
Journées

ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Évian, 4 juin–8 juin 2007

Mildred Hager
Eigenvalue asymptotics for randomly perturbed non-self adjoint
operators

J. É. D. P. (2007), Exposé no III, 4 p.
<http://jedp.cedram.org/item?id=JEDP_2007____A3_0>

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

GROUPEMENT DE RECHERCHE 2434 DU CNRS

http://jedp.cedram.org/item?id=JEDP_2007____A3_0
http://www.cedram.org/
http://www.cedram.org/


Journées Équations aux dérivées partielles
Évian, 4 juin–8 juin 2007
GDR 2434 (CNRS)

Eigenvalue asymptotics for randomly perturbed
non-self adjoint operators

Mildred Hager

The following is based on joint work with Johannes Sjöstrand ([1]), to which we
refer for references and details that had to be omitted here.

We will examinate the distribution of eigenvalues of non-selfadjoint h-pseudodif-
ferential operators, perturbed by a random operator, in the limit as h→ 0.

Let us start by recalling that for h > 0, we associate to a symbol p : R2n → C in
an appropriate class the h-Weyl quantization P = pw, where

Pu(x) = 1
(2πh)n

∫∫
e
i
h

(x−y)·ηp(x+ y
2 , η;h)u(y)dydη, (1)

and consider this operator in L2(Rn). For example, if p(x, ξ) = ξ2 + cx2, for c ∈ C,
we obtain the harmonic oscillator P = (hDx)2 + cx2. If c is real, this operator is
selfadjoint and has real spectrum. As has been found by Weyl, and generalized by
Helffer-Robert and Ivrii, the number of eigenvalues inside an interval I ⊂ R can be
expressed in terms of a classical quantity, namely a volume depending only on the
symbol p of the operator:

N(P, I) = 1
(2πh)n (vol (p−1(I)) + o(1)), h→ 0. (2)

This Weyl-law gives us a nice description of the eigenvalue asymptotics as h→ 0.
Consider now the case Im c 6= 0: the situation changes dramatically as the operator

is non-selfadjoint and could a priori have spectrum anywhere in the complex plane.
For the harmonic oscillator, it is known to lie on a line. But as p is complex-valued
now, Σ(p) = p(R2) is a cone (and not a line anymore), and it is not clear if there
is any relation of the spectrum of P to p. Actually, everywhere in the interior of
Σ(p), the norm of the resolvent (P − z)−1, z ∈ C \ Spec (P), is very large. In
particular, if one adds a very small perturbation to the operator, the eigenvalues
could lie anywhere inside Σ(p) as h → 0, possibly far away from the line to which
the spectrum of the unperturbed operator is confined. Given all this, it is really
surprising that we obtain a Weyl-law for the eigenvalues of the randomly perturbed
operator asymptotically almost surely.

Before stating our result, let us indicate the consequences of these phenomena. For
example, if one wishes to perform numerical calculations involving non-selfadjoint
operators (or matrices), rounding errors might introduce small perturbations to the
operator, meaning that the eigenvalues computed numerically could actually be far
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away from the true ones (this has been observed in particular by M. Zworski).
Also in stability studies for non-linear problems where the linearized operator is
non-selfadjoint, spectral properties are of great importance.

Let us now introduce the frame of our theorem, and begin with the symbols we
consider. Let m ≥ 1 be an order function, i.e.

∃C0 ≥ 1, N0 > 0 such that m(ρ) ≤ C0〈ρ− µ〉N0m(µ),

∀ρ, µ ∈ R2n, 〈ρ− µ〉 =
√

1 + |ρ− µ|2.
Let p be in the corresponding symbol space

S(R2n,m) = {a ∈ C∞(R2n); |∂αρ a(ρ)| ≤ Cαm(ρ), ρ ∈ R2n, α ∈ N2n}, (3)
and assume that ∃ z0 ∈ C, C0 > 0 such that

|p(ρ)− z0| ≥ m(ρ)/C0, ρ ∈ R2n. (4)
Then for any simply connected Ω b C \ Σ∞, where Σ∞ is the set of accumulation
points of p at ∞, that is not entirely contained in Σ, we know that Spec(P ) ∩ Ω is
discrete for h > 0 small enough. Here the natural domain of P is, as first introduced
by Bony-Chemin, H(m) ≡ (P − z0)−1(L2(Rn)).

Next, we introduce the type of sets Γ ⊂ Ω inside of which we will count the
eigenvalues, where Ω is as before. We assume that ∂Γ ∈ C∞, and that ∀z ∈ ∂Γ,
p−1(z) is a smooth submanifold of T ∗Rn on which dp, dp are linearly independant
(at every point). This means that p has no critical value on ∂Γ. In the example, this
assumption is fulfilled for any Γ b int(Σ).

Finally, the type of random perturbations we consider is as follows. Let 0 <
m̃, m̂ ≤ 1 be square integrable order functions on R2n such that m̃ or m̂ is integrable,
and let S̃ ∈ S(m̃), Ŝ ∈ S(m̂) be elliptic symbols. Let ẽ1, ẽ2, ..., and ê1, ê2, ... be
orthonormal bases for L2(Rn). Our random perturbation will be

Qω = Ŝ ◦
∑
j,k

αj,k(ω)êj ẽ∗k ◦ S̃, (5)

where αj,k are independent complex N (0, 1) random variables, and êj ẽ∗ku = (u|ẽk)êj,
u ∈ L2. As is shown in [1], under these assumptions ‖Q‖HS ≤ C1h

−n (hence also
‖Q‖ ≤ Ch−n) and ‖Q‖tr ≤ C2h

− 3n
2 asymptotically almost surely (a.a.s.), where

a.a.s. means with probability tending to 1 as h→ 0.
Our result is the following.

Theorem 1. For every 0 < ε � 1, for 0 < h � 1 small enough, and δ > 0 such
that

e−
ε
h < δ � h3n+1/2,

the number of eigenvalues of P + δQ inside Γ is asymptotically almost surely given
by

N(P + δQ,Γ) = 1
(2πh)nvol (p−1(Γ)) +O(

√
ε

hn
). (6)

This means that we have obtained a Weyl-law with an error depending on the
small parameter ε. Remark that the volume on the right-hand side is now implying a
“bidimensional” distribution of the eigenvalues of the perturbed harmonic oscillator
(whose spectrum before perturbation was confined to a line).
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Actually, we have tried here to state the simplest special case of the general result
in [1], but some of the assumptions can be relaxed very much. There, we do also
obtain that the probability is actually bounded below by 1− C√

ε
e−

ε/2
(2πh)n .

Let us now give a short sketch of the proof. For all details, we refer to [1].
The first step is to introduce a well-defined determinant whose zeros determine the

spectrum of our operator. Here we construct an auxiliary operator P̃ with symbol
p̃ = κ ◦ p such that (P̃ − z)−1 exists ∀z ∈ Ω̃, Γ b Ω̃ b Ω, and P (z) = (P̃ − z)−1(P −
z) = 1 +K(z), where K(z) is trace class. The spectrum of P inside of Γ is given by
the zeros of the well-defined determinant det(P (z)). Finally, the spectrum of P +δQ
is a.a.s. given by the zeros of detP δ(z), where P δ(z) = (P̃ − z)−1(P + δQ− z), and
it is holomorphic in z ∈ Ω.

We would now like to use a proposition about the zeros of a holomorphic function,
if we are given an upper bound and lower bounds pointwise on its modulus.

To this end, we set up a Grushin problem, leading to the following result (similar
to the Schur complementation formula):

| detP | = | detP|| detE−+|, (7)

where for 0 < h < α� 1,

| detP|2 = αN(α) det 1α(P ∗P ), 1α(t) = max{α, t} , (8)

and N(α) is the number of eigenvalues of P ∗P less than α. Here E−+ is a certain
matrix of size N(α), and we have written P for P (z).

We will first study N(α) and 1α(P ∗P ) using the functional calculus. We introduce
a C∞-function χ such that 1α(Q) ∼ Q+αχ(Q

α
), for Q = P ∗P ≥ 0 selfadjoint. Given

our assumptions on p, we can relate ln det(Q+αχ(α−1Q)) to
∫∫

ln qdxdξ, and obtain
the estimate N(α) = O(αh−n). Consider now the perturbed operator. A.a.s., we can
show using the “smallness” of the perturbation and our previous result that

ln | detP δ| ≤ 1
(2πh)n

(∫∫
ln |p− z|dxdξ +O(h ln 1

h
)
)
, (9)

where we have chosen α = Ch. For a lower bound, we use the Grushin-problem:

| detP δ| = | detPδ|| detEδ−+|, (10)

where we can again relate ln | detPδ| to
∫∫

ln |p− z|dxdξ.
Hence it remains to obtain a lower bound on ln | detEδ−+|. Here we can take advan-

tage of a perturbative expansion and need to elaborate estimates on determinants
of random matrices, showing finally that a.a.s. it is bounded below by −Cε

hn
.

As a conclusion, we obtain in addition to (9) that a.a.s.

ln | detP δ| ≥ 1
(2πh)n

(∫∫
ln |p− z|dxdξ − ε

C

)
. (11)
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Applying the proposition about the number of zeros of such a holomorphic func-
tion as mentionned above gives us that a.a.s.,

N(P + δQ,Γ) = #{z ∈ Γ; det(P δ(z)) = 0}

= 1
(2πh)n

∫
Γ

1
2π∆z

(∫∫
ln |p− z|dxdξ

)
L(dz) +O(

√
ε

hn
)

= 1
(2πh)nvol (p−1(Γ)) +O(

√
ε

hn
),

which is the result of our theorem.
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