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Mathematics of Invisibility

Allan Greenleaf Yaroslav Kurylev Matti Lassas Gunther Uhlmann

Abstract

We will describe recent some of the recent theoretical progress on making
objects invisible to electromagnetic waves based on singular transformations.

1. Introduction

The lecture at the Evian meeting was given by G.U. and is a report on [GLU2],
[GLU3|, [GKLU1].

There have recently been many studies [GKLU1, GKLU2, GKLU3, MN, Le, PSS1,
MBW, W] on the possibility, both theoretical and practical, of a region or object
being shielded, or cloaked from detection via electromagnetic waves. The interest in
cloaking was raised in particular in 2006 when it was realized that practical cloaking
constructions are possible using so-called metamaterials which allow fairly arbitrary
specification of electromagnetic material parameters. At the present moment such
materials have been implemented at microwave frequencies [Sc|. On the practical
limitations of cloaking, we note that, with current technology, above microwave fre-
quencies the required metamaterials are difficult to fabricate and assemble, although
research is presently progressing on metamaterial engineering at optical frequencies
[Sh]. Furthermore, metamaterials are inherently prone to dispersion, so that realistic
cloaking must currently be considered as occurring at a single wavelength, or very
narrow range of wavelengths.

The theoretical considerations related to cloaking were introduced already in 2003,
before the appearance of practical possibilities for cloaking. Indeed, the cloaking
constructions in the zero frequency case, i.e., for electrostatics, were introduced as
counterexamples in the study of inverse problems. In [GLU2, GLU3] it was shown
that passive objects can be coated with a layer of material with a degenerate con-
ductivity which makes the object undetectable by electrical impedance tomogra-
phy (EIT), that is, in the electrostatic measurements. This gave counterexamples
for uniqueness in the Calderén inverse problem for the conductivity equation. The
counterexamples were motivated by consideration of certain degenerating families
of Riemannian metrics, which in the limit correspond to singular conductivities,
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i.e., that are not bounded below or above. A related example of a complete but
noncompact two-dimensional Riemannian manifold with boundary having the same
Dirichlet-to-Neumann map as a compact one was given in [LTU].

Before discussing the recent results on cloaking and counterexamples in inverse prob-
lems, let us briefly discuss the positive results for inverse problems. The paradigm
problem is Calderén’s inverse problem, which is the question of whether an unknown
conductivity distribution inside a domain in R”, modelling for example the human
thorax, can be determined from voltage and current measurements made on the
boundary. For isotropic conductivities this problem can be mathematically formu-
lated as follows: Let 2 be the measurement domain, and denote by o a bounded and
strictly positive function describing the conductivity in €2. In 2 the voltage potential
u satisfies the equation

V-oVu=0. (1)

To uniquely fix the solution w it is enough to give its value, f, on the boundary.
In the idealized case, one measures for all voltage distributions u|sq = f on the
boundary the corresponding current flux, v- cVu, through the boundary, where v is
the exterior unit normal to 0). Mathematically this amounts to the knowledge of the
Dirichlet—Neumann map A corresponding to o, i.e., the map taking the Dirichlet
boundary values of the solution to (1) to the corresponding Neumann boundary
values,

A ulpq — v-oVu|ag.

Calderén’s inverse problem is then to reconstruct o from A. The problem was origi-
nally proposed by Calderén [C] in 1980. Sylvester and Uhlmann [SyU] proved unique
identifiability of the conductivity in dimensions three and higher for isotropic con-
ductivities which are C'*°—smooth In three dimensions or higher unique identifiability
of the conductivity is known for conductivities with 3/2 derivatives [BT], [PPU]. The
case of conormal conductivities in C'*¢ was considered in [GLU1]. In two dimen-
sions the first global result for C? conductivities is due to Nachman [N]. This was
improved in [BU] to Lipschitz conductivities. Astala and Péivirinta showed in [AP]
that uniqueness holds also for general isotropic conductivities merely in L.

The Calderén problem with an anisotropic, i.e., matrix-valued, conductivity that
is uniformly bounded from above and below has been studied in two dimensions
[S, N, SuU, ALP]| and in three dimensions or higher [LaU, LeU, LTU].

We emphasize that for the above positive results for inverse problems it is assumed
that the eigenvalues of the conductivity are bounded below and above by positive
constants. Thus, a key point in the current works on invisibility that allows one
to avoid the known uniqueness theorems is the lack of positive lower and/or upper
bounds on the eigenvalues of these symmetric tensor fields.

For Maxwell’s equations the inverse problem with a smooth enough isotropic per-

mittivity € and permeability p and the data given at one frequency was solved in
[OPS].
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Let us now return to the recent results on cloaking and the counterexamples for
inverse problems. In 2006, several cloaking constructions were proposed. The con-
structions in [Le] are based on conformal mapping in two dimensions and are jus-
tified via change of variables on the exterior of the cloaked region. At the same
time, [PSS1] proposed a cloaking construction for Maxwell’s equations based on
a singular transformation of the original space, again observing that, outside the
cloaked region, the solutions of the homogeneous Maxwell equations in the origi-
nal space become solutions of the transformed equations. The transformations used
there are the same as used in [GLU2, GLU3]| in the context of Calderén’s inverse
conductivity problem. The paper [PSS2] contained analysis of cloaking on the level
of ray-tracing, full wave numerical simulations were discussed in [CPSSP], and the
cloaking experiment at 8.5Ghz is in [Sc].

The electromagnetic material parameters used in cloaking constructions are degen-
erate and, due to the degeneracy of the equations at the surface of the cloaked region,
it is important to consider rigorously (weak) solutions to Maxwell’s equations on all
of the domain, not just the exterior of the cloaked region. This analysis was carried
out in [GKLU1]. There, various constructions for cloaking from observation are ana-
lyzed on the level of physically meaningful electromagnetic waves, i.e., finite energy
distributional solutions of the equations. In the analysis of the problem, it turns out
that the cloaking structure imposes hidden boundary conditions on such waves at
the surface of the cloak. When these conditions are overdetermined, finite energy
solutions typically do not exist. The time-domain physical interpretation of this was
at first not entirely clear, but it now seems to be intimately related with blow-up of
the fields, which would may compromise the desired cloaking effect [GKLU3]. We
review the results here and give the possible remedies to restore invisibility.

We note that [GLU2, GLU3| gave, in dimensions n > 3, counterexamples to unique-
ness for the inverse conductivity problem. Such counterexamples have now also been
given and studied further in two dimensional case [KSVW, ALP2].

2. Basic constructions

The material parameters of electromagnetism, the electrical permittivity, e(z); mag-
netic permeability, p(x); and the conductivity o(z) can be considered as coordinate
invariant objects. If F': ; — Q,,  y = F(x), is a diffeomorphism between do-

mains in R”, then o(z) = [07%(x)]};_, on Q; pushes forward to (F.o)(y) on Q,
given by
, 1 " QF  OF*
F.o)*(y) = > . : 2

p,q=1 z=F—1(y)

The same transformation rule is valid for permittivity € and permeability p. It was
observed by Luc Tartar (see [KV]) that it follows that if F' is a diffeomorphism of a
domain € fixing 0f2, then the conductivity equations with the conductivities o and
0 := F,o have the same Dirichlet-to-Neumann map, producing infinite-dimensional
families of indistinguishable conductivities. This can already be considered as a weak
form of invisibility, with distinct conductivities being indistinguishable by external
observations; however, nothing has been hidden yet.
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Figure 1: A family of manifolds that develops a singularity when the
width of the neck connecting two parts goes to zero.

On the other hand, a Riemannian metric g = [g;x()]} =, is a covariant symmetric
two-tensor. Remarkably, in dimension three or higher, a material parameter tensor
and a Riemannian metric can be associated with each other by

o = g, or P* = oD, 3)

where [¢7F] = [g;x]™' and |g| = det (g). Using this correspondence, examples of
singular anisotropic conductivities in R™ n > 3, that are indistinguishable from a
constant isotropic conductivity, in that they have the same Dirichlet-to-Neumann
map, are given in [GLU3J. This construction is based on degenerations of Riemann-
ian metrics, whose singular limits can be considered as coming from singular changes
of variables. If one considers Figure 1, where the “neck” of the surface (or a mani-
fold in the higher dimensional cases) is pinched, the manifold contains in the limit
a pocket about which the boundary measurements do not give any information. If
the collapsing of the manifold is done in an appropriate way, in the limit we have a
Riemannian manifold which is indistinguishable from flat surface. This can be con-
sidered as a singular conductivity that appears the same as a constant conductivity
to all boundary measurements.

To consider the above precisely, let B(0, R) C R? be an open ball with center 0
and radius R. We use in the sequel the set N = B(0,2), decomposed to two parts,
N; = B(0,2)\ B(0,1) and Ny = B(0,1). Let 3 = 0N, the the interface (or “cloaking
surface") between N; and Ns.

We use also a “copy” of the ball B(0,2), with the notation M; = B(0,2). Let gjx =

;1 be the Euclidian metric in M; and let v = 1 be the corresponding homogeneous
conductivity. Define a singular transformation

F M\ {0} — Ny, F@):(";' 1)|”’|, 0< |z| <2 (4)
x
The pushforward g = F,g of the metric ¢ in F' is the metric in N; given by
" OFP  OF1
(Eaginly) = > 50 5 @) 9
pg=1 YT z —f-1
z=F~1(y)

We use it to define a singular conductivity

_ [ |g*?g* for x € Ny,
7= { A for z € N, (6)
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in N. Then, denoting by (r,®,0) — (rsinfcos ¢, rsinfsin ¢, r cosf) the spherical
coordinates, we have

2(r —1)%*sinf 0 0
o= 0 2sin 6 0 , l<|z] <2,
0 0  2(sinf)!

This means that in the Cartesian coordinates the conductivity ¢ is given by
G(x) =2(I — P(2)) +2(|z| — 1)*P(x), 1<|z| <2,

where I is the identity matrix and P(x) = |z| 2zx! is the projection to the radial
direction. We note that the anisotropic conductivity o is singular on X in the sense
that it is not bounded from below by any positive multiple of I. (See [KSVW] for a
similar calculation for n = 2.)

Consider now the Cauchy data of all H'(N)-solutions of the conductivity equation
corresponding to &, that is,

C1(5) = {(ulon,v-6Vulay) : u€ HY(N), V-Vu = 0},
where v is the Fuclidian unit normal vector of ON.

Theorem 2.1. ([GLU3]) The Cauchy data of H'-solutions for all conductivities &
and v on N coincide, that is, C1(5) = C1(y).

This means that all boundary measurements for the homogeneous conductivity v =
1 and the degenerated conductivity ¢ are the same. In the figure below there are
analytically obtained solutions on a disc with metric o

Figure 2: Analytic solutions for the currents

As seen in the figure, no currents appear near the center of the disc, so that if the
conductivity is changed near the center, the measurements on the boundary 0N do
not change.

We note that a similar type of theorem is valid also for a more general class of
solutions. Consider an unbounded quadratic form, A in L*(N),

A=[u,v] :/ oVu-Voudz

N
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defined for u,v € D(A5) = C5°(N). Let A= be the closure of this quadratic form
and say that

V-cVu=0 in N
is satisfied in the finite energy sense if there is ug € H'(N) supported in N; such
that u — ug € D(A;) and
A[u — ug,v] = —/ 7Vuy Vodz, for all v € D(A3).
N

Then Cauchy data set of the finite energy solutions, denoted
Ct(0) = {(ulon, v-dVulgy) : w is finite energy solution of V-5Vu = 0}
coincides with Cy(7y). Using the above more general class of solutions, one can con-
sider the non-zero frequency case,
vV -oVu = \u,

and show that the Cauchy data set of the finite energy solutions to the above
equation coincides with the corresponding Cauchy data set for ~, cf. [GKLU1].

3. Maxwell’s equations

In what follows, we treat Maxwell’s equations in non-conducting media, that is, for
which o = 0. We consider the electric and magnetic fields, £ and H, as differential
1-forms, given in some local coordinates by

E = E;(z)ds’, H = H;(z)dx’.
For 1-form E(x) = Ey(z)dx' + Ey(v)da® + E3(x)dz® we define the push-forward of
E in F| denoted E = F,F, by
E(Z) = E\(Z)d7' + Fy(7)d7® + Es(7)da®
3 3
= ¥ (Z(DF*)?@) Ek(F‘l(f))> d¥’, 7= F(x).
j=1 \k=1
A similar kind of transformation law is valid for 2-forms. We interpret the curl

operator for 1-forms in R?® as being the exterior derivative, d. Maxwell’s equations
then have the form

curl H = —kD + J, cwlFE =1kB

where we consider the D and B fields and the external current J (if present) as
2-forms. The constitutive relations are

D=c¢FE, B=uH,
where the material parameters € and p are linear maps mapping 1-forms to 2-forms.
Let g be a Riemannian metric in  C R3. Using the metric g, we define a specific
permittivity and permeability by setting
et =" = |g|
To introduce the material parameters (x) and fi(x) that make cloaking possible,
we consider the map F given by (4), the Euclidean metric g in M; and g = F.g in

1/2gjk.
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N as before, and define the singular permittivity and permeability by the formula
analogous to (6),

. ~11/2~5k f N
gk _ ik — |g| g or r € Ny,
H { §Ik for z € Ns. (7)
These material parameters are singular on X, requiring that what it means for fields
(E, H) to form a solution to Maxwell’s equations must be defined carefully.

3.1. Definition of solutions of Maxwell equations

Since the material parameters € and ji are again singular, we need to define solutions
carefully.

Definition 3.1. We say that (E, E) is a finite energy solution to Mazwell’s equa-
tions on N,

V x E =ikfi(x)H, V x H=—iké(x)E+J on N, (8)
if E, H are one-forms and D =& F and B := i H two-forms in N with L*(N, dz)-
coefficients satisfying

HEHiz(N,@PdeO(J:)) - /Ngjk Ej Ek d%(l’) < oo, (9)
Vv oavigan = [, 7 H i dVe(a) < oo (10)

where dV} is the standard Buclidean volume, (E, ﬁ) is a classical solution of Mazwell’s
equations on a neighborhood U C N of ON:

V x E =ikfi(x)H, ¥V x H=—ike(x)E+J inU,
and finally,

[ (7 < By B = ikh- fi(w) H) dVa(a) = 0,
/N((v x € H+é (Zkg(:p)f?] - j))dVg(:p) =0
for all&,h € C(Q'N).

Here, C5°(Q2' N) denotes smooth 1-forms on N whose supports do not intersect ON,
and the inner product “-” denotes the Euclidean inner product.

Surprisingly, the finite energy solutions do not exists for generic currents. To consider
this, let M be the disjoint union of a ball M; = B(0,2) and a ball My = B(0,1).
These will correspond to sets N, N1, N, after an appropriate changes of coordinates.
We thus consider a map F': M\ {0} = (M;\ {0}) UMy — N\ X, where F' mapping
M, \ {0} to Ny is the the map defined by formula (4) and F' mapping M, to N» as
the identity map.

Theorem 3.2. ([GKLUL]) Let E' and H be 1-forms with measurable coefficients on
M\ {0} and E and H be 1 -forms with measurable coefficients on N \ ¥ such that
E=F*E, H=F*H. Let J and J be 2-forms with smooth coefficients on M \ {0}
and N \ X, that are supported away from {0} and 3.

Then the following are equivalent:



1. The 1-forms E and H on N satisfy Maxwell’s equations
V x E =ikji(x)H, ¥V x H=—iké(x)E+.J on N, (11)
VvV X E‘aN = f

in the sense of Definition 3.1.

2. The forms E and H satisfy Maxwell’s equations on M,

V X E=iku(x)H, V xH=—ike(x)E+J on M, (12)

vX Eloy, = f
and

V X E=iku(x)H, V x H=—ike(x)E+J on M, (13)
with Cauchy data

v X Eloa, =0 v x H|gp, = 0" (14)

that satisfies b = b" = 0.

Moreover, if E and H solve (12), (13), and (14) with non-zero b or V", then the
fields E and H are not solutions of Maxwell equations on N in the sense of Definition
3.1.

The above theorem can be interpreted by saying that the cloaking of active objects
is difficult, as the idealized model with non-zero currents present within the region
to be cloaked, leads to non-existence of finite energy distributional solutions. We
find two ways of dealing with this difficulty. One is to simply augment the above
coating construction around a ball by adding a perfect electrical conductor (PEC)
lining at %, so that v x E = 0 at the inner surface of X, i.e., when approaching ¥
from N,. Physically, this corresponds to a surface current J along ¥ which shields
the interior of Ny of N and make the object inside the coating material to appear like
a passive object. Other boundary conditions making the problem solvable in some
sense, using a different definition based on self-adjoint extensions of the operators,
have been recently characterized in [W]. Alternatively to considering a boundary
condition on ¥, one can introduce a more elaborate construction, which we refer to
as the double coating. Mathematically, this corresponds to a singular Riemannian
metric which degenerates in the same way as one approaches > from both sides;
physically it would correspond to surrounding both the inner and outer surfaces of
> with appropriately matched metamaterials.
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