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Controllability of nonlinear PDE’s:
Agrachev–Sarychev approach

Armen Shirikyan

Abstract
This short note is devoted to a discussion of a general approach to control-

lability of PDE’s introduced by Agrachev and Sarychev in 2005. We use the
example of a 1D Burgers equation to illustrate the main ideas. It is proved
that the problem in question is controllable in an appropriate sense by a two-
dimensional external force. This result is not new and was proved earlier in
the papers [AS05, AS07] in a more complicated situation of 2D Navier–Stokes
equations.
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1. Introduction
In the paper [AS05], Agrachev and Sarychev introduced a new approach for inves-
tigating the controllability of nonlinear PDE’s. They studied the 2D Navier–Stokes
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Keywords: Burgers equation, approximate controllability, exact controllability in projection, Agrachev–Sarychev
method.
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equations on a torus controlled by a finite-dimensional external force and proved the
properties of approximate controllability and exact controllability in observed pro-
jections. These results were later extended to the Euler and Navier–Stokes systems
on various 2D and 3D manifolds; see [AS06, Rod06, Shi06, Rod07, AS07, Shi07].

The aim of this paper is to illustrate the Agrachev–Sarychev approach on the
simple example of the 1D viscous Burgers equation. We thus consider the problem

∂tu− ν∂2
xu+ u∂xu = h(t, x) + η(t, x), (1.1)

u(0, t) = u(π, t) = 0, (1.2)
u(0, x) = u0(x), (1.3)

where x ∈ (0, π), t > 0, ν > 0 is a parameter, h and u0 are given functions, and η is
a control with range in a finite-dimensional space. We wish to study controllability
properties of problem (1.1), (1.2).

To introduce the necessary concepts and formulate the main result, let us fix a
constant T > 0, a function h ∈ L2(QT ), where QT = (0, T ) × (0, π), and a finite-
dimensional space E ⊂ L2(0, π). To simplify the notation, we shall write

H = L2(0, π), H1
0 = H1

0 (0, π), XT = C(0, T ;H) ∩ L2(0, T ;H1
0 );

see Notation for more details. Let us denote by R : H × L2(0, T ;E) → XT the
operator that takes a pair (u0, η) to the solution u ∈ XT of (1.1) – (1.3) and by
Rt : H × L2(0, T ;E) → H its restriction at time t ∈ [0, T ]. It is well known that
the operators R and Rt are uniformly Lipschitz continuous on bounded subsets of
their domain of definition; see [Lio69, Tay97].

Definition 1.1. We shall say that problem (1.1), (1.2) is controllable at time T by
an E-valued control if for any constant ε > 0, any functions u0, û ∈ H, and any
finite-dimensional subspace F ⊂ H there is a control η ∈ C∞(0, T ;E) such that

‖RT (u0, η)− û‖ < ε, (1.4)
PFRT (u0, η) = PF û, (1.5)

where ‖ · ‖ denotes the L2 norm, and PF : H → H stands for the orthogonal
projection in H onto F .

We shall prove the following result :

Main Theorem. Let E be the vector space spanned by the function sin x and sin(2x).
Then for any ν > 0 and T > 0 problem (1.1), (1.2) is controllable at time T by an
E-valued control.

The rest of the paper is organised as follows. In Section 2, we show that the
controllability in the sense of Definition 1.1 is a consequence of the so-called uniform
approximate controllability. We then outline the proof of the latter property. In
Section 3, we give the details of the proof.

In conclusion, let us emphasise once again that this paper contains no new results,
and the Main Theorem stated above can be regarded as a simple particular case of
more general results established in [AS05, AS07].
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Notation
Let J ⊂ R be an open finite interval and let X be a Banach space. We use the
following functional spaces.
C(J ;X) denotes the space of continuous functions f : J̄ → X, where J̄ is the closure
of J . This space is endowed with the norm supt∈J ‖f(t)‖X .
L2(J ;X) stands for the space of Bochner-measurable Â functions f : J → X such
that

‖f‖L2(J ;X) =
(∫
J
‖f(t)‖2Xdt

)1/2

<∞.

In the case X = R, we write simply L2(J) and ‖f‖.
Hk = Hk(J) is the Sobolev space of order k on the interval J .
H1

0 = H1
0 (J) denotes the space of scalar functions that belong to the Sobolev

class H1 and vanish at the endpoints of J .

2. Proof of the Main Theorem

2.1. Reduction to uniform approximate controllability
Let us fix a constant T > 0, a function h ∈ L2(QT ), and a finite-dimensional
subspace E ⊂ H = L2(0, π). Â Recall that we denote by Rt : H ×L2(0, T ;E)→ H
the resolving operator for problem (1.1) – (1.3).

Definition 2.1. Let us fix a constant ε > 0, a function u0 ∈ H, and a compact
set K ⊂ H. Problem (1.1), (1.2) is said to be (ε, u0,K)-controllable at time T by an
E-valued control if there is a continuous mapping Ψ : K → L2(0, T ;E) such that

sup
u∈K
‖RT (u0, Ψ(u))− u‖ < ε. (2.1)

In what follows, the time T and the control space E are fixed, and we shall simply
say that problem (1.1), (1.2) is (ε, u0,K)-controllable.

Definition 2.2. Problem (1.1), (1.2) is said to be uniformly approximately control-
lable if it is (ε, u0,K)-controllable for any ε > 0, u0 ∈ H, and K b H.

The Main Theorem stated in the Introduction will be deduced from the following
result.

Theorem 2.3. Let E be the vector span of the functions sin x and sin(2x). Then
for any ν > 0 and h ∈ L2(QT ) problem (1.1), (1.2) is uniformly approximately
controllable by an E-valued control.

The proof of this result is sketched in Subsection 2.2, and the details are given in
Section 3. We now prove the Main Theorem.

Proof of the Main Theorem. Let us fix a constant ε > 0, functions u0, û ∈ H, and
a finite-dimensional space F ⊂ H. Without loss of generality, we can assume that
û ∈ F ; otherwise, we can replace F by the larger space spanned by F and û.

Let us denote by BF (R) the ball in F of radius R centred at origin and define
K = BF (‖û‖ + ε). Since K is a compact subset of H, in view of Theorem 2.3, we
can construct a continuous mapping Ψ : K → L2(0, T ;E) satisfying inequality (2.1).
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Furthermore, since K ⊂ H is compact and C∞(0, T ;E) is dense in L2(0, T ;E),
we can assume that the range of Ψ is contained in C∞(0, T ;E); otherwise, we can
replace the function Ψ by its convolution with a mollifying kernel. Let us consider
the mapping

Φ : K → F, Φ(u) = PFRT (u0, Ψ(u)).
It follows from (2.1) that Φ is a continuous mapping satisfying the inequality

sup
u∈K
‖Φ(u)− u‖ < ε.

The Brouwer theorem (e.g., see [Tay97]) implies that the image of Φ contains the
ball BF (‖û‖). In particular, there is ū ∈ K such that Φ(ū) = û. Setting η = Ψ(ū),
we see that

PFRT (u0, η) = û. (2.2)
Furthermore, it follows from (2.1) and (2.2) that
‖RT (u0, η)− û‖ = ‖RT (u0, η)− PFRT (u0, η)‖ ≤ ‖RT (u0, Ψ(ū))− ū‖ < ε,

where we used the facts that ū ∈ F and that PF is an orthogonal projection. This
completes the proof of the Main Theorem. �

2.2. Scheme of the proof of Theorem 2.3
Let us fix a constant ε > 0, a function u0 ∈ H, and a compact set K b H. We need
to show that problem (1.1), (1.2) is (ε, u0,K)-controllable by an E-valued control.

Step 1: Extension principle. Let G ⊂ H2 ∩H1
0 be an arbitrary finite-dimensional

subspace. Along with (1.1), consider the equation
∂tu− ν∂2

x(u+ ζ(t, x)) + (u+ ζ(t, x))∂x(u+ ζ(t, x)) = h(t, x) + η(t, x), (2.3)
where η and ζ are G-valued control functions. We shall say that problem (2.3), (1.2)
is (ε, u0,K)-controllable by G-valued controls (η, ζ) if there is a continuous mapping
Ψ̂ : K → L2(0, T ;G×G) such that

sup
u∈K
‖R̂T (u0, Ψ̂(u))− u‖ < ε, (2.4)

where R̂t : H × L2(0, T ;G × G) → H stands for the operator that takes the triple
(u0, η, ζ) to the solution u(t, ·) of problem (2.3), (1.2), (1.3).

Even though Eq. (2.3) is “more controlled” than Eq. (1.1), it turns out that the
property of uniform approximate controllability is equivalent for them. Namely, we
have the following result.

Proposition 2.4. Problem (1.1), (1.2) is Â (ε, u0,K)-controllable if and only if so
is problem (2.3), (1.2).

Step 2: Convexification principle. Now let N ⊂ H2 ∩H1
0 be another finite-dimen-

sional subspace such that
N ⊂ G, B(N) ⊂ G, (2.5)

where B(u) = u∂xu. Denote by F(N,G) ⊂ H2∩H1
0 the largest vector space spanned

by the functions of the form1

η + ξ∂xξ̃ + ξ̃∂xξ, (2.6)
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where η, ξ ∈ G and ξ̃ ∈ N . It is easy to see that F(N,G) is a well-defined
finite-dimensional space. The following proposition, which is an infinite-dimensional
analogue of the well-known convexification principle for controlled ODE’s (e.g.,
see [AS04, Theorem 8.7]), is a key point of the proof of Theorem 2.3.

Proposition 2.5. Let N,G ⊂ H2 ∩ H1
0 be finite-dimensional subspaces satisfy-

ing (2.5). Then (2.3), (1.2) is (ε, u0,K)-controllable by a G × G-valued control if
and only if (1.1), (1.2) is (ε, u0,K)-controllable by an F(N,G)-valued control.

Step 3: Saturating property. Propositions 2.4 and 2.5 imply the following result,
which is a kind of “relaxation property” for Â the controlled Navier–Stokes system.

Proposition 2.6. Let N,G ⊂ H2 ∩ H1
0 be finite-dimensional subspaces satisfy-

ing (2.5). Then problem (1.1), (1.2) is (ε, u0,K)-controllable by a G-valued control
if and only if it is (ε, u0,K)-controllable by an F(N,G)-valued control.

We now introduce the subspaces Ek = {sin(jx), 1 ≤ j ≤ k}, so that the space E
defined in the Main Theorem coincides with E2. We wish to apply Proposition 2.6
to the subspaces N = E1 and G = Ek.

Lemma 2.7. For any integer k ≥ 2, we have F(E1, Ek) = Ek+1.

Proposition 2.6 and Lemma 2.7 imply that, for any integer k ≥ 2, problem (1.1),
(1.2) is (ε, u0,K)-controllable by an Ek-valued control if and only if it is (ε, u0,K)-
controllable by an Ek+1-valued control. Thus, Theorem 2.3 will be established if we
find an integer N ≥ 2 such that problem (1.1), (1.2) is (ε, u0,K)-controllable by an
EN -valued control. We shall be able to do that due to the saturating property

∞⋃
k=2
Ek is dense in H, (2.7)

which is a straightforward consequence of the definition of Ek.

Step 4: Case of a large control space. It is easy to construct a continuous mapping
Ψ0 : K → L2(0, T ;H) such that

sup
u∈K
‖RT (u0, Ψ0(u))− u‖ < ε. (2.8)

Since K ⊂ H is a compact set, the image Ψ0(K) is compact in L2(0, T ;H). Us-
ing (2.7), it is not difficult to approximate Ψ0, within any accuracy δ > 0, by a
continuous function Ψ : K → L2(0, T ;H) with range in L2(0, T ;EN):

sup
u∈K
‖Ψ0(u)− Ψ(u)‖ < δ. (2.9)

SinceRt(u0, η) is Lipschitz continuous on bounded subsets, inequalities (2.8) and (2.9)
with δ � 1 imply (2.1). This completes the proof of Theorem 2.3.

1Note that a function of the form (2.6) does not necessarily belong to H2 ∩H1
0 , and therefore

the space F(N,G) may be not larger than G.
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3. Approximate controllability
In this section, we prove Theorem 2.3. To simplify the presentation, we shall assume
that K consists of a single point û ∈ H. The proof in the general case can be carried
out by similar arguments, following carefully the dependence of all the objects on
the final point û; cf. [Shi07]. In what follows, the constant ε, the functions u0, and
the subset K are fixed, and we shall say simply ε-controllable rather than (ε, u0,K)-
controllable.

3.1. Extension principle
In this subsection, we prove Proposition 2.4. It is clear that if problem (1.1), (1.2)
is ε-controllable, then so is problem (2.3), (1.2), because it suffices to take ζ ≡ 0.
Let us establish the converse assertion.

Let (η̂, ζ̂) ∈ L2(0, T ;G) be an arbitrary control such that

‖R̂T (u0, η̂, ζ̂)− û‖ < ε. (3.1)

In view of continuity of R̂T (u0, η, ζ) with respect to ζ ∈ L2(0, T ;H), there is no loss
of generality in assuming that

ζ̂ ∈ C∞(0, T ;G), ζ̂(0) = ζ̂(T ) = 0. (3.2)

Consider the function u(t, x) = R̂t(u0, η̂, ζ̂) + ζ̂(t, x). It is straightforward to see
that it belongs to XT and satisfies Eqs. (1.1), (1.2) with η = η̂ + ∂tζ̂ ∈ L2(0, T ;G).
Moreover, it follows from (3.1) and (3.2) that

u(0) = u0, ‖u(T )− û‖ = ‖R̂T (u0, η̂, ζ̂)− û‖ < ε.Â
Thus, problem (1.1), (1.2) is ε-controllable.

3.2. Convexification principle
Let us prove Proposition 2.5. It follows from the extension principle that if prob-
lem (2.3), (1.2) is ε-controllable by a G × G-valued control, then (1.1), (1.2) is
ε-controllable by a G-valued control and all the more by an F(N,G)-valued control.
The proof of the converse assertion is divided into several steps. We need to show
that if η1 ∈ L2(0, T ;H) is an F(N,G)-valued control such that

‖RT (u0, η1)− û‖ < ε, (3.3)
then there are η, ζ ∈ L2(0, T ;G) such that

‖R̂T (u0, η, ζ)− û‖ < ε. (3.4)

Step 1. We first show that it suffices to consider the case in which η1 is a piecewise
constant function. Indeed, suppose Proposition 2.5 is proved in that case and denote
G1 = F(N,G). For a given η1 ∈ L2(0, T ;G1), we can find a sequence {ηm} of
piecewise constant G1-valued functions such that

‖η1 − ηm‖L2(0,T ;G1) → 0 as m→∞.
By continuity of Rt, there is an integer n ≥ 1 such that

‖RT (u0, η
n)− û‖ < ε. (3.5)
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Since the result is true for piecewise constant controls, for any δ > 0 there are
η, ζ ∈ L2(0, T ;G) such that

‖RT (u0, η
n)− R̂T (u0, η, ζ)‖ < δ. (3.6)

Comparing (3.5) and (3.6), for a sufficiently small δ > 0 we arrive at (3.4).

Step 2. We now consider the case of piecewise constant G1-valued controls. A
simple iteration argument combined with the continuity of Rt and R̂t shows that
it suffices to consider the case of one interval of constancy. Thus, we shall assume
that η1(t) ≡ η1 ∈ G1.

We shall need the lemma below, whose proof is given at the end of this subsection.
Recall that B(u) = u∂xu.

Lemma 3.1. For any η1 ∈ F(N,G) and any δ > 0 there is an integer k ≥ 1,
constants αj > 0, and vectors η, ζj ∈ G, j = 1, . . . , k, such that

k∑
j=1
αj = 1, (3.7)

∥∥∥∥η1 −B(u)−
(
η −

k∑
j=1
αj
(
B(u+ ζj)− ν∂2

xζ
j
))∥∥∥∥ ≤ δ for any u ∈ H1. (3.8)

We fix a small δ > 0 and choose constants αj > 0 and vectors η, ζj ∈ G satisfy-
ing (3.7), (3.8). Let us consider the equation

∂tu− ν∂2
xu+

k∑
j=1
αj
(
B(u+ ζj(x))− ν∂2

xζ
j(x)

)
= h(t, x) + η(x). (3.9)

This is a Burgers-type equation, and using the same arguments as in the case of
the Burgers equation, it can be proved that problem (3.9), (1.2), (1.3) has a unique
solution ũ ∈ XT . On the other hand, we can rewrite (3.9) in the form

∂tu− ν∂2
xu+ u∂xu = h(t, x) + η1(x)− rδ(t, x), (3.10)

where rδ(t, x) stands for the function under sign of norm on the left-hand side of (3.8)
in which u = ũ(t, x). Since Rt is Lipschitz continuous on bounded subsets, there is
a constant C > 0 depending only on the L2 norm of η1 such that

‖RT (u0, η1)− ũ(T )‖ = ‖RT (u0, η1)−RT (u0, η1 − rδ)‖

≤ C‖rδ‖L2(0,T ;H) ≤ C
√
Tδ,

where we used inequality (3.8). Combining this with (3.3), we see that if δ > 0 is
sufficiently small, then

‖ũ(T )− û‖ < ε. (3.11)
We shall show that there is a sequence ζm ∈ L2(0, T ;G) such that

‖R̂T (u0, η, ζm)− ũ(T )‖ → 0 as m→∞. (3.12)

In this case, inequalities (3.11) and (3.12) with Â m � 1 will imply the required
estimate (3.4) in which ζ = ζm.
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Step 3. Following a classical idea in the control theory, we define a sequence
ζm ∈ L2(0, T ;G) by the relation ζm(t) = ζ(mt/T ), where ζ(t) is a 1-periodic G-
valued function such that

ζ(t) = ζj for 0 ≤ t− (α1 + · · ·+ αj−1) ≤ αj, j = 1, . . . , k.
Let us rewrite (3.9) in the form

∂tu− ν∂2
x(u+ ζm(t, x)) +B(u+ ζm(t, x)) = h(t, x) + η(x) + fm(t, x),

where we set fm = fm1 + fm2,

fm1 = −ν∂2
xζm + ν

k∑
j=1
αj∂

2
xζ
j, (3.13)

fm2 = B(ũ+ ζm)−
k∑
j=1
αjB(ũ+ ζj). (3.14)

We now define an operator K : L2(0, T ;H) → XT that takes a function f to the
solution u(t, x) of the equation

∂tu− ν∂2
xu = f(t, x),

supplemented with initial and boundary conditions (1.2), (1.3) with u0 = 0. In other
words,

(Kf)(t) =
∫ t

0
eν(t−s)Af(s) ds,

where A stands for the operator d2

dx2 with the domain D(A) = H2 ∩ H1
0 . Setting

vm = ũ−Kfm, we see that vm ∈ XT satisfies the equation
∂tv − ν∂2

x(v + ζm) +B(v + ζm +Kfm) = h+ η. (3.15)
Suppose we have shown that

‖Kfm‖XT → 0 as m→∞. (3.16)
Then, by the Lipschitz continuity of the resolving operator for (3.15) on bounded
subsets, we have

‖R̂T (u0, η, ζm)− ũ(T )‖ ≤ ‖R̂T (u0, η, ζm)− vm(T )‖+ ‖Kfm(T )‖ → 0
as m→∞. Thus, it remains to prove (3.16).

Step 4. We first note that {fm} is a bounded sequence in L2(0, T ;H). It follows
that

‖Kfm‖C(0,T ;H1) + ‖Kfm‖L2(0,T ;H2) ≤ C1, (3.17)
where we denote by Ci, i = 1, 2, . . . , positive constants not depending on m. Fur-
thermore, we have the interpolation inequalities

‖v‖ ≤ C2‖v‖1/21 ‖v‖
1/2
−1 , ‖v‖1 ≤ C3‖v‖2/32 ‖v‖

1/3
−1 for v ∈ H2 ∩H1

0 .

Combining this with (3.17), we obtain
‖Kfm‖XT ≤ ‖Kfm‖C(0,T ;H) + ‖Kfm‖L2(0,T ;H1)

≤ C4

(
‖Kfm‖1/2C(0,T ;H−1) + ‖Kfm‖1/3L2(0,T ;H−1)

)
.

Thus, convergence (3.16) will be established if we show that
‖Kfm‖C(0,T ;H−1) → 0 as m→∞. (3.18)
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Step 5. To prove (3.18), we write

(Kfm)(t) = Fm(t) +Gm(t), (3.19)

where
Fm(t) =

∫ t
0
fm(s) ds, Gm(t) = ν

∫ t
0
Aeν(t−s)AFm(s) ds.

Since ‖AeτA‖L(H,H−1) ≤ C5τ
−1/2 for τ > 0, where ‖ · ‖L(H,H−1) stands for the usual

norm of operators from H to H−1, we have

‖Gm‖C(0,T ;H−1) ≤ ν sup
t∈[0,T ]

∫ t
0
‖Aeν(t−s)A‖L(H,H−1)‖Fm(s)‖ ds

≤ C6 ‖Fm‖C(0,T ;H).

Comparing this with (3.19), we see that (3.18) will be established if we show that

‖Fm‖C(0,T ;H) → 0 as m→∞. (3.20)

This convergence is a straightforward consequence of relations (3.13) and (3.14);
cf. [Shi06, Section 3.3]. The proof of Proposition 2.5 is complete.

Proof of Lemma 3.1. It suffices to find functions η, ζ̃j ∈ G, j = 1, . . . ,m, such that∥∥∥∥η1 − η +
k∑
j=1
B(ζ̃j)

∥∥∥∥ ≤ δ. (3.21)

If such vectors are constructed, then we can set k = 2m,

αj = αj+m = 1
2 , ζ

j = −ζj+m = ζ̃j for j = 1, . . . ,m.

To construct η, ζ̃j ∈ G satisfying (3.21), note that if η1 ∈ F(N,G), then there are
functions η̃j, ξj ∈ G and ξ̃j ∈ N such that

η1 =
k∑
j=1

(
η̃j − ξj∂xξ̃j − ξ̃j∂xξj

)
. (3.22)

Now note that, for any ε > 0,

ξj∂xξ̃j + ξ̃j∂xξj = B(εξj + ε−1ξ̃j)− ε2B(ξj)− ε−2B(ξ̃j).

Combining this with (3.22), we obtain

η1 −
k∑
j=1

(
η̃j + ε−2B(ξ̃j)

)
+
k∑
j=1
B(εξj + ε−1ξ̃j) = ε2

k∑
j=1
B(ξj).

Choosing ε > 0 sufficiently small and setting

η =
k∑
j=1

(
η̃j + ε−2B(ξ̃j)

)
, ζ̃j = εξj + ε−1ξ̃j,

we arrive at (3.21). �
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3.3. Saturating property
Let us prove Lemma 2.7 and the inclusion B(E1) ⊂ E2. For ξ = sin(jx) and ξ̃ =
sin x, we have

ξ∂xξ̃ + ξ̃∂xξ = sin(jx) cos x+ j sin x cos(jx)

= 1
2
(
(j + 1) sin(j + 1)x− (j − 1) sin(j − 1)x

)
. (3.23)

It follows that B(E1) ⊂ E2 and F(E1, Ek) ⊂ Ek+1. Furthermore, taking j = k
in (3.23), we write

sin(k + 1)x = k − 1
k + 1 sin(k − 1)x+ 2

k + 1
(
sin(kx) ∂x sin x+ sin x ∂x sin(kx)

)
.

This relation implies that the function sin(k+1)x belongs to F(E1, Ek) and therefore
Ek+1 ⊂ F(E1, Ek).

3.4. Case of a large control space
We wish to construct a control η ∈ L2(0, T ;EN) with a large integer N ≥ 2 such
that

‖RT (u0, η)− û‖ < ε. (3.24)
To this end, consider the function uµ(t, x) defined as

uµ(t, x) = T−1
(
teµAû+ (T − t)eνAu0

)
,

where A denotes the operator d2

dx2 with the domain D(A) = H2 ∩H1
0 , and µ > 0 is

a small constant that will be chosen later. The function uµ belongs to the space XT
and satisfies Eqs. (1.1) – (1.3), in which

η = ηµ := ∂tuµ − ν∂2
xuµ + uµ∂xuµ − h.

This function belongs to L2(0, T ;H). Furthermore,

‖uµ(T )− û‖ = ‖eµAû− û‖ → 0 as µ→ 0. (3.25)

Choosing µ > 0 sufficiently small in (3.25) and approaching ηµ ∈ L2(0, T ;H) by
continuous H-valued functions, we can find η̃ ∈ C(0, T ;H) such that

‖RT (u0, η̃)− û‖ < ε. (3.26)

Let us denote by Pk : H → H the orthogonal projection in H onto the sub-
space Ek. In view of the saturating property (2.7), we have

sup
t∈[0,T ]

‖Pkη̃(t)− η̃(t)‖ → 0 as k →∞.

By continuity of Rt, we obtain

‖RT (u0,Pkη̃)−RT (u0, η̃)‖ → 0 as k →∞.

Combining this with (3.26), we see that for a sufficiently large N ≥ 1 the function
η = PN η̃ satisfies (3.24). This completes the proof of Theorem 2.3 in the case
K = {û}.
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