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1. Limits of p-harmonic functions
Let U ⊂ Rm be a bounded open set with Lipschitz boundary, g ∈ Lip(∂U), and
1 < p <∞. The following minimization problem admits a unique minimizer which
we shall subsequently denote by up (the dependence upon U and g is not relevant
for now):

(Pp)

minimize ‖∇u‖p
among u ∈ W 1,p(U) with trace u = g .

It is well known that up has vanishing p-Laplacian, i.e.
div(|∇up|p−2∇up) = 0 (1)

weakly (in the sense of distributions or, equivalently, weakly in W 1,p(U)). The best
interior regularity theory for up is C1,α (with α = α(m, p)); it is shown to be optimal
by some examples.

Questions dealt with in the present section are:

(A) Does the family up converge to some u as p→∞, and if yes in what sense?

(B) Does such a limiting function verify a partial differential equation?

(C) If yes, is that partial differential equation the Euler-Lagrange equation of some
variational problem?

The author is a chercheur qualifié of the Fonds National de la Recherche Scientifique, Belgium.
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We now proceed to briefly review the answers to these questions.
By the minimizing property of up and their common boundary value it is trivially

checked that sup{‖∇up‖p : 1 < p <∞} <∞. On the other hand Morrey’s inequality
says that if p > m then W 1,p(U) ⊂ C0,1−m/p(U) and, in fact,

|u(x)− u(y)| 6 C(m, p)‖∇u‖p|x− y|1−m/p

whenever u ∈ W 1,p(U), x, y ∈ U , and, say, U is convex. A straightforward task
consists in keeping track of the constant in the various potential estimates needed
to prove the above inequality. Careful scrutinizing of such proofs shows that

lim sup
p→∞

C(m, p) <∞ .

It therefore follows that the family {up : p > m} ⊂ C(U) is equicontinuous. Since
also these functions achieve the same boundary value it follows from Ascoli’s The-
orem that the same family is relatively compact. Hence there are p1 < p2 < . . . and
u ∈ C(U) such that pj → ∞ as j → ∞ and upj → u uniformly as j → ∞. (in fact
such cluster point u is unique). This answers question (A).

With regard to question (B) we first develop the p-Laplacian 4pu of a function
u ∈ C2(U):

4pu = div(|∇u|p−2∇u) = |∇u|p−2
(
〈∇u ·D2u,∇u〉
|∇u|2

+ 42u

p− 2

)
.

Assume now that up and the limiting u are all of class C2. Heuristically4pup(x) = 0
implies that (as p→∞) 〈∇u(x)·D2u(x),∇u(x)〉 = 0 (there is a dichotomy according
to whether ∇u(x) = 0 or not). We define

4∞u = 〈∇u ·D2u,∇u〉
for u ∈ C2(U). The question becomes whether the limiting u is a solution of 4∞u =
0 in some weak sense. Notice that this equation is not in divergence form (or at
least not readily so — in fact this question is the motivation of some recent work
[6, section 4], [4]). Therefore it seems hopeless to seek for a weak formulation in the
distributional sense since integration by parts is not available. Notwithstanding the
concept of viscosity solution (see e.g. [3]) proves useful in this situation. One first
shows that the up are solutions of 4pup = 0 in the viscosity sense (this is based
upon the comparison principle for weakly p-harmonic functions) and then one uses a
standard technique of viscosity solutions to show that the limiting u solves4∞u = 0
in the viscosity sense. This answers question (B).

The obvious candidate for a variational problem that u would solve is the follow-
ing:

(P∞)

minimize ‖∇u‖∞
among u ∈ W 1,∞(U) with trace u = g .

It turns out this problem is not well-posed as one can see from the following easy
example when m = 1, U = (0, 1) ∪ (1, 2) and g(0) = 0, g(1) = 1, g(2) = 1.
Every Lipschitz function u with Lip u = 1 and verifying the required boundary
values will solve (P∞), and there are plenty. The difficulty comes from the fact that
(P∞) “doesn’t localize”. Specifically let V ⊂⊂ U and write (Pp,V ) and (P∞,V ) the
corresponding variational problems (i.e. with U replaced by V ). If up solves (Pp,U)
then up � V solves (Pp,V ) (with respect to its own boundary values on ∂V ) for every
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V ⊂⊂ U when p 6=∞. For p =∞ this is not anymore the case. The reason for this
being of course that the energy V 7→ ‖∇u‖pp,V is a measure for p 6= ∞ whereas for
p = ∞ additivity is lost. The proper variational problem to be considered here is
the following. We first define

Lip(u, x) = inf{Lip(u � B(x, r)) : 0 < r < dist(x, ∂U)} .
1.1. Definition. We say that a function u ∈ C(U) is strongly absolutely minimizing
in U (and we write u ∈ SAM(U)) whenever it verifies the following condition. For
every V ⊂⊂ U one has

sup{Lip(u, x) : x ∈ V } 6 sup{Lip(u′, x) : x ∈ V }
for every u′ ∈ C(V ) with u = u′ on ∂V .

Then the limiting u is strongly absolutely minimizing in U (even though this is
not immediate at all). This answers question (C)

2. Various equivalent formulations
We now turn to defining several concepts which turn out to be equivalent to that
of being the limit of a sequence of pj-harmonic functions, pj →∞. We start with a
variant of the property of being strongly absolutely minimizing.
2.1. Definition. We say that a function u ∈ C(U) is absolutely minimizing (and we
write u ∈ AM(U)) if the following holds. For every V ⊂⊂ U one has

‖∇u‖∞,V 6 ‖∇u′‖∞,V (2)
whenever u′ ∈ C(V ) and u = u′ on ∂V .

That SAM(U) = AM(U) is a consequence of the next Remark.
2.2. Remark. Let V ⊂ Rm be open and u ∈ C(V ). One has

‖∇u‖∞,V = sup{Lip(u, x) : x ∈ V } (3)
Let Γ denote the right member above and assume that Γ <∞. It then follows from
Stepanoff’s Theorem ([7, 3.1.9]) that u is differentiable L m almost everywhere in
V . Accordingly we can associate with each γ < ‖∇u‖∞,V some x ∈ V such that u
is differentiable at x and γ < |∇u(x)|. Since also |∇u(x)| 6 Lip(u, x) we infer that
γ 6 Γ and the inequality ‖∇u‖∞,V 6 Γ follows from the arbitrariness of γ. In order
to prove the reverse inequality we let x ∈ V and choose r > 0 so that B(x, r) ⊂ V .
Then

Lip(u, x) 6 Lip(u � B(x, r)) = ‖∇u‖∞,B(x,r) 6 ‖∇u‖∞,V
where the equality holds because B(x, r) is convex. The conclusion follows from the
arbitrariness of x.
2.3. Definition. We say that u ∈ C(U) enjoys comparison with cones from above
(and we write u ∈ CCA(U)) whenever the following condition holds. For every
V ⊂⊂ U , every z ∈ Rm \ V and every a ∈ R one has

sup{u(x)− a|x− z| : x ∈ V } = sup{u(x)− a|x− z| : x ∈ ∂V } .
We say u enjoys comparison with cones from below (and we write u ∈ CCB(U)) if
−u ∈ CCA(U). Finally if u ∈ CC(U) := CCA(U) ∩ CCB(U) then we say that u
enjoys comparison with cones.
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We now sketch a proof that AM(U) ⊂ CC(U). Since u ∈ AM(U) implies −u ∈
AM(U) it suffices to show that AM(U) ⊂ CCA(U). Let V ⊂⊂ U , z ∈ Rm \ V and
a ∈ R. Put

W = V ∩ {x : u(x)− a|x− z| > sup{u(y)− a|y − z| : y ∈ ∂V }} .
We claim that W = ∅ for otherwise the “cone function”

u′(x) = a|x− z|+ sup{u(y)− a|y − z| : y ∈ ∂V }
would have the following property: u = u′ on ∂W . It then remains to check that
this implies that u = u′ in W , a contradiction (see Theorem 5.4(B)). One way to
understand this is to check that u′ ∈ AM(Rm \ {z}) (hence u′ ∈ AM(W )) and that
there is uniqueness for the Dirichlet problem for absolutely minimizing functions.

We now define the upper slope of u ∈ C(U) at x ∈ U and 0 < r < dist(x, ∂U) as
follows

slope∗(u, x, r) = sup
{
u(y)− u(x)
r

: y ∈ ∂B(x, r)
}
.

The lower slope is defined similarly

slope∗(u, x, r) = inf
{
u(y)− u(x)
r

: y ∈ ∂B(x, r)
}
.

2.4. Definition. We say that u ∈ C(U) has the monotonicity of slope property (and
we write u ∈MSP (U)) whenever the following holds. For every z ∈ U the function

(0, dist(z, ∂U))→ R : r 7→ slope∗(u, z, r)
is nondecreasing, and the function

(0, dist(z, ∂U))→ R : r 7→ slope∗(u, z, r)
is nonincreasing.

In order to establish that CC(U) ⊂ MSP (U) it suffices to notice that, for fixed
z ∈ U , the “cone function”

u′(x) = u(x) + |x− z| sup
{
u(y)− u(z)
r

: y ∈ ∂B(z, r)
}

bounds u from above on the boundary of B(z, r) \ {z}.
A nice and simple argument in [1, section 4.4] shows that if u ∈ MSP (U) and
u ∈ C2(U) then 4∞u = 0. Since in general functions belonging to any of the classes
defined above are not C2 (see next section) we need a weaker concept of a solution
of the equation 4∞u = 0.

2.5. Definition. We say a function u ∈ C(U) is a viscosity solution of the equation
4∞u = 0 if the following condition holds. If ϕ ∈ C2(U), x ∈ U and u − ϕ has a
local maximum (resp. local minimum) at x then 4∞ϕ(x) > 0 (resp. 4∞(x) 6 0).

We are now ready to state the somewhat surprising list of equivalence. It is remark-
able for instance that the “very weak” monotonicity of slope property is equivalent
to being absolutely minimizing. A complete proof of this result can be found in the
survey [1]. In the last section of this note we prove “by hand” that the function
u(x) = |x|, x ∈ Rm, is strongly absolutely minimizing in U = Rm \ {0} — since
clearly 4∞u = 0 in U in the classical sense, this can be considered a particular case
of (5)⇒ (1).
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2.6. Theorem. Let U ⊂ Rm be open and u ∈ C(U). The following conditions are
equivalent.

1. u is strongly absolutely minimizing;

2. u is absolutely minimizing;

3. u enjoys comparison with cones;

4. u has the monotonicity of slope property;

5. u is a viscosity solution of the equation 4∞u = 0.

From now on we will say that u ∈ C(U) is ∞-harmonic whenever it verifies the
equivalent conditions stated above.

3. Examples
One readily checks that for u ∈ C2(U) one has 4∞u = 1

2〈∇u,∇|∇u|
2〉. This implies

for instance that u(x) = |x| is solution of the equation 4∞u = 0 in Rm \ {0}.
More generally every u ∈ C1(U) which solves the eikonal equation |∇u| = 1 is a
viscosity solution of 4∞u = 0 in U . In particular if C ⊂ Rm is a closed convex
set then u(x) = dist(x,C) is absolutely minimizing in U = Rm \ C. Letting m = 2
and C be a line segment we see that absolutely minimizing functions need not have
better regularity than C1,1. In fact if u ∈ C1(U) solves the eikonal equation then
u ∈ C1,1(U).

The function u(x1, x2) = x4/3
1 − x

4/3
2 is a viscosity solution of 4∞u = 0 in R2, see

[1, Example 4.12]. In particular one cannot hope for better regularity than C1,1/3

when u is absolutely minimizing. This example also shows that there is no maximum
principle for |∇u| whenever u is∞-harmonic. One can perhaps trace this back to the
fact that no equation (or partial differential inequality) holds for ∇u; derivatives of
viscosity solutions do not verify the corresponding differentiated equation in general.
However the Harnack inequality holds for |∇u| when u is a C4 ∞-harmonic function
(see [5] and also [9]).

4. Regularity
The following Harnack and Caccioppoli type inequalities are consequences of the
monotonicity of slope formula. The proofs are taken from [1].
4.1. Theorem. Assume that U ⊂ Rm is open, u ∈ MSP (U), a ∈ U , r > 0,
B(a, r) ⊂ U and 0 < λ < 1/3. Then the following hold.

(A) (Harnack inequality) If moreover u 6 0 on B(a, r) then

max
B(a,λr)

u 6

(
1− 3λ
1− λ

)
min
B(a,λr)

u .

(B) (Caccioppoli inequality)

Lip(u,B(a, λr)) 6
( 1

1− 3λ

) 1
r

(
max
B(a,r)
u− max

B(a,λr)
u

)
.
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Proof. Let x, y ∈ B(a, λr). We abbreviate d(x) = dist(x, ∂B(a, r)) and we notice
that

d(x) > (1− λ)r , (4)

and

|y − x| 6 2λr . (5)

As λ < 1/3 we see that 2λr < (1− λ)r. Consider ρ ∈ R such that

|y − x| < ρ < d(x) .

Since y ∈ B(x, ρ) ⊂ U we infer from the monotonicity formula that

u(y)− u(x)
|y − x|

6 slope∗(u, x, |y − x|)

6 slope∗(u, x, ρ)

= 1
ρ

max{u(ξ)− u(x) : ξ ∈ ∂B(x, ρ)}

6 −u(x)
ρ
,

where the last inequality follows from the assumption that u 6 0 on B(a, r) and the
inclusion ∂B(x, ρ) ⊂ B(a, r). Letting ρ ↑ d(x) we obtain

u(y)− u(x) 6 −u(x) |y − x|
d(x) (6)

and, equivalently,

u(y) 6 u(x)
(

1− |y − x|
d(x)

)
. (7)

We infer from (4) and (5) that

|y − x|
d(x) 6

2λ
1− λ

and in turn from (6), since u(x) 6 0, that

u(y)− u(x) 6 −u(x) 2λ
1− λ ,

i.e.,

u(y) 6 u(x)
(

1− 3λ
1− λ

)
.

Conclusion (A) readily follows from the arbitrariness of x, y ∈ B(a, λr).
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In order to prove (B) we start by assuming that u 6 0 on B(a, r). Given x, y ∈
B(a, λr) we infer from (6) that

u(y)− u(x)
|y − x|

6 −u(x) 1
d(x)

which, according to (4) and the inequality u(x) 6 0 is bounded by

6 −u(x) 1
(1− λ)r

6 −min{u(ξ) : ξ ∈ B(a, λr)} 1
(1− λr)

and, by (C),

6 −
(

1− λ
1− 3λ

)
max{u(ξ) : ξ ∈ B(a, λr)} 1

(1− λ)r .

As x, y ∈ B(a, λr) are arbitrary we obtain

Lip(u,B(aλr)) 6
( 1

1− 3λ

) 1
r

(
− max
B(a,λr)

u

)
. (8)

In case u is not necessarily nonpositive on B(a, r) we apply (8) to û = u−maxB(a,r) u.
This finishes the proof of (B). �

We infer from conclusion (B) that if u has the monotonicity of slope property
then u is Lipschitzian. Whether u is C1 or not remains an open question at the time
of this writing except in case m = 2. The following is from [8].

4.2. Theorem (O. Savin). Let U ⊂ R2 be open and let u : U → R be ∞-harmonic.
It then follows that u ∈ C1(U).

Regarding the general case there is some weaker information available. Given an
set E ⊂ Rm, x ∈ U and r > 0 we abbreviate

Ex,r = E − x
r
.

4.3. Definition. Let U ⊂ Rm be open, x ∈ U and r > 0. We define the difference
quotient operator Dx,r : C(U)→ C(Ux,r) by the formula

Dx,r(u) : Ux,r → R : h 7→ u(x+ rh)− u(x)
r

,

u ∈ C(U).

4.4. Definition. Let U ⊂ Rm be open, x ∈ U and u ∈ C(U). A function v : Rm → R
is called a derived function of u at x if there are positive real numbers r1, r2, . . . such
that rj → 0 as j →∞ and

sup
{∣∣∣Dx,rj(u)(h)− v(h)∣∣∣ : h ∈ K

}
→ 0 as j →∞

for every compact K ⊂ Rm. The collection of derived functions of u at x will be
denoted by Der(u, x).
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A diagonal argument based on Ascoli’s Theorem shows that Der(u, x) 6= ∅ when-
ever Lip(u, x) < ∞. In fact u is differentiable at x if and only if Der(u, x) is a
singleton and its element is a linear function (the derivative of u at x). It may occur
that Der(u, x) is singletonic but u is not differentiable at x (u(x) = |x|, x = 0). It
can also happen that every v ∈ Der(u, x) is linear but u is not differentiable at x as
the following example shows.

4.5. Example (D. Preiss). Let m = 1 and u(x) = x sin (log |log |x||), x ∈ R \ {0},
u(0) = 0. It is an easy matter to check that u is Lipschitzian when restricted to
some neighborhood of 0 and that Lip(u, 0) = 1. Furthermore, given h > 0 one sees
that

D0,rj(u)(h) = h sin (log |log rj + log h|)
whenever rj > 0, j = 1, 2, . . .. Given −1 6 t 6 1 and choosing properly the sequence
rj → 0 as j →∞ one can readily achieve

sup
{∣∣∣D0,rj(u)(h)− th

∣∣∣ : h ∈ K
}
→ 0 as j →∞

for every compact K ⊂ R. In other words Der(u, 0) consists in the linear functions
vt(h) = th, h ∈ R, corresponding to each −1 6 t 6 1.

For a proof of the following consult [2].

4.6. Theorem (M.G. Crandall and L.C. Evans). Let U ⊂ Rm be open, u : U → R
and x ∈ U . If u has the monotonicity of slope property then every v ∈ Der(u, x) is
linear and Lip v = Lip(u, x).

5. A calibration for cone functions
The proof presented in this last section is perhaps original. We will show that the
function u(x) = |x|, x ∈ Rm, is strongly absolutely minimizing in Rm \{0}. In order
to do this we need a series of (trivial) preliminary remarks.

5.1. Remark. Let V ⊂ Rm be open, u′ ∈ C(V ) and assume that
Γ = sup{Lip(u′, x) : x ∈ V } <∞ .

Then for every a, b ∈ V if [[a, b]] ⊂ V then
|u′(b)− u′(a)| 6 Γ|b− a| .

Given ε > 0 we associate with each x ∈ [[a, b]] some r(x) > 0 such that |u′(x+ h)−
u′(x)| 6 (Γ + ε)|h| whenever h ∈ B(0, r(x)). The compactness of [[a, b]] implies the
existence of x1, . . . , xκ ∈ [[a, b]] such that [[a, b]] ⊂ ∪{B(xk, r(xk)) : k = 1, . . . , κ}.
One readily infers that |u′(b)− u′(a)| 6 (Γ + ε)|b− a|. The conclusion follows from
the arbitrariness of ε > 0.

5.2. Remark. Let U ⊂ Rm be open, u ∈ Lip(U), u′ ∈ C(U), V ⊂⊂ U and assume
that u = u′ on ∂V and that

Γ = sup{Lip(u′, x) : x ∈ V } <∞ .
Then the function u′′ defined in U by

u′′(x) =

u′(x) if x ∈ V
u(x) if x 6∈ V ,
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verifies Lip(u′′, x) 6 max{Γ,Lip u} for every x ∈ U . It is of course sufficient to
check it for x ∈ ∂V . Let y ∈ U be such that [[x, y]] ⊂ U . If y 6∈ V then clearly
|u′′(y) − u′′(x)| = |u(y) − u(x)| 6 (Lipu)|y − x|. If y ∈ V then we denote by z the
point from ∂V ∩ [[y, x]] closest to y. It then follows from Remark 5.1 that

|u′′(y)− u′′(x)| 6 |u′′(y)− u′′(z)|+ |u′′(z)− u′′(x)|
= |u′(y)− u′(z)|+ |u(z)− u(x)|
6 Γ|y − z|+ (Lipu)|z − x|
6 max{Γ,Lip u}|y − x| .

The next remark is about a kind of Gauss-Green formula. Its interest stems from
the fact that open sets V with L m(∂V ) > 0 are allowed.

5.3. Remark. Assume that

(A) U ⊂ Rm is open, v ∈ C1(U,Rm), div v = 0;

(B) f ∈ C(U) and sup{Lip(f, x) : x ∈ U} <∞;

(C) V ⊂⊂ U and f = 0 on ∂V .

Then
∫
V 〈∇f, v〉dL m = 0. We start by defining a function g : U → R by the formula

g(x) =

f(x) if x ∈ V
0 if x 6∈ V .

It follows from Remark 5.2 that Lip(g, x) 6 Γ for every x ∈ U , whence also g
is differentiable L m almost everywhere in U according to Rademacher’s Theorem.
Next we choose a decreasing sequence of open sets Vj ⊂⊂ U , j = 1, 2, . . ., such that
∂Vj is an m− 1 dimensional submanifold of class 1 and V = ∩∞j=1Vj. Applying the
Gauss-Green Theorem we obtain∫

Vj
〈∇g, v〉dL m =

∫
Vj

div(gv)dL m −
∫
Vj
g div vdL m

=
∫
∂Vj
g〈v, nVj〉dH m−1

= 0 ,
j = 1, 2, . . .. According to the bounded convergence Theorem we infer that

0 =
∫
V
〈∇g, v〉dL m

=
∫
V
〈∇f, v〉dL m +

∫
∂V
〈∇g, v〉dL m .

Whence it remains only to show that
∫
∂V 〈∇g, v〉dL m = 0. In case L m(∂V ) = 0

this is obvious. Otherwise we claim that if x ∈ ∂V is an L m density point of ∂V
and g is differentiable at x then ∇g(x) = 0. This is because g = 0 on ∂V , whence
the approximate gradient ap∇g(x) = 0, and since g is differentiable at x one infers
∇g(x) = ap∇g(x) = 0. Since L m almost all points x ∈ ∂V enjoy both properties
according to the Lebesgue density Theorem, the conclusion follows at once.

The following “calibration argument” may be original.

5.4. Theorem. Let z ∈ Rm, a, b ∈ R and define u(x) = b+ a|x− z|, x ∈ Rm.
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(A) The function u is strongly absolutely minimizing in Rm \ {z}.

(B) If V ⊂⊂ Rm \ {z}, u′ ∈ C(V ) is strongly absolutely minimizing in V and
u′ = u on ∂V then u′ = u in V .

Proof. There is of course no restriction to assume that z = 0 and a = b = 0, i.e.
u(x) = |x|, x ∈ Rm. We define v(x) = x|x|−m, x ∈ Rm \ {0}. We notice that, in
Rm \ {0}, v is C1 smooth, div v = 0 and 〈∇u, v〉 = |v|. Let V ⊂⊂ Rm \ {0} be
nonempty and u′ ∈ C(Rm \ {0}) be such that u′ = u on ∂V . Since Lip(u, x) = 1 for
every x ∈ Rm \ {0} we need only to show that

1 6 sup{Lip(u′, x) : x ∈ V } . (9)

Denote by Γ the right member of the above inequality and, avoiding a triviality,
assume that Γ < ∞ (so that in particular u′ is locally Lipschitzian in V , whence
also differentiable L m almost everywhere in V according to Rademacher’s Theorem
and, in view of Remark 2.2, ‖∇u′‖∞,V <∞). We define u′′ : U → R as follows.

u′′(x) =

u′(x) if x ∈ V
u(x) if x 6∈ V .

According to Remark 5.2 we see that Remark 5.3 applies to f = u′′ − u whence∫
V
〈∇u−∇u′, v〉dL m = 0 .

In turn, ∫
V
|v|dL m =

∫
V
〈∇u, v〉dL m

=
∫
V
〈∇u′, v〉dL m

6 ‖∇u′‖∞,V
∫
V
|v|dL m .

(10)

As
∫
V |v|dL m > 0, we infer from Remark 2.2 that (9) holds. This proves (A).

Assume V and u′ are as in (B). The minimizing property of u′ together with
Remark 2.2 implies that ‖∇u′‖∞,U 6 1. Plugging this inequality in (10) yields∫

V
〈∇u′, v〉dL m =

∫
V
〈∇u, v〉dL m =

∫
V
|v|dL m .

It immediately follows that 〈∇u′, v〉 = |v|, L m almost everywhere in V . Therefore
∇u′ = v|v|−1 = ∇u, L m almost everywhere in V . Since Lip u′ < ∞ we infer from
the Fundamental Theorem of Calculus that u′(x)− u(0) = u(x), x ∈ Rm. As u′ = u
on ∂V we conclude that u′ = u. �
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