and - in weaker measure - moon gravity.
In the absence of relative motion, it has to be balanced by the pressure p, so
that the pressure is given by the hydrostatic law

∂p

∂z
= −ρg with g ∼ 9.8ms−2 .

• Coriolis and centrifugal forces
Because the reference frame is rotating, Coriolis and centrifugal forces appear,
the significance of which is measured by the Rossby number

Ro = U

2|Ω|L with |Ω| ∼ 7.3× 10−5 s−1 ,

denoting by U and L the typical velocity and length scales of the flow to be
considered.

• Wind forcing
The coupling with the atmosphere is the cause both of surface currents and
of many oscillating motions. As a first approximation, we will assume that
wind is known and affects the motion through the boundary condition at the
surface (Navier boundary condition).

• Temperature and salinity gradients
Such data seem to be crucial to understand the global thermohaline circula-
tion, but not for the response to the wind. They will be neglected in all the
sequel.

1.2. Mathematical models
Given the assumptions and simplifications presented in the previous section, it is
natural to describe the ocean dynamics using the Navier-Stokes equations with free
surface.

1.2.1. The Navier-Stokes equations

The incompressibility constraint states
∇ · u = 0 ,

while the conservation of momentum provides the evolution equation

∂tu+ (u · ∇)u+ 1
ρ
∇p = g − 2Ω ∧ u+ F

ρ

where ρ = ρ0 is the (constant) density, g is the gravity (of constant modulus), Ω
is the earth rotation vector, p is the pressure, defined as the Lagrange multiplier
associated to the incompressibility constraint, and F is the viscous dissipation.

Note that the main inadequacy of this model is actually related to the absence of
temperature as an important parameter to describe the state of water.
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Temperature is essentially transported by the velocity field, but it is also expected
to be involved in the mechanism governing the thermohaline circulation.

1.2.2. About viscous dissipation

Even though friction may be weak compared with other forces, its dissipative nature,
qualitatively distinct from the conservative nature of the inertial forces, requires its
consideration.

Let us first consider the dissipation due to the interactions at microscopic level.
F is then proportional to the spatial derivative of the stress tensor

F
ρ
∼ νmolecular∇ · (∇u+ (∇u)T ) .

The ratio of the frictional force to the Coriolis force acceleration is then measured
by the Ekman number

E = νmolecular
2ΩL2 ∼ 10−14

for L = 1000km and νmolecular = 10−6m2s−1 . The molecular dissipation is therefore
too small to compensate the energy income, due for instance to solar heating.

Another - supposedly much more efficient - dissipative mechanism is turbulence.
It should result from the energy transfer associated to the nonlinear interaction
between waves. There is indeed a possibility that small scale motions (which are not
the focus of our ineterest) may yet influence the large scale motions, smoothing and
mixing properties by processes analogous to molecular diffusive transport :

F
ρ
∼ νturbulent∇ · (∇u+ (∇u)T ) .

Note that this model of turbulent dissipation is completely ad hoc, and has even no
heuristic derivation.

1.2.3. Boundary conditions

Because of the incompressibility constraint, the normal velocity has to be prescribed
on the boundary, and it is rather natural to ask that the flux is zero.

With the previous choice of dissipation operator, one has further to prescribe
either the tangential velocity or the normal stress.

At the bottom B, the fluid-stucture interaction imposes some stopping condition,
namely the homogeneous Dirichlet boundary condition

u|B = 0.

On the free surface Σ, as we neglect the surface tension, we have some slipping
condition referred to as Navier boundary condition

n · u|Σ = 0, n · (p− ν(∇u+ (∇u)T ) = τ ,

where n denotes the outwards unit normal. These continuity conditions have to be
supplemented by a kinematic condition defining the moving domain D(t)

∂t1D +∇ · (1Du) = 0 .
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Even though the system we obtain by gathering together all the previous equations
seems to satisfy all the conditions required to be well-posed, many mathematical
difficulties arise when studying the Cauchy problem. For instance, if we consider
weak solutions, the interface is not defined (note that even for strong solutions,
the interface is not necessarily a graph). Furthermore, singularities are expected to
appear in the vicinity of any point of Σ ∩B.

At the present time, there is therefore - to our knowledge - no mathematical result
concerning the existence of solutions for the complete system.

1.3. Orders of magnitude
In order to further simplify the above model, a common method in physics is to com-
pare the contributions of the different terms, introducing the orders of magnitude
of the physical parameters.

1.3.1. Geometric approximations

Oceans are thin layers of fluid, located at the surface of the earth.

Figure 1.5: Geometric parameters

Typically, denoting by D the depth and by L the horizontal extent, one has

D ∼ 1− 5km, L ∼ 100− 1000km .

The aspect ratio being very small, it is then natural to use some shallow-water
approximation.
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In addition, for the sake of simplicity, the earth curvature is usually neglected, i.e.
spherical coordinates are considered as cartesian coordinates. Such an approximation
is justified if L << R where R is the earth radius

R ∼ 6400km .

More generally, we expect this approximation to provide a rough description of
qualitative behaviours.

1.3.2. About the free surface

Except in the vicinity of coasts and islands, the fluctuations of the surface height
δh are negligible compared to the depth D of oceans :

δh ∼ 1− 10m, D ∼ 1− 5km .

When considering the global circulation, it seems actually relevant to neglect the
variations of the surface elevation, which leads to the so-called rigid lid approxima-
tion.

However, in some situations, the fluctuations of the surface height have to be
considered insofar as they introduce some kind of compressible effects (of a different
nature from both the physical and the mathematical points of view). For instance,
such effects are crucial for the understanding of surface waves : δh has then to be
compared to the wave length λ.

1.3.3. About the Coriolis force

Our main interest in this work lies in large scale motions, that are by definition
motions for which the Rossby number Ro = U/2|Ω|L is small.

In such a regime, we expect the mean motion to be constrained, in order that
the dominating forces, namely the pressure gradient and the Coriolis force, balance
one another. This constraint is referred to as the geostrophic constraint, and the
corresponding simplification of the mathematical model is the so-called geostrophic
approximation.

Note that the geostrophic constraint may be incompatible with the boundary
conditions, in which case we expect to observe some boundary layers matching these
two different constraints. These boundary layers actually transfer some energy from
the boundary inside the domain, possibly a macroscopic part of the energy. The
feedback of the bounday layers on the mean motion is a crucial mechanism in the
global circulation, known as Ekman pumping, which will be explained in Chapter 3.

At this stage, we have therefore raised two important issues concerning the de-
scription of large-scale oceanic motions, namely

- the derivation of an evolution equation for the geostrophic motion,
- and the stability of boundary layers.

Departures from geostrophy can then be described by a superposition of
waves, depending on the time and space scales to be considered. The linear propa-
gator involves the Coriolis term and the pressure gradient. The dispersion relation
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therefore depends on the rotation frequency, on the inhomogeneities of the rotation
vector and on the stratification.

Physicists use to classify waves into two types according to the dominating phe-
nomenon :

Figure 1.6: Wave classification

- Poincaré waves which may be gravity or rotation waves depending on the wave
length and of the buoyancy frequency

N = −g∂ log ρ
∂z

;

- Rossby waves which are quasi-geostrophic waves, propagating much slower, with
an eastwards group velocity.

A natural problem is then to understand the interaction between waves via the
nonlinear couplings, and to obtain the slow dynamics of the amplitudes referred to
as envelope equations.

All these questions will be studied in the sequel starting from simplified mathe-
matical models.

1.4. Mathematical theories for simplified models
In this last section, we present with more details the mathematical properties of two
simplified models. Of course many other simplified models are used by oceanogra-
phers, but these two can be considered as prototypes regarding their mathematical
structure.

1.4.1. The incompressible Navier-Stokes equations

Here we consider that the free surface is so turbulent with foam and waves that it
can be replaced at first sight by its average (rigid lid approximation), and we neglect
the bottom topography. The fluid is then contained in some horizontal layer D that
we assume to have no lateral boundary for the sake of simplicity.

Since the density ρ is essentially constant, dynamics decouples from thermody-
namics. More precisely, the velocity u is governed by the Navier-Stokes equations

∂tu+ (u · ∇)u+∇p = 2u ∧ Ω + ν∆u , ∇ · u = 0 , (1.1)
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where the pressure p is the Lagrange multiplier associated to the incompressibility
constraint.

These equations have to be supplemented by boundary conditions, namely the
stopping condition at the bottom B, and some inhomogeneous Navier condition at
the surface Σ stating

u|B = 0, u3|Σ = 0, ν∂3uh|Σ = τ , (1.2)

where τ is the wind forcing.

A fundamental property of this system is the energy estimate
1
2‖u(t)‖2L2 + ν

∫ t
0
‖∇u(s)‖2L2ds+

∫ t
0

∫
Σ
τuh(s, xh)dxhds ≤

1
2‖u0‖2L2

obtained formally by multiplying (1.1) by u and integrating by parts using (1.2).
Because u is divergence-free, we further have the trace estimate

‖uh|Σ‖L2(Σ) ≤ C‖u‖2H1/2 ≤ C‖u‖1/2L2 ‖u‖1/2Ḣ1

which provides - together with Gronwall’s inequality - the a priori estimate
1
2‖u(t)‖2L2+ν

2

∫ t
0
‖∇u(s)‖2L2ds ≤

1
2‖u0‖2L2eCt+Cν−1/2

∫ t
0
‖τ(s)‖2L2(Σ)e

C(t−s)ds (1.3)

Note that this estimate does not provide any uniform bound with respect to the
viscosity ν.

This estimate is the crucial tool to prove the global existence of weak solutions
to (1.1)-(1.2) :

Theorem 1.1 (Leray). Let u0 ∈ L2(D) be any divergence-free vector field satisfying
the zero mass flux condition

u0,3|Σ = u0,3|B = 0 ,

and τ some smooth 2D vector field on Σ. Then there exists u ∈ L∞loc(R+, L2(D)) ∩
L2
loc(R+, H1(D)) weak solution to the Navier-Stokes equations (1.1)-(1.2), and sat-

isfying the energy inequality (1.3).

Sketch of proof. Any solution to (1.1)-(1.2) can be decomposed as the sum of a
solution v to the Stokes equation with inhomogeneous boundary condition

∂tv +∇p = ν∆v , ∇ · v = 0 , ,
v|B = 0, v3|Σ = 0, ν∂3vh|Σ = τ ,

and a solution w of the following modified Navier-Stokes equations with homoge-
neous boundary conditions
∂tw + (w · ∇)w +∇p− ν∆w = 2(v + w) ∧ Ω− ((v + w) · ∇)v − v · ∇)w, ∇ · w = 0 ,

w|B = 0, w3|Σ = 0, ν∂3wh|Σ = 0 ,

Since the linear and source terms in the right-hand side of these modified Navier-
Stokes equations can be dealt with without difficulty, we will restrict our attention -
without loss of generality - to the usual Navier-Stokes equations with homogeneous
boundary conditions (τ = 0 and Ω = 0).
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We then define Jn as the projection on the n first modes of the Stokes operator
with homogeneous boundary conditions if the spectrum is discrete (and more gen-
erally as a suitable spectral truncation of the Stokes operator with homogeneous
boundary conditions).

The Cauchy-Lipschitz theorem provides the existence of a unique solution un ∈
C1([0, Tn), JnL2(D)) to the regularized equations

∂tun + Jn∇ · (un ⊗ un)− νJn∆un = 0 , (1.4)
with initial data Jnu0. By the energy estimate (1.3), we further have a global L2

control on un, so that Tn = +∞.
This same energy estimate gives uniform bounds on un with respect to n. In

particular, up to extraction of a subsequence,
un ⇀ u weakly in L2

loc(R+, L2(D)) .
By Sobolev’s embeddings, we also have some strong compactness on (un) with re-
spect to space variables :

‖un‖L2([0,T ],H1(D)) ≤ CT .
The evolution equation provides then some control on the time derivative

‖∂tun‖L1([0,T ],H−3/2(D) ≤ CT .
By interpolation, we finally obtain the strong convergence

un → u weakly in L2
loc(R+×D)

Taking limits in (1.4) shows that u is a weak solution to the Navier-Stokes equations.
Note that such a proof does not provide any uniqueness, and this remains a

challenging open problem. �

Another important feature of the Navier-Stokes equations is the scaling invari-
ance. Actually, if u ≡ u(t, x) is a solution to the Navier-Stokes equations (1.1) set
for instance in the whole space R3, then uλ = λu(λ2t, λx) is also a solutions to (1.1)
for any λ > 0. Functional spaces which are invariant under these transformations
are referred to as “scaling invariant spaces" : L∞t (L3

x), L∞t (Ḣ1/2
x ), L2

t (Ḣ3/2
x )....

In scaling invariant functional spaces, precised energy estimates give some stability
and therefore the existence and uniqueness of local smooth solutions :
Theorem 1.2 (Fujita-Kato). Let u0 ∈ H1/2(D) be any divergence-free vector field
satisfying the boundary conditions (1.2) and τ some smooth 2D vector field on Σ.
Then there exists a unique local solution u ∈ C([0, T ∗), Ḣ1/2)∩L2

loc([0, T ∗), Ḣ3/2) to
the Navier-Stokes equations (1.1).

If ∇Ω 6= 0, the lifespan of the solution depends in particular on the Rossby number
.

Sketch of proof. In the absence of forcing and of (inhomogeneous) Coriolis force, the
precised energy estimate

1
2
d

dt
‖u‖2Ḣ1/2 + ν‖∇u‖2Ḣ1/2 = 〈(u·)u|u〉Ḣ1/2

≤ ‖u‖L3‖∇u‖2L3 ≤ C‖u‖Ḣ1/2‖∇u‖2Ḣ1/2

gives the global existence of strong solutions for small data.
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Indeed, if ‖u0‖Ḣ1/2 ≤ ν/2C, then

sup{t ∈ R+ / ‖u(t)‖Ḣ1/2 ≤
ν

C
} = +∞ .

With a forcing term or an (inhomogeneous) Coriolis force, or for large data, the
idea is to introduce the same decomposition u = v + w as previously, with

∂tv +∇p = ν∆v , ∇ · v = 0 ,
v|B = 0, v3|Σ = 0, ν∂3vh|Σ = τ, v0 = u0 ,

and
∂tw + (w · ∇)w +∇p− ν∆w = 2(v + w) ∧ Ω− ((v + w) · ∇)v − v · ∇)w, , ∇ · w = 0 ,

w|B = 0, w3|Σ = 0, ν∂3wh|Σ = 0, w0 = 0 .

Using a variant of the precised energy estimate and Gronwall’s lemma, we obtain
that

T ∗ = sup{t ∈ R+ / ‖w(t)‖Ḣ1/2 ≤
ν

C
} > 0 .

Note that if ∇Ω = 0, the Coriolis term Ω ∧ u does not appear in the precised
energy estimate since it is skew-symmetric for any Hs scalar product. The lifespan
T ∗ of the solution is then independent of the Rossby number. �

1.4.2. The Saint-Venant equations

In some situations, the influence of the free surface is dominating (for instance when
considering the propagation of surface wave). A very crude mathematical model to
account for these features can be obtained in the shallow-water approximation.

Figure 1.7: Shallow-water approximation

As previously, we consider that the density ρ is contant, and we further assume
that, because of the small aspect ratio, the motion depends essentially only on the
horizontal variables xh. Note that the incompressibility constraint and the zero mass
flux condition then imply that the vertical velocity u3 is zero.
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If the free surface has no folding, integrating formally the incompressibility rela-
tion and the 3D Navier-Stokes equations with respect to the vertical variable z, we
get the Saint-Venant equations

∂th+∇ · (huh) = 0,
∂t(huh) +∇ · (huh ⊗ uh) + ω ∧ huh + h∇p = F

h∂zp = hg ,

(1.5)

where h ≡ h(t, xh) is the local height of water, ω is the local vertical component of
the rotation vector Ω, and F is the viscous dissipation.

- In the inviscid case, namely when F = 0, the classical theory of symmetrizable
hyperbolic systems gives the existence and uniqueness of local strong solutions in
L∞([0, T ∗), Hsx) for s > 2. Defining the sound speed u0 by

u0 = 2(√ρ− 1) ,
we indeed obtain that (1.5) is equivalent to

∂tU + AU + S1(U)∂1U + S2(U)∂2U = 0 , U = (u0, u1, u2) (1.6)
where A is the linear propagator

A =

 0 ∂1 ∂2
∂1 0 −ω
∂2 ω 0

 , (1.7)

and

S1(U) :=

 u1
1
2u0 0

1
2u0 u1 0
0 0 u1

 , S2(U) :=

 u2 0 1
2u0

0 u2 0
1
2u0 0 u2

 . (1.8)

- In the viscous case, and more precisely if we choose F = ν∆uh, we can build
global weak solutions (h, uh) ∈ L2

loc(R+, L2
x×H1

x) starting from the energy inequality
1
2

∫
(hu2
h + gh2)(t, x)dx+ ν

∫ t
0
‖∇uh(s)‖2L2ds ≤

1
2

∫
(hu2
h + gh2)(0, x)dx .

For the sake of simplicity, we will consider such global weak solutions in the sequel.
Note however that this choice of F does not seem to be physically relevant insofar as
the dissipation is independent of h. In particular, this is not the dissipation obtained
by integration of the Navier-Stokes equations.
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2. Rotating fluids.Weak and strong asymptotics

The aim of this second chapter is to present some classical methods to study singular
perturbation problems (in the absence of boundary).

For rotating fluids such as oceans, the dynamics is understood as a superposition
of waves propagating under both the Coriolis force and the gravity.

We will state two types of mathematical results describing this approximation.

2.1. Heuristic study of rotating fluids
For the sake of simplicity, we will present all the arguments on the viscous Saint-
Venant model, for which waves are rather simple to describe.

More complex models can be dealt with using the same methods provided that
one has a good knowledge of the spectral structure of the propagator.

2.1.1. A simple model

In addition to the Ekman number measuring the influence of viscous effects, the
Saint-Venant equations involve two nondimensional parameters

• the Rossby number measuring the influence of rotation Ro = U/2|Ω|L;

• the Froude number measuring the influence of gravity Fr =
√
U2/gD.

For large oceanic motions, both effects are comparable.
∂th+∇ · (hu) = 0,

∂t(hu) +∇ · (hu⊗ u) + 1
ε
ω(hu)⊥ + 1

ε2∇
h2

2 = ν∆u .

With such a scaling, we expect the fluctuations of the water height to be of the
order of ε 

∂tη + 1
ε
∇ · ((1 + εη)u) = 0,

∂tu+ u · ∇u+ 1
ε
ωu⊥ + 1

ε
∇η +∇η

2

2 = ν

1 + εη
∆u .

(2.1)

which can be rewritten in a more abstract way

∂tU + 1
ε
LU +Q(U) = 0,

where L is a skew-symmetric (pseudo)-differential operator.

2.1.2. The linear propagator

For small ε, the dynamics should be dominated by the linear propagation

Uε ∼ exp
(
−tL
ε

)
V0

which depends crucially on the spectral structure of L.
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For instance, we have here

L :
(
η
u

)
7→
(
∇ · u

ωu⊥ +∇η

)
.

Neglecting the variations of the Coriolis parameter ω, which is relevant at mid-
latitudes, we can express L as a Fourier multiplier

Lk =

 0 ik1 ik2
ik1 0 −ω
ik2 ω 0

 ,

which can be diagonalized in orthonormal basis :

Lk = Pk


0 0 0
0 i

√
k2

1 + k2
2 + ω2 0

0 0 −i
√
k2

1 + k2
2 + ω2

P−1
k .

We therefore expect the oceanic motion to decompose as the sum of a geostrophic
motion, corresponding to the non oscillating component, and of Poincaré waves
which are either gravity waves (for large wave numbers (k1, k2)) or rotating waves
(for small k).

The way waves propagate is then determined by the geometry of the domain.
If D = T2, the spectrum of L is dicrete : waves oscillate endlessly.
If D = R2, the spectrum of L is continuous : a nonstationary phase argument

shows that waves disperse and that the energy carried by these waves converge
locally to zero.

2.1.3. The nonlinear coupling

The effect of the nonlinear coupling is observed on longer time scales. Conjugating
the Saint-Venant equations with Corioilis force by the group associated to L

∂t exp
(
t

ε
L
)
Uε + exp

(
t

ε
L
)
Q(Uε) = 0,

we indeed see that the time derivative of the filtered unknown Vε = exp
(
t
ε
L
)
Uε is

of order 1, meaning that it undergoes non negligible variations only on macroscopic
time scales.

In the physical litterature, this slow dynamics is usually described by a system of
envelope equations, which is obtained by a careful study of possible resonances.

2.2. Compensated compactness and weak convergence
If we are only interested in describing the mean motion (i.e. the non-oscillating
component), a suitable tool is weak convergence, insofar as it does not capture
oscillating behaviours

sin
(
t

ε

)
⇀ 0 .
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Figure 2.1: Slow dynamics of waves

2.2.1. The constraint equation

Provided that we are able to establish convenient bounds on Uε, up to extraction of
a subsequence, we have some weak convergence

Uε ⇀ Ū .

We further have
LUε = −ε∂tUε − εQ(Uε)→ 0

in the sense of distributions, so that the limit vector field Ū satisfies the constraint

LŪ = 0 .

For the viscous Saint-Venant equations with Coriolis force, uniform bounds on
(ηε, uε) come from the energy estimate∫

(1 + εηε)|uε|2(t, x)dx+
∫
|ηε|2(t, x)dx+ 2ν

∫ t
0

∫
|∇uε|2(s, x)dxds ≤ 2E0 .

By Sobolev’s embeddings, we then have∫
|uε|2dx =

∫
(1 + εηε)|uε|2dx+ ε

∫
ηε|uε|2dx

≤ 2E0 + ε‖ηε‖L2‖uε|2L4 ≤ 2E0 + ε‖ηε‖L2‖uε|L2‖∇uε‖L2

≤ 2E0 + C0ε(‖uε‖2L2 + ‖∇uε‖2L2)
from which we deduce that, up to extraction of a subsequence

uε ⇀ ū weakly in L2
loc(H1)

ηε ⇀ η̄ weakly in L∞(L2)
mε = (1 + εηε)uε ⇀ ū weakly in L2

loc(Lp)
for any p < 2.
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Taking limits (in the sense of distributions) in the Saint-Venant equations (2.1),
we get the constraint

∇ · ū = 0, ωū⊥ +∇η̄ = 0,
referred to as geostrophic constraint, and equivalent to

ū = 1
ω
∇⊥η̄

if ω is constant.

2.2.2. Regularity of the geostrophic motion

In order to obtain the equations governing the evolution of (η̄, ū), the idea is to
project the Saint-Venant equations on KerL, that is n the space of geostrophic
motions.

Let us first describe this projection Π. Given V = (η, u) ∈ L2, ΠV = (η̄, ū) is
such that

ū = 1
ω
∇⊥η̄

and for any ρ̄ ∈ H1, ∫ (
(η − η̄)ρ̄+ (u− ū) · 1

ω
∇⊥ρ̄

)
dx = 0 .

Integrating by parts, we get - as there is no boundary -∫ (
(η − η̄)ρ̄− 1

ω
∇⊥ · (u− 1

ω
∇⊥η̄)ρ̄

)
dx = 0 ,

from which we deduce that

(I − 1
ω2 ∆)η̄ = η − 1

ω
∇⊥ · u .

We end up with the following formula

η̄ = (I − 1
ω2 ∆)−1(η − 1

ω
∇⊥ · u) ,

ū = 1
ω
∇⊥(I − 1

ω2 ∆)−1(η − 1
ω
∇⊥ · u) .

Using the explicit form of Π, we get some regularity with respect to space
variables on the geostrophic component of the mtion

(η̄ε, m̄ε) = Π(ηε,mε) .
We indeed have (ηε) uniformly bounded in L2

loc(L2) and

mε = uε + εηεuε

with (uε) uniformly bounded in L2
loc(H1) and εηεuε → 0 strongly in L2

loc(Lp).
We therefore conclude that, up to a small remainder which converges strongly to

zero in L2
loc(Lp), (η̄ε, m̄ε) is uniformly bounded in L2

loc(H2 ×H1).
In the analysis of mixed hyperbolic/parabolic systems, such partial regularity and

hypoellipticity results are important issues.
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Applying Π to the Saint-Venant equations (2.1), we will further obtain some
regularity with respect to time. Indeed, as L is skew-symmetric, ΠL = 0 and

∂tΠ
(
ηε
mε

)
+ Π

 0

∇ · (mε ⊗ uε) +∇η
2
ε

2 − ν∆uε

 = 0 . (2.2)

The energy inequality provides uniform bouds on the flux terms in L∞(W−1,1) and
on the dissipation term in L2(H−1). Using the continuity of Π in Sobolev spaces, we
therefore have

∂t(η̄ε, m̄ε) uniformly bounded in L2
loc(H−2) .

A standard interpolation argument allows then to conclude that
(η̄ε, m̄ε) is strongly compact in L2

loc(L2 + Lp) .
By continuity of Π, we further have

(η̄ε, m̄ε)→ (η̄, ū) strongly in L2
loc(L2 + Lp),

(ηε − η̄ε,mε − m̄ε) ⇀ 0 weakly in L2
loc(L2 + Lp).

2.2.3. Compensated compactness

Of course the strong compactness of the geostrophic motion (η̄ε, m̄ε) is not sufficient
a priori to take limits in the nonlinear terms which appear in the geostrophic equatio
(2.2). The point is that the coupling of oscillating terms could produce a contribution
to the mean motion (constructive interferences).

Here the structure of both the linear propagator and the nonlinearity are such
that this phenomenon does not occur. More precisely, we can prove that in the sense
of distributions,

Π
 0

∇ · (mε ⊗ uε) +∇η
2
ε

2

→ Π
 0

∇ · (ū⊗ ū) +∇ η̄
2

2

 .

Let us first rewrite the nonlinear term in convenient form

Π
 0

∇ · (mε ⊗ uε) +∇η
2
ε

2

 = −(I − 1
ω2 ∆)−1

 1
1
ω
∇⊥

 1
ω
∇⊥ ⊗∇ : mε ⊗ uε .

Note in particular that pressure terms have no contribution.
We further split the motion in its geostrophic and ageostrophic components

(ηε,mε) = (η̄ε, m̄ε) + (η̃ε, m̃ε) .
Because of the strong compactness of (η̄ε, m̄ε), we expect that

∇⊥ ⊗∇ : m̄ε ⊗ m̄ε → ∇⊥ ⊗∇ : ū⊗ ū ,
∇⊥ ⊗∇ : (m̃ε ⊗ m̄ε + m̄ε ⊗ m̃ε)→ 0 ,

as ε → 0, in the sense of distributions. Note however that the previous quantities
are not exactly those appearing in the nonlinear term, and that the products are
actually not even defined.

Using the spatial regularity of uε, we can introduce some spatial regularization
mδε = mε ∗ κδ, uδε = uε ∗ κδ,
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apply the previous result to the regularized fields, and then prove that the remainder
(mδε ⊗mδε −mε ⊗ uε)

converges to 0 as δ → 0, uniformly in ε.

By definition of Π, the oscillating component (η̃ε, m̃ε) satisfies

η̃ε = 1
ω
∇⊥ · m̃ε ,

ε∂tη̃ε +∇ · m̃ε = O(ε) ,
ε∂tm̃ε + ωm̃⊥ε +∇η̃ε = O(ε)

(2.3)

The compensated compactness argument relies then on a simple algebraic
identity

∇ · (m̃⊗ m̃) = m̃∇ · m̃+ m̃⊥∇⊥ · m̃+∇|m̃|
2

2

= m̃(−ε∂tη̃ +O(ε)) + η̃(−ε∂tm̃−∇η̃ +O(ε)) +∇|m̃|
2

2

= −ε∂t(η̃m̃) +∇|m̃|
2 − η̃2

2 +O(ε)

and
∇⊥ ⊗∇ · (m̃⊗ m̃) = −ε∂t∇⊥ · (η̃m̃) +O(ε) .

Once again, making this formal computation rigorous requires to introduce regular-
ized quantities

m̃δε = m̃ε ∗ κδ, η̃δε = η̃ε ∗ κδ .

Taking limits as δto0, we get finally

∂tū−
1
ω
∇⊥(I − 1

ω2 ∆)−1∇⊥ · (ū∇⊥ · ū− ν∆ū) = 0 .

2.3. Filtering methods and strong convergence
Describing the departure from geostrophy, namely the evolution of waves, requires
a stronger notion of convergence. A natural idea is therefore to build suitable ap-
proximate solutions, and then to use some stability result based for instance on the
energy inequality to control the accuracy of the approximation.

2.3.1. Filtering the oscillations

The slow dynamics of waves (which shall be considered in order to have a good
approximation) is obtained from the Saint-Venant equations once the fast time
oscillations have been removed.

A classical method to do that is to conjugate the system by the group associated
to the singular perturbation

∂t exp
(
t

ε
L
)
Uε + exp

(
t

ε
L
)
Q(Uε) = 0 .
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Defining

Vε = exp
(
t

ε
L
)
Uε ,

we have formally

∂tVε + exp
(
t

ε
L
)
Q
(

exp
(
− t
ε
L
)
Vε

)
= 0 .

Note that, for weak solutions, this formulation does not make sense in general. But
this does not matter as far as we only want to describe a formal asymptotics and
then to prove that the solution of this formal asymptotics is close to Uε.

Taking (even formal) limits in the filtered equation requires structural assump-
tions on the nonlinearity Q, but also a precise description of the spectrum of L.

- If L has only continuous spectrum, we expect to be able to prove some dispersion
estimate using some non stationary phase argument (Strichartz or Mourre estimate),
so that we should have the following convergence

exp
(
t

ε
L
)
Q
(

exp
(
− t
ε
L
)
Vε

)
→ 0 strongly on any compact subset of D.

- If L has purely discrete spectrum, we introduce the spectral projectors Πλ on
Ker(L− iλI) and the decomposition

exp
(
t

ε
L
)
Q
(

exp
(
− t
ε
L
)
Vε

)
=
∑
λ

eiλ
t
εΠλQ

(∑
µ

e−iµ
t
εΠµVε

)
.

For the sake of simplicity, we only consider the quadratic part B of Q : easy gener-
alizations of the method can be obtained to deal with other nonlinearities. Here, we
have then to study the limit of the sum∑

λ,µ,µ̃

ei(λ−µ−µ̃) t
εΠλB (ΠµVε,Πµ̃Vε)

where Vε is more or less strongly compact.

• If λ−µ−µ̃ 6= 0, it can be proved - integrating by parts - that the corresponding
contribution is negligible;

• If λ− µ− µ̃ = 0, one has a resonance (constructive interference).

The formal limit is therefore ∑
λ=µ+µ̃

ΠλB (ΠµV,Πµ̃V ) .

Remark 2.1. Note that the convergence here is only a weak convergence. In order
to get a strong convergence, we have to add a small corrector.

Let V0 satisfy
∂tV0 +

∑
λ=µ+µ̃

ΠλB (ΠµV0,Πµ̃V0) = 0 (2.4)

and define

V1 =
∑
λ6=µ+µ̃

i

λ− µ− µ̃
ei(λ−µ−µ̃) t

εΠλB (ΠµV0,Πµ̃V0) .
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Then,

∂t(V0 + εV1) + exp
(
t

ε
L
)
B
(

exp
(
− t
ε
L
)

(V0 + εV1), exp
(
− t
ε
L
)

(V0 + εV1)
)

= o(1) .

The envelope equations (2.4) are well-posed if the set of resonances is not too big,
or if the structure of the spectral projectors allows to define a functional framework
where the “convolution" makes sense. In these cases, suitable truncations enable us
to also define the corrector V1 and to prove the convergence statement.

2.3.2. Poincaré waves

We have seen that the propagation under both the Coriolis force and the gravity
can be expressed thanks to the Fourier multiplier

Lk =

 0 ik1 ik2
ik1 0 −ω
ik2 ω 0

 .

Departures from geostrophy are then due to Poincaré waves of symbol

±i
√
k2

1 + k2
2 + ω2 .

Let us recall that, depending on the relative size of the (non dimensional) parameters
k and ω, we actually have three regimes of propagation : a rotating regime if k << ω,
a gravity regime if k >> ω and an intermediate regime :
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0.1f
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structure
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(typical value)

            10N             10f          f
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     !
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Rotating

N

Figure 2.2: Regimes of propagation

- If D = R2, solutions to the wave equations

ε2∂ttψ −∆ψ + ω2ψ = 0

satisfy the Strichartz estimate

‖ψ‖Lqt (Lrx) ≤ ε1/q‖ψ0‖Hσx if 1
q

+ σ

r
≤ σ

2 and q, r ≥ 2, r 6=∞ .

We are therefore able to prove that the ageostrophic component of the motion
converges locally strongly to 0.
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- If D = T2, as the eigenvalues of the singular perturbation L are defined as the
roots of

λ3 + λ(k2
1 + k2

2 + ω2) = 0, k ∈ Z2 ,

the occurence of a resonant triad is controlled by the cancellation of some polynomial
in ω.

As a polynomial has a finite number of zeroes or is identically zero, one can easily
prove that for almost all ω (more precisely for all ω except a countable number)
only trivial resonances occur.

Combining this result with the fact that the geostrophic motion decouples from
the oscillating component (which is the main result of the previous part), we get a
system of envelope equations of the type

∂tΠ0V + Π0B(Π0V,Π0V )− νΠ0

(
0
∆

)
Π0V = 0 ,

∂tΠλV + 2ΠλB(ΠλV,Π0V )− νΠλ
(

0
∆

)
ΠλV = 0, λ 6= 0 ,

which is globally well-posed.
In both cases, we are then able to build approximate solutions.

2.3.3. The modulated energy

It remains then to prove that these approximate solutions remain really close to
Uε = (ηε, uε).

Classical energy methods are not completely suitable to do that, insofar as they
deal with hilbertian norms. We have indeed to introduce some slight modifications
on account of the (1+εηε) factor in the kinetic energy. Define the modulated energy

δEε = 1
2

∫ (
(1 + εηε)(uε − uapp)2 + (ηε − ηapp)2

)
dx .

What we will actually establish is the following inequality :

δEε(t)+ν
∫ t

0

∫
|∇uε −∇uapp|2dsdx

≤ δEε(0)− 1
2

∫ t
0

∫ (
∇ · uapp(ηε − ηapp)2 +∇uapp ⊗ (1 + εηε)(uε − uapp)⊗2

)
dxds

+
∫ t

0

∫
(1 + εηε)(uapp − uε)

×
(
∂tuapp + 1

ε
(ωuapp⊥ +∇ηapp)− ν

∆uapp
1 + εηε

+ (uapp · ∇)uapp
)
dxds

+
∫

(ηapp − ηε)
(
∂tηapp + 1

ε
∇ · uapp +∇ · (ηappuapp)

)
dxds

(2.5)
If (ηapp, uapp) is a smooth approximate solution to the Saint-Venant equations

with Coriolis force (2.1) (in the sense that the remainder converges strongly to 0
in L2

t (Lpx) for p > 2), then the last two terms in the previous stability inequality
converge to 0. We therefore get a Gronwall type inequality which shows that the
growth of the modulated energy is controlled by the Lipschitz norm of uapp. With a
suitable choice of the initial data, we have then the expected convergence.
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Establishing the stability inequality (2.5) relies actually on rather simple (though
technical) formal computations. Differentiating the modulated energy with respect
to t and using the global conservation of energy as well as the local conservations
of mass and momentum, we get
d

dt
δEε(t) + ν

∫
|∇uε −∇uapp|2dx

=
∫

(1 + εηε)(uapp − uε)∂tuappdx+
∫

(ηapp − ηε)∂tηappdx

+
∫

(1 + εηε)uapp
(

1
ε

(ωu⊥ε +∇ηε)−
ν

1 + εηε
∆uε + (uε · ∇)uε

)
dx

+
∫
ηapp

(1
ε
∇ · uε +∇ · ηεuε

)
dx−1

2

∫
(uapp2 − 2uε · uapp)(∇ · uε + ε∇ · ηεuε)dx

+ ν
∫

(∇uapp − 2∇uε) · ∇uappdx

Note that the blue term above comes from the derivative of the (1 + εηε) factor in
the kinetic energy. Integrating by parts the linear contributions, we obtain

d

dt
δEε(t) + ν

∫
|∇uε −∇uapp|2dx

=
∫

(1 + εηε)(uapp − uε)∂tuappdx+
∫

(ηapp − ηε)∂tηappdx

−
∫ (1

ε
(1 + εηε)ωuapp⊥ · uε + 1

ε
(ηε + ε

2η
2
ε)∇ · uapp + νuapp ·∆uε

)
dx

+
∫

(1 + εηε)uapp · (uε · ∇uε)dx

−
∫

(1 + εηε)uε ·
(1
ε
∇ηapp−

1
2∇(uapp2 − 2uε · uapp)

)
dx

− ν
∫

(uapp − uε) ·∆uappdx+ ν
∫
uapp ·∆uεdx

Gathering the red terms above together, we get
d

dt
δEε(t) + ν

∫
|∇uε −∇uapp|2dx

=
∫

(1 + εηε)(uapp − uε)
(
∂tuapp + 1

ε
ωuapp

⊥ − ν

1 + εηε
∆uapp+uε · ∇uapp

)
dx

+
∫

(ηapp − ηε)∂tηappdx−
∫ (1

ε
ηε∇ · uapp + 1

2η
2
ε∇ · uapp

)
dx

−
∫

(1 + εηε)(uε − uapp) ·
1
ε
∇ηappdx−

∫
uapp ·

1
ε
∇ηappdx−

∫
ηεuapp · ∇ηapp

Integrations by parts lead then to
d

dt
δEε(t) + ν

∫
|∇uε −∇uapp|2dx

=
∫

(1 + εηε)(uapp − uε)
(
∂tuapp + 1

ε
ωuapp

⊥ + 1
ε
∇ηapp −

ν

1 + εηε
∆uapp + uε · ∇uapp

)
dx

+
∫

(ηapp − ηε)
(
∂tηapp+

1
ε
∇ · uapp +∇ · (ηεuapp)

)
dx
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which is exactly the expected identity. Note that the above calculations can be made
rigorous by considering smooth approximate solutions, then taking limits in the final
inequality.
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3. Boundary layers and Ekman pumping

In this third chapter, we intend to go further in the study of oceanic motions,
investigating the influence of boundaries (which has been neglected in the previous
chapter).

Such effects are crucial for the uderstanding of the global oceanic circulation, both
at the surface for the transmission of wind energy (Ekman layers), and at lateral
boundaries for the formation of deep currents (Munk and Stommel layers).

3.1. Scalings and asymptotic expansion for the Ekman layers
For the sake of simplicity, we will focus on one type of boundary layers and will
further consider a very simple model. However the mathematical methods presented
here can be reproduced in many situations.

3.1.1. A simple example

We are interested here in describing the boundary layers near the bottom and near
the surface of the oceans, in particular to understand the influence of wind forcing.
We have therefore to consider the vertical structure of the flow, and the shallow-
water approximation is not relevant anymore :

∂tu+ (u · ∇)u+∇p = νh∆hu+ νz∂zzu+ g − ω ∧ u ,
∇ · u = 0 ,
u|B = 0, n · u|Σ = 0 and n · (p− ν(∇u+ (∇u)T ))|Σ = τ .

On the other hand, we will neglect both the bottom topography and the oscilla-
tions of the free surface

B = {z = 0} (flat bottom approximation)
Σ = {z = 1} (rigid lid approximation)

Since we neglect the variations of the water height, no gravity wave can propagate,
which corresponds to a purely rotating regime.

The dispersion relation of rotating waves is however modulated by the effect of
PHYSICAL TERMS!vertical stratification

λk = ±iω
√
k3

|k|
.

A more relevant model should account for both gravity and stratification.

3.1.2. Balance between viscous and rotating terms

Taking formal limits in the Navier-Stokes equations with singular Coriolis force and
vanishing vertical viscosity

∂tuε + (uε · ∇)uε +∇pε = νh∆huε + ε∂zzuε −
1
ε
ω ∧ uε ,

∇ · uε = 0 .
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we expect the mean motion to be governed by the two-dimensional Navier-Stokes
equations

∂tūh + (ūh · ∇)ūh +∇hp = νh∆hūh
∇h · ūh = 0
ū3 = 0 .

Nevertheless these last equations are not compatible with the horizontal bound-
ary conditions

uh|B = 0 and ε∂zuh|Σ = τ . (3.1)
We therefore expect these boundary conditions to be restored by some boundary
layers, the size of which is determined by a balance between the viscous term (com-
patible with stopping and slipping conditions) and the singular perturbation

1
ε

(ω ∧ wε)h − ε∂zzwε,h ∼ 0 ,

which can be rewritten in scaled variables Z = z/ε or Z = (1− z)/ε
∂ZZwh − ωw⊥h = 0 ,

with the additional constraint in order that the correction remains localized in the
vicinity of boundary that

wh(Z)→ 0 as Z →∞ .

We finally obtain

w1 + iw2 = (w1 + iw2)|Z=0 exp
(
−1 + i√

2
√
ωZ

)
,

w1 − iw2 = (w1 − iw2)|Z=0 exp
(
−1− i√

2
√
ωZ

)
,

where w1|Z=0 and w2|Z=0 are defined in terms of τ and ūh.
In particular, we have the following boundary estimates for the bottom term{

‖wBh ‖L2([0,1],Hs(Dh)) ≤ C‖ūh‖Hs(Dh)ε
1/2 ,

‖∂zwBh ‖L2([0,1],Hs(Dh)) ≤ C‖ūh‖Hs(Dh)ε
−1/2 ,

and for the surface term{
‖wΣ
h ‖L2([0,1],Hs(Dh)) ≤ C‖τ‖Hs(Dh)ε

1/2 ,

‖∂zwΣ
h ‖L2([0,1],Hs(Dh)) ≤ C‖τ‖Hs(Dh)ε

−1/2 ,

Note that the explicit formula for wh gives also Lp estimates.

3.1.3. Resulting vertical motion

By construction, for smooth τ and ū, ū + wΣ
ε + wBε satisfies approximately the

evolution equation

∂tu+ (u · ∇)u+∇p = νh∆hu+ ε∂zzu−
1
ε
ω ∧ u ,

as well as the boundary conditions
u|B = 0, u3|Σ = 0 and ε∂zuh|Σ = τ .
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However the incompressibility condition is not satisfied in general

∂1w1 + ∂2w2 = 1
2(∂1 − i∂2)(w1 + iw2)|Z=0 exp

(
−1 + i√

2
√
ωZ

)

+ 1
2(∂1 + i∂2)(w1 − iw2)|Z=0 exp

(
−1− i√

2
√
ωZ

)

We therefore introduce a vertical correction w3 such that ∂Zw3 = ±ε∂zw3 = ∓ε(∂1w1+
∂2w2)

w3 = ∓ ε

(1− i)
√

2ω
(∇h · wh|Z=0 − i∇⊥h · wh|Z=0) exp

(√
ω

2 (i− 1)Z
)

∓ ε

(1 + i)
√

2ω
(∇h · wh|Z=0 + i∇⊥h · wh|Z=0) exp

(
−
√
ω

2 (i+ 1)Z
)
.

Now the vector field w is divergence-free, but it does not satisfy anymore the zero
mass flux condition.

wB3|Z=0 = − ε√
2ω

(
(∂1 − i∂2)(ū1 + iū2)

1 + i
+ (∂1 + i∂2)(ū1 − iū2)

1− i

)

wΣ
3|Z=0 = ε

2ω (i(∂1 − i∂2)(τ1 + iτ2)− i(∂1 + i∂2)(τ1 − iτ2))

and there are further exponentially small corrections due to wB3|Z=1/ε and wΣ
3|Z=1/ε.

To restore the zero mass flux condition, we shall then add another small correction
δw defined by

δw3 = −w3|z=0P (1− z)− w3|z=1P (z) ,
δwh = ∇h∆−1

h ∇h · (−w3|z=0P
′(1− z) + w3|z=1P

′(z))

for some function P such that P (0) = 0 and P (1) = 1.
The small vertical flux δw3 is responsible for global circulation in the whole do-

main, of small order but not limited to the boundary layer. That process, called
Ekman pumping, has a very important effect in the energy balance.

Note that ū + wΣ
ε + wBε + δwε does not satisfy exactly the horizontal boundary

conditions (3.1), but the error is smaller by one order of magnitude as the one for
ū.

Our goal now is to show how the presence of Ekman layers modifies the mean
flow.

3.2. Two-scale analysis and weak convergence
As far as we are only interested in the mean motion, weak compactness methods
seem to be the appropriate tool, provided that we are able to establish convenient
uniform bounds.

We have seen in the previous chapter tha taking limits in nonlinear terms requires
then some compensated compactness argument.

The additional difficulty here is to understand how to deal with boundary condi-
tions.
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Figure 3.1: Ekman layer

3.2.1. Uniform bounds

As usual, the a priori bounds (used in particular to build weak solutions) are inher-
ited from the energy inequality
1
2

∫
|uε|2dx+

∫ t
0

∫
(νh|∇huε|2 + ε|∂zuε|2)dxds ≤

1
2

∫
|u0|2dx+

∫ t
0

∫
uε,h|z=1τdxhds .

Together with the trace estimate for divergence free vector fields
ε1/2‖uε,h|z=1‖2L2(Dh) ≤ Cε1/2‖uε,h‖L2([0,1]×Dh)‖∂zuε,h‖L2([0,1]×Dh) ,

it leads to the estimate
1
2

∫
|uε|2dx+

∫ t
0

∫
(νh|∇huε|2 + ε

2 |∂zuε|
2)dxds

≤ 1
2

∫
|u0|2dx exp (Ct) + ε−1/4

∫ t
0
‖τ‖L2(Dh) exp (C(t− s)) ds .

In particular, if ‖τ‖L2(Dh) remains finite as ε tends to 0, establishing uniform
bounds on (uε) requires to consider a modulated energy inequality which controls
typically uε − w̃ε where w̃ε = wΣ

ε + δwΣ
ε is the boundary layer term associated to

the surface forcing τ and defined in the previous section.
Setting vε = uε − w̃ε, we get the incompressibility relation

∇ · vε = ∇ · uε −∇ · (wΣ
ε + δwΣ

ε ) = 0,
the identity

∂tvε+(uε · ∇)vε + ω

ε
v⊥ε +∇pε − νh∆hvε − ε∂zzvε

s = −∂tw̃ε − (vε + w̃ε) · ∇w̃ε + νh∆w̃ε + ε∂zzδw
Σ
ε −

ω

ε
δwΣ,⊥
ε
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where the red term accounts for the Ekman pumping, and the boundary conditions

vε,3|Σ = vε,3|B = 0,
vε,h|B = 0 provided that P ′(0) = P ′(1) = 0 ,

ε∂zvε,h|Σ = τ choosing P such that P ′′(0) = P ′′(1) = 0 .

The energy inequality for vε then states

1
2‖vε(t)‖

2
L2 +

∫ t
0

(
ν‖∇hvε(s)‖2L2 + ε‖∂zvε(s)‖2L2

)
ds

≤ 1
2‖vε(0)‖2L2 +

∫ t
0
‖vε(s)‖L2‖ω

ε
δw⊥ε (s)‖L2ds

+
∫ t

0

∫
|(vε + w̃ε) · ∇w̃ε||vε|(s, x)dxds+ o(1)

Note that the blue term above requires a careful treatment involving precised trace
estimate. We skip here the arguments providing the suitable trilinear estimates and
refer to the convergence proof for very similar computations.

Provided that τ is smooth with respect to t and xh, we get uniform a priori bounds
on vε by Gronwall’s lemma :

1
2‖vε(t)‖

2
L2 +

∫ t
0

(
ν‖∇hvε(s)‖2L2 + ε‖∂zvε(s)‖2L2

)
ds ≤ C(t) . (3.2)

3.2.2. Weak formulation of the Navier-Stokes equations with boundary
conditions

The uniform a priori bounds coming from the previous energy estimate give (up to
extraction of a subsequence){

uε ⇀ ū weakly in L2([0, T ]×D),
ū ∈ KerL⇔ ū = (ūh(xh), 0) with ∇h · ūh = 0 .

Our starting point to study the fast rotation limit is then the weak form of
the Navier-Stokes-Coriolis equations, and more precisely of their two-dimensional
projection : ∀ϕh ∈ C∞c (R+×ω) such that ∇h · ϕh = 0,∫

u0ϕhdx+
∫ t

0

∫
(uε,h∂tϕh + uε,h ⊗ uε,h : ∇hϕh − νh∇huε,h · ∇hϕh)dxds

= ε
∫ t

0

∫
(∂zuε,h)|z=0ϕhdxhds−

∫ t
0

∫
τϕhdxhds

(3.3)

Note that the trace (∂zuε,h)|z=0 does not make sense in general for vector fields
uε ∈ L∞t (L2

x)∩L2
t (Ḣ1

x). It is actually defined (in a very weak sense) by the equation.

In order to relate the trace (∂zuε,h)|z=0 both to the field uε and to the trace uε,h|z=0,
we will use the more general weak form of the Navier-Stokes-Coriolis equations with
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suitable smooth test functions ψ such that ∇ · ψ = 0 and ψ3|B = ψ3|Σ = 0 :∫
u0ψdx+

∫ t
0

∫
(uε · ∂tψ + uε ⊗ uε : ∇ψ − νh∇huε · ∇hψ)dxds

+
∫ t

0

∫
uε · (

1
ε
ω ∧ ψ + ε∂zzψ)dxds

= ε
∫ t

0

∫
(∂zuε,h)|z=0ψh|z=0dxhds−

∫ t
0

∫
τψh|z=1dxhds

+ ε
∫ t

0

∫
uε,h|z=1∂zψh|z=1dxhds

3.2.3. The trace equation at z = 0

To capture the effects of the boundary condition as ε tends to 0, we use as test
functions a family of solutions to the boundary layer problem, and more precisely to
the adjoint boundary layer problem (obtained by changing ω in −ω, or equivalently
i in −i), with ϕh as Dirichlet boundary data. That process is very similar to the
two-scale analysis tools introduced by N’Guetseng and Allaire.

By construction of wε and δwε, we expect all the terms in the weak formulation
of the Navier-Stokes-Coriolis equations to be small except

ε
∫ t

0

∫
(∂zuε,h)|z=0wε,h|z=0dxhds and

∫ t
0

∫
uε ·

(1
ε
ω ∧ δwε,h

)
dxds .

We should then identify both limits. As wh|z=0 may be any smooth function of xh
and t, this process should allow to take limits in the boundary layer term arising in
the mean motion equation

ε
∫ t

0

∫
(∂zuε,h)|z=0wε,h|z=0dxhds→ −

√
ω

2

∫ t
0

∫
ūhϕhdxds−

∫ t
0

∫
τϕhdxhds . (3.4)

Let us now check that we are indeed able to justify the previous asymptotics.
Taking limits in linear terms is rather straightforward∫

u0w̃εdx+
∫ t

0

∫
uε ·

(
∂tw̃ε + 1

ε
ωδw⊥ε + ε∂zzδwε + νh∆hw̃ε

)
dxds

∼
∫ t

0

∫
uε ·

1
ε

(
ωδw⊥ε

)
dxds ∼ −

∫ t
0

∫
ωūh · ∇⊥h∆−1

h w3|Bdxds

∼
∫ t

0

∫ √
2ωuh · ϕhdxds

since the L2([0, 1], Hs(Dh)) norm of w̃ε and the Hs([0, 1]×Dh) norm of δwε converge
to 0 in L∞(R+) as ε→ 0 (for any fixed s ≥ 0).

Dealing with non linear terms is much more complicated. We have∫ t
0

∫
uε ⊗ uε : ∇w̃εdxds =

∫ t
0

∫
u2
ε,3∂zwε,3dxds+

∫ t
0

∫
uε,h ⊗ uε,h : ∇hw̃ε,hdxds

+
∫ t

0

∫
uε,3uε,h · ∂zw̃ε,hdxds+

∫ t
0

∫
uε,3(uε,h · ∇h)w̃ε,3dxds

Because of the anisotropic viscosity and the incompressibility constraint, we have
some uniform L2 estimate on ∇huε and ∂zuε,3 = −∇h · uε,h, but not on the vertical
derivative of the horizontal velocity ∂zuε,h. In particular, the blue term above is the
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most difficult one to handle : we will therefore concentrate on that term, and admit
other convergences which can be proved by similar or easier arguments.

The main idea is to obtain a refined trace estimate on uε using the Dirichlet
condition on B. We have obviously

uε(z) =
∫ z

0
∂zu(z′)dz′

so that
‖uε(z)‖L2(Dh) ≤ z1/2‖∂zuε‖L2([0,1]×Dh) .

We then deduce∣∣∣∣∫ t
0

∫
uε,3uε,h · ∂zw̃ε,hdxds

∣∣∣∣ ≤ ∫ t
0

∫ 1

0
‖uε,3(z)‖L2(Dh)‖uε,h‖L2(Dh)‖∂zw̃ε,h‖L∞(Dh)dzds

≤ Cε−1/2
∫ 1

0
z

1
ε

exp
(
−
√
ω

2
z

ε

)
dz ≤ Cε1/2

Gathering all results together, we obtain the expected convergence (3.4) for the
boundary term.

3.2.4. The asymptotic motion

The previous study allows to take limits in the boundary term arising in (3.3). In
particular, it shows that the influence of the fluid-structure interaction at the bottom
on the mean motion, referred to as Ekman pumping, is some kind of dissipation,
very similar to friction.

It remains then to describe the asymptotic behaviour of the nonlinear terms, i.e.
of the wave coupling∫ t

0

∫
uε,h ⊗ uε,h : ∇hϕhdxds =

∫ t
0

∫
ūε,h ⊗ ūε,h : ∇hϕhdxds+

∫ t
0

∫
ũε,h ⊗ ũε,h : ∇hϕhdxds

+
∫ t

0

∫
(ũε,h ⊗ ūε,h + ūε,h ⊗ ũε,h) : ∇hϕhdxds

where ūh =
∫ 1

0 uh(xh, z)dz is the projection of u on the kernel of L, and ũ = u− ū.
As in the previous chapter, one can prove some regularity on the mean motion

(both with respect to x and t)

ūε,h → ūh strongly in L2([0, T ]×D),
ũε,h ⇀ 0 weakly in L2([0, T ]×D),

which is enough to take limits in all terms except the blue one.
We then need some compensated compactness argument to prove that∫ t

0

∫
ũε,h ⊗ ũε,h : ∇hϕhdxds→ 0

in the sense of distributions. Note that there is an additional difficulty to handle
that term due to the lack of regularity of ũε with respect to z

‖∂zuε,h‖L2([0,1]×Dh) = O(ε−1/2), ‖∂zuε,3‖L2([0,1]×Dh) = O(1) .
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We finally obtain the following damped 2D Navier-Stokes equations :∫
u0ϕhdx+

∫ t
0

∫
(ūh∂tϕh + ūh ⊗ ūh : ∇hϕh − νh∇hūh · ∇hϕh)dxds√

ω

2

∫ t
0

∫
ūhϕhdxds−

∫ t
0

∫
τϕhdxhds .

Up to minor technical difficulties, two-scale analysis is therefore a rather simple
method to investigate the influence of boundaries on the mean motion (provided
that the forcing has no fast oscillations).

Note that “boundary test functions" are used differently at the surface (Navier
condition), and at the bottom (Dirichlet condition).

3.3. Oscillating boundary layer terms and strong convergence
In order to describe the oscillating component of the motion, we can extend the
energy method presented in the previous chapter.

Note that to each wave (i.e. to each eigenmode of the singular perturbation) is
associated a bottom boundary layer - via the Dirichlet condition.

Describing the slow dynamics requires then a careful study of the boundary op-
erator.

3.3.1. The energy method

Stability results established in the previous chapter can be extended in presence of
boundaries without any difficulty (see for instance the computation of the modulated
energy used to get the uniform a priori estimates (3.2)).

Approximate solutions are however much more technical to obtain. They are
indeed expected to decompose as the sum of

- macroscopic waves
- boundary layer terms corresponding to each wave
- boundary layer terms associated to the surface forcing
- many correctors to ensure that both source terms and boundary terms converge

to 0 in appropriate norms.
All the envelope equations are thus expected to involve Ekman pumping terms,

which increases the possible couplings.
Boundary layer terms allow to transfer a part of the energy via Ekman pump-

ing. Nevertheless they do not provide any approximation of the boundary profiles
since they have negligible L2-norms. In that respect, strong convergence results are
by no mean better than weak convergence results.

3.3.2. Anomalous boundary layers : a systematic approach

In order to match the horizontal boundary conditions, it is natural to seek the
boundary term as a sum of oscillating modes, rapidly decaying in z. Our goal in this
paragraph is to characterize these modes, starting from the following Ansatz

w(k, µ)eikh·xhei tεµe−λZ with Z = z

ε
or 1− Z

ε
.
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Plugging this Ansatz in the boundary operator ε∂t + P(ω ∧ )̇ − ενh∆h − ε2∂zz
where P denotes the Leray projection, we get

Aλ(k, µ)wh(k, µ) ≡

iµ− λ2 + ενhk
2
h − ε

2ωk1k2
λ2−ε2k2

h
−ω + ε2ωk2

1
λ2−ε2k2

h

ω − ε2ωk2
2

λ2−ε2k2
h

iµ− λ2 + ενhk
2
h + ε2ωk1k2

λ2−ε2k2
h

wh(k, µ) = 0 ,

which expresses the balance between the forcing, the viscosity, the Coriolis force and
the pressure.

We have then to determine the kernel of Aλ(k, µ), and more precisely the values
of λ (with non negative real part) for which this kernel is not reduced to {0}. We
have then to distinguish between two cases.

In the hyperbolic case, that is if |µ| 6= ω(
iµ −ω
ω iµ

)
is hyperbolic

in the sense of dynamical systems : eigenvalues have non zero real parts.
Such a property is stable by small perturbation. Boundary layer terms are then

obtained as previously by solving the inviscid pressureless equations :

i
µ

ε
wh + 1

ε
ωw⊥h − ε∂zzwh = 0

ε∂zw3 = −ε∇h · wh

In the degenerate case, that is if |µ| = ω,(
iµ −ω
ω iµ

)
admits 0 as an eigenvalue,

but this property is very sensitive to perturbations.
- If kh 6= 0, Aλ(µ, kh) admits actually a non degenerate eigenvalue λ2 ∼ −2iµ,

and another small but non zero eigenvalue λ2 = O(ε). The solution to the boundary
problem associated to this second eigenvalue is therefore exponentially decaying,
but with a decay rate which is anomalously small : the size of the boundary layer is
of order ε1/2 instead of ε.

- If kh = 0, the eigenvalues of Aλ(µ, kh) are λ2 = −2iµ and 0. In other words, reso-
nant wind forcing generates some destabilization process. The precise liear equation
governing that process is ∂t(whe

−i t
ε
µ)− ε∂zz(whe−i

t
ε
µ) = 0

wh|z=0 = 0, ε∂z(whe−i
t
ε
µ)|z=1 = τe−i

t
ε
µ

which is nothing else than a heat equation. This implies in particular that, as long
as we only consider linear evolution, for finite times the boundary effect remains
localized in a thin layer, the size of which depends on εt.

Multiscale analysis fails for long times.
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4. Rossby waves and oceanic eddies

In the previous chapters, we have explained systematic methods to investigate the
asymptotic behaviour of singular perturbation problems, when the spectral decom-
position of the singular perturbation is known. Classical linear algebra provides
such a spectral decomposition for any Fourier multiplier, that is for any singular
perturbation with constant coefficients.

In this last chapter, we intend to extend the previous results to the physically more
relevant case when the singular perturbation also depends on spatial variables. The
key point will be the fact that this dependence holds on larger space scales than the
wave oscillations.

4.1. Mathematical models for oceanic eddies
As previously, we will specify a (simple) physical situationin which this more elab-
orate tool is needed. More precisely, our goal here is to get a simple mathematical
model to explain the formation of oceanic eddies, as a combination of Rossby waves
and zonal flow.

Figure 4.1: West Atlantic eddies

4.1.1. About oceanic eddies, their formation and their propagation

Oceanic eddies are time-persistent structures of vortex-type the horizontal
extent of which is typically 10 to 100 km, which persist over decades.

The mechanism of formation of oceanic eddies is usually described as follows :
the wind forcing produces waves with a speed comparable to the bulk velocity, and
the convection by zonal flow stops the propagation, creating ventilation zones which
are not influenced by external motions.

Orders of magnitude show actualy that among waves propagated under hydro-
static pressure and Coriolis force, only Rossby waves can generate such structures.
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Figure 4.2: Classification of waves

4.1.2. Mathematical description of oceanic motions

As previously, we consider the ocean as an incompressible inviscid fluid with free
surface, and further assume that the density of the fluid is homogeneous,. Given the
horizontal scale to be considered (l0 ∼ 1000km), the aspect ratio is very small and
one can use some shallow-water approximation : the pressure law is then given
by the hydrostatic law, and the motion - essentially horizontal - does not depend
on the vertical coordinate.

The evolution of the water height h and velocity v is then governed by the Saint-
Venant equations with Coriolis force

∂th+∇ · (hv) = 0
∂t(hv) +∇ · (hv ⊗ v) + ω(hv)⊥ + gh∇h = τ

Macroscopic currents, in particular zonal flows, are stationary solutions. They
satisfy the Sverdrup relation

∇ · ū = 0, ∇ · (ū⊗ ū) + ωū⊥ = τ/h ,
where h is constant, and τ accounts for both the Ekman pumping (related to averages
of the wind forcing); and the effects of temperature gradients and topography.

For the sake of simplicity, we will only consider shear flows ū(x) = (ū1(x2), 0).

We will compute the response to wind fluctuations assuming that it prescribes
the initial data. The pulse at time 0 is a superposition of local waves with very small
wave lengths.

4.1.3. Orders of magnitude and scaling

In order to study the propagation of surface waves, we introduce the depth variation
ρ = δh/h with

h ∼ 1km, δh ∼ 1m.

In order to exhibit structures like eddies, we have further to choose appropriate
observation time and length scales

to ∼ 100 days, lo ∼ 1000km, vo ∼ 0, 1ms−1 .

to be compared to the typical velocity of macroscopic currents
vc ∼ 10ms−1 .

I–38



The nondimensional equations then state
ε∂tρ+ εū · ∇ρ+∇ · u = −ε2∇ · (ρu)
ε∂tu+ εū · ∇u+ 1

ε
ωu⊥ +∇ρ = −εu · ∇ū− ε2u · ∇u

(ρ, u)|t=0 =
∑

(ρj(x), uj(x)) exp
(
iSj(x)
ε

) (4.1)

Given the typical wave numbers in the initial data, we expect spatial derivatives
to be of order O(1/ε). The singular perturbation here is then given by 0 ε∂1 ε∂2

ε∂1 0 −ω(x2)
ε∂2 ω(x2) 0

 .

As we are interested in describing the dynamics for very long times (referred to
as diffractive times in geometrical optics), we will have to also consider the linear
convection (εū · ε∇).

4.2. Mathematical study of wave propagation
Because of the scaling of the nonlinear terms, we expect the dynamics to be domi-
nated by the linear propagation. We will thus focus on the linear equation

ε2∂t

(
ρ
u

)
+ A(x, εDx)

(
ρ
u

)
= 0 (4.2)

with

A(x, εDx) =

 (εū · ε∇) ε∂1 ε∂2
ε∂1 (εū · ε∇) −ω(x2) + ε2ū′(x2)
ε∂2 ω(x2) (εū · ε∇)

 .

The comparison between linear and nonlinear solutions is postponed to the final
section of the chapter. Note that, with the tools we dispose of, we are not able -
from the mathematical point of view- to consider stronger couplings.

4.2.1. A simple case with explicit spectral resolution

Within the betaplane approximation ω(x) = βx2, and in the absence of con-
vection ū = 0, the linear propagator states

A0(x, εDx) =

 0 ε∂1 ε∂2
ε∂1 0 −βx2
ε∂2 βx2 0


Introducing a suitable combination of ρ and u shows that A0 can be expressed in

terms of ε∂1 and of the creation and annihilation operators ε∂2 ± βx2. Therefore it
can be diagonalized without any error term using a Fourier basis (exp( i

ε
x1ξ1)) in x1

and a Hermite basis (ψεn(x2)) in x2.

Proposition 4.1. [3.1] Let τ(n, ξ1, j) (j = 0,±) be the three roots of
τ 3 − (ξ2

1 + βε(2n+ 1))τ + εβξ1 = 0, n ∈ N, ξ1 ∈ R (4.3)
Then there exists a complete family (Ψεn,ξ1,j)n,ξ1,j of L2 such that

A0(x, εDx)Ψεn,ξ1,j = iτ(n, ξ1, j)Ψεn,ξ1,j
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The three scalar propagators are then obtained from the symbolic equation
(4.3) : βε(2n+1) is indeed the quantization of the harmonic oscillator −ε2∂2

2 +β2x2
2.

We have two Poincaré modes
τ± ∼ ±

√
ξ2

1 + βε(2n+ 1) ,
and one Rossby mode

τ0 ∼
εβξ1

ξ2
1 + βε(2n+ 1) .

The propagation of energy associated to Rossby waves holds in diffractive times,
i.e. on a time scale for which Poincaré waves do not carry locally any more energy,
along the characteristics of τ̃0 = τ0/ε :

dXi
dt

= ∂τ̃0

∂ξi
,

dΞi
dt

= −∂τ̃0

∂xi

These characteristics are periodic in x2, and linear in x1 except for

ξ1 ∼ ±
√
β2x2

2 + ξ2
2

in which case they are trapped (fixed points).

Note that in this particular case, one can handle even strong nonlinearities, typi-
cally

ε∂tρ+∇ · u = −ε∇ · (ρu)

ε∂tu+ β

ε
x2u

⊥ +∇ρ = −εu · ∇u
Actually nonlinear terms govern the amplitudes according to some envelope equa-
tions : using suitable functional spaces (defined with the harmonic oscillator) and a
precise characterization of possible resonances, one can indeed prove that the infinite
system of ODEs is generically well-posed [3.1].

4.2.2. Tools for asymptotic analysis

For general zonal current ū and Coriolis parameter ω, there is generally no explicit
spectral decomposition for the linear propagator

A(x, εDx) =

 (εū · ε∇) ε∂1 ε∂2
ε∂1 (εū · ε∇) −ω(x2) + ε2ū′(x2)
ε∂2 ω(x2) (εū · ε∇)


Since the Rossby and Poincaré part are expected to exhibit very different be-

haviours, we have even no theoretical result giving a qualitative description of the
spectrum. (Even in the particular case considered in the previous paragraph, i.e.
when ū = 0 and ω(x2) = βx2, A is neither compact, nor with compact resolvent.

Nevertheless, as ε → 0, semiclassical analysis provides good approximations
of the dynamics. In that framework, (pseudo-)differential calculus is replaced by
symbolic computations in the phase space

(x2, ε∂2)→ (x2, ξ2) .
Commutators are indeed of higher order in ε :

[x2, ε∂2] = −ε .
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We can then proceed by successive approximations, computing first of all the prin-
cipal symbols, then subsymbols at any order recursively.

4.2.3. Main difficulties

In the present situation, additional difficulties come from the matricial struc-
ture of the propagator A, and from the difference of scaling between Rossby
and Poincaré modes. Note that because of this last feature, polarization cannot be
obtained directly by the theory of normal forms.

Our strategy here is to come down to a scalar equation (of higher order) and
then to compute the three elementary propagators using a kind of implicit function
theorem.

4.3. Semiclassical analysis of the linear propagation
For the sake of simplicity, we will not detail here all the technical steps of the study.
We will just mention the main difficulties and refer to [3.1] for completely rigorous
arguments.

4.3.1. Polarization of Poincaré and Rossby waves

We first compute the “characteristic polynomial". Substitutions and linear combi-
nations leads for instance to the subsystem(

(εū1ξ1 − τ) ξ1
ξ1 (εū1ξ1 − τ)

)(
ρ
u1

)
=
(

iε∂2u2
−iω(x2)u2

)
and to the scalar equation

ε∂2

(
iωξ1u2 + i(εū1ξ1 − τ)ε∂2u2

(εū1ξ1 − τ)2 − ξ2
1

)
− ω

(
iξ1ε∂2u2 + (εū1ξ1 − τ)iωu2

(εū1ξ1 − τ)2 − ξ2
1

)
+i(εū1ξ1 − τ)u2 = 0

Note that we have to deal with another subsystem when the previous one is not
invertible, i.e. when τ ∼ ξ1 at principal order. But the final form of the characteristic
polynomial is of course independent of the way of computing the determinant. Such a
method has to be compared to the usual “pivot de Gauss" in classical linear algebra,
the only difference being the fact that the field is non commutative!

Using pseudo-differential functional calculus, we get the three scalar propaga-
tors T±, T0

• by solving the symbolic equation
(τ − εū1ξ1)3 − (τ − εū1ξ1)(ξ2

2 + ξ2
1 + ω2(x2)) + εω′(x2)ξ1 = O(ε2) , (4.4)

• defining some associate operator by any quantization,

• then by computing recursively the expansions of the symbol.

We further prove that any initial condition can be decomposed microlocally on
the eigenmodes of the scalar propagators T±, T0.
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Proposition 4.2. [3.1] Let Uε,0 be εmicrolocalized in a compact set C satisfying
C ∩ {ξ1 = 0} = ∅ and C ∩ Σ = ∅,

where Σ is a codimension 1 subset of R4 consisting of pathological trajectories.
For any parameter ε > 0, denote by Vε the associate solution to (4.2).
Then for all t ≥ 0 one can write Vε(t) as the sum of a “Rossby" vector field and

a “Poincaré" vector field:
Vε(t) = V Rε (t) + V Pε (t)

where V Rε evolves according to some scalar operator T0 of principal symbol

τ0 = εū(x2)ξ1 + εω′(x2)ξ1

ξ2
1 + ξ2

2 + ω2(x2)
while V Pε is the sum of two Poincaré waves propagated by T± of principal symbols

iτ± = ±i
√
ξ2

1 + ξ2
2 + ω2(x2) .

Note that the subsymbols depend strongly on the choice of quantization, which
is not the case of principal symbols. Furthermore, in that approach, the Rossby
Hamiltonian apperas as the principal symbol associated to the root of order ε, and
not as a subsymbol. In particular, this implies that Rossby modes are intrinsic to
the physical system, and tell us something about the propagation of a part of the
energy.

Another important remark is that T± and T0 are defined up to a proper microlo-
calization. The proof of Proposition 4.2 thus requires additional informations about
the evolution of the microlocalization under the dynamics. There is therefore some
bootstrap argument involving the following results about the propagation of energy
by Poincaré and Rossby modes.

4.3.2. Dispersion of Poincaré waves

We propose to establish the dispersion of Poincaré waves using some spectral ar-
gument which relies on rather explicit computations. Here the assumption that
coefficients depend only on x2 is crucial.

If the initial data is microlocalized away from ξ2
2 + ω2(x2) + ξ2

1 = 0,
we can find pseudo-differential operators H2±(ξ1) of principal symbols ξ2

2 + ω2(x2)
such that

T̂±(ξ1) = ±
√
H2±(ξ1) + ξ2

1 .

If H2± has no hyperbolic fixed point, the Bohr-Sommerfeld quantization con-
dition (with subsymbol) gives that the eigenvalues of H2±(ξ1) are of the form:

λk±(ξ1) = λ±

(
(k + 1

2)ε
)

+ εµk±(ξ1) +O(ε2),

where λ± is the energy ξ2
2 + ω2(x2) defined on action variable, and εµk±(ξ1) ∈ C∞ is

the correction due to the subsymbol.

The Poincaré component is therefore a superposition of elementary waves, indexed
by (q, p) (coherent state in x1) and k (quantization in x2)∫

exp
(
i(x1 − q)ξ1 − (ξ1 − p)2

)
exp

±i(λk±(ξ1) + ξ2
1) 1

2 t

ε

Ψεk,ξ1,±(x2)dξ1.
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Such integrals are O(ε∞) except if there exists a stationary point for the phase ,
given by the conditions:

ξ1 = p and ε(x1 − q)±
(2ξ1 + ε∂ξ1µ

k
±)

2
√
λk± + ξ2

1

t = 0.

We finally conclude that for diffractive times t ∼ 1, as there is no critical point
for x1 in compact sets, the energy carried by Poincaré waves exit from any compact
set.

Proposition 4.3. [3.1] Suppose that ω2 has only one non degenerate critical value
(meaning that (ω2)′ only vanishes at one point, where (ω2)′′ does not vanish). Then
for any compact set K in R2, one has

∀t > 0, ‖V Pε (t)‖L2(K) = O(ε∞).

Another method would be to use some Mourre estimate. This would require to
check that the bootstrap argument concerning the microlocalization still holds true
and to get a uniform bound from below on [x1,T±]. The positive point is that some
assumptions on ω should be relaxed in that way.

4.3.3. Trapping of Rossby waves

As the Rossby Hamiltonian τ0 is smaller by one order of magnitude, the propagation
on diffractive times is nothing else than the semiclassical propagation for the rescaled
Hamiltonian

τ̃0(x, ξ) = ū(x2)ξ1 + ω′(x2)ξ1

ξ2
1 + ξ2

2 + ω2(x2)
,

that is the transport along the bicharacteristics
dxt1
dt

= ∂τ̃0

∂ξ1
(xt, ξt), dxt2

dt
= ∂τ̃0

∂ξ2
(xt, ξt),

dξt1
dt

= − ∂τ̃0

∂x1
(xt, ξt), dξt2

dt
= − ∂τ̃0

∂x2
(xt, ξt) .

In particular, trajectories are submanifolds of the energy surfaces τ̃0(x, ξ) = τ , i.e.

ξ2
2 = ω′(x2)ξ1

τ − ū(x2)ξ1
− ξ2

1 − ω2(x2) ≡ Vτ (x2).

The motion along x2 can be of two types depending on the possible existence of
a singularity of Vτ between two roots of this same function. More precisely define

xmin = max{x2 ≤ x0
2 / Vτ (x2) = 0 or τ − ū(x2)ξ1 = 0}

xmin = min{x2 ≥ x0
2 / Vτ (x2) = 0 or τ − ū(x2)ξ1 = 0} .

Then, generically,

• if xmin and xmax are turning points (zeros of Vτ ), the trajectory is periodic
(see the first picture in Fig. 4.3);

• if xmin or xmax is a singular point (singularity of Vτ ), the trajectory is called
asymptotic (see the second picture in Fig. 4.3).
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Figure 4.3: Trajectories of the Rossby Hamiltonian

We then obtain qualitative informations on the energy propagation by integrating
d

dt
xt1 = ū(xt2) + ω′(xt2)(−(ξ1)2 + (ξt2)2 + ω2(xt2))

(ξ1)2 + (ξt2)2 + ω2(xt2))2

Performing a change of variable, we can express the trapping condition in terms
of the initial parameters (ξ1, x

0
2, ξ

0
2).

Proposition 4.4. [3.1] There is a submanifold Λ of R4, invariant under translations
in the x1−direction, such that the following property holds :

∃K ⊂⊂ R2, ∀t ≥ 0, ‖V Rε (t)‖L2(K) 6= O(ε∞).
is equivalent to

the ε-frequency set of V Rε (0) intersects Λ.

If ω(x2) = βx2 and ū is not identically positive, there is a submanifold of codimen-
sion 1 of initial data giving rise to trapped Rossby waves, spatially concentrated
on lines x2 = xs

X2(t)→ xs; X1(t)→ x∞1
and strongly oscillating with respect to x2

|Ξ2(t)| → ∞.
In particular, the associated vorticity concentrates on zero measure sets. These fea-
tures are reminiscent of oceanic eddies, even though not completely realistic : the
translation invariance with respect to x1 (both in the zonal flow ū1 ≡ ū1(x2) and as
regards the domain D)) prevents from localizing eddies in the longitudinal direction.

4.4. Case of a weak coupling
We would like now to transcribe the previous results about the linear propagation
(4.2) on the nonlinear system (4.1). Weak compactness methods are obviously not
suitable to the situation insofar as we are interested in the propagation of waves
(oscillations) and in the formation of eddies (vorticity concentrations). Filtering
methods introduced in the second chapter can neither be applied since precise in-
formations on the spectral decomposition are missing.

We will thus restrict our attention to the case when the nonlinear coupling is weak
enough in order that the linear equation provides a good approximation. Actually
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we will even impose stronger restrictions on the nonlinearity in order to be able to
get a uniform lifespan for the solutions to the scaled Saint-Venant equations. This
restriction is due to the bad L∞ control on multiscaled functions such as WKB
profiles.

4.4.1. A symmetrizable hyperbolic system

Let us first recall that, setting U = ( 2
ε2

(
√

1 + ε2ρ− 1), u), system (SWε) states

ε2∂tU + A(x, εDx)U + ε3 ∑
j=1,2

Sj(U)ε∂jU = 0

where Sj(U) are symmetric matrices.
For such symmetrizable hyperbolic systems, the Cauchy problem is locally well-

posed in Hs for s > d
2 + 1. Here, as ∂2 does not commute with the singular pertur-

bation, the life span depends a priori on ε (no uniform lower bound).

To get uniform regularity estimates and thus a uniform lifespan, one has to define
specific norms :

• suited to the semiclassical framework (in order that the norm of the initial
data is of order O(1));

• having good commutation properties with A(x, εDx) (to be propagated uni-
formly in ε).

4.4.2. Propagation of regularity

The idea is to extend a result of regularity propagation [3.1] which is very specific
to the betaplane approximation, taking advantage of the semiclassical framework,
namely of the fact that commutators are of higher order with respect to ε.

An easy change of variables show that A(x, εDx) is equivalent to the propagator

Ã(x, εDx) =

Define then

Dε ∼

 ε2∂2
2 − ω2 + 2εω′ 0 0

0 ε2∂2
2 − ω2 − 2εω′ 0

0 0 ε2∂2
2 − ω2

 .

Because of the fundamental identity

[ε2∂2
2 − ω2, ε∂2 ± ω] = ±2εω′(ε∂2 ± ω)± ε2ω′′

Dε almost commutes with Ã(x, εDx)

[Dε, Ã(x, εDx)] = O(ε2(Id−Dε)) .

We therefore introduce weighted Sobolev spaces W s1,s2ε using powers of ε∂1 and of
Dε. Using some Gronwall’s inequality, we can then prove that W s1,s2ε -norms of the
solutions to the linear equation (4.2) are uniformly controlled locally in time.
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Propagating such estimates under the nonlinear dynamics (4.1) requires to further
establish product laws in the weighted spaces W s1,s2ε . Note that Dε controls two ε-
derivatives with respect to x2. Moreover, as the principal symbol of Dε is scalar, the
symmetry of the higher order nonlinear term is conserved.

We therefore get the following trilinear estimate∣∣∣< U |Sj(U)ε∂jU >W 3,2
ε

∣∣∣ ≤ ‖εDxU‖L∞‖U‖2W 3,2
ε
.

Note that, because of the semiclassical scaling, we lose one power of ε in the em-
bedding

‖εDxU‖L∞ ≤
1
ε
‖U‖W 3,2

ε
,

which is obviously not optimal considering for instance oscillating functions such as
x 7→ exp( i

ε
k · x).

Gathering all the previous properties leads to a precised energy estimate in W 3,2
ε .

The same arguments as in the theorem by Fujita and Kato give then the existence
of a solution Uε on a uniform time interval [0, T ∗[.

4.4.3. Linear approximation

Within the scalings considered to get solutions to the nonlinear equations on a
uniform time interval, we expect the coupling to be asymptotically negligible. What
can be proved is the following. Denote by Uηε the solutions of the wekly nonlinear
system

ε2∂tU + A(x, εDx)U + ε3+ηSj(U)ε∂jU = 0, η ≥ 0 .
and by Vε the solution to the linear system.

• If η > 0, for any T > 0

‖Uηε − Vε‖L2 → 0 on [0, T ] as ε→ 0.

In particular, the L2-norm of Uηε on any given compact remains bounded from
below if there are trapped Rossby waves, i.e. if the initial wavefront set does
intersect Λ.

• If η = 0 (which is the scaling introduced at the beginning the chapter) and if
we further assume that the solution Vε to the linear system (4.2) satisfies

‖εVε‖L∞ → 0 as ε→ 0, (4.5)

then
‖U0
ε − Vε‖L2 → 0 on [0, T ∗[ as ε→ 0.

In particular, for any t ∈]0, T ∗[, the energy of U0
ε on any compact is carried

only by Rossby waves. Note that we hope to be able to prove the estimate
(4.5)
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thermohaline circulation, 6
tides, 5
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