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The Quantum Birkhoff Normal Form
and Spectral Asymptotics

San Vũ Ngo.c

Abstract

In this talk we explain a simple treatment of the quantum Birkhoff normal
form for semiclassical pseudo-differential operators with smooth coefficients.
The normal form is applied to describe the discrete spectrum in a generalised
non-degenerate potential well, yielding uniform estimates in the energy E.
This permits a detailed study of the spectrum in various asymptotic regions
of the parameters (E, ~), and gives improvements and new proofs for many
of the results in the field. In the completely resonant case we show that the
pseudo-differential operator can be reduced to a Toeplitz operator on a reduced
symplectic orbifold. Using this quantum reduction, new spectral asymptotics
concerning the fine structure of eigenvalue clusters are proved.

1. Introduction: spectral asymptotics for potential wells

The motivation for this work is to understand spectral asymptotics for the Schrödinger
operator Ĥ = −~2

2
∆ + V (x), acting on Rn, or on a compact riemannian manifold,

where V is a smooth confining potential. In this talk we restrict for simplicity to
the case of Rn, and V ∈ C∞(Rn). Of course, it is one of the fundamental questions
of (non-relativistic) quantum mechanics. The point where the potential reaches a
global minimum will be called a global potential well. This is where the ground
state lives, at least in the semiclassical limit ~ → 0. One could think for instance of
a molecule oscillating in its fondamental state, subject to small excitations which
may put it in various neighbouring states, corresponding to eigenvalues of Ĥ that
remain close to the smallest one. The idea of semiclassical analysis is to understand
the behaviour of the lowest eigenvalues in terms of the shape of the potential near
its minimum. This will naturally require a détour by classical mechanics.

This talk is based on joint work with Laurent Charles, Institut de Mathématiques de Jussieu (UMR 7586),
Université Pierre et Marie Curie – Paris 6, Paris, F-75005 France.
MSC 2000: 58J40, 58J50, 58K50, 47B35, 53D20, 81S10.
Keywords: Birkhoff normal form, resonances, pseudo-differential operators, spectral asymptotics, symplectic reduc-
tion, Toeplitz operators, eigenvalue cluster.
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Figure 1: A potential with a global well.

Exactly how many eigenvalues above the ground state will be accessible by in-
vestigating the shape of the well is a key issue to address. The use of a Birkhoff
normal form — initially introduced for classical mechanics in Birkhoff’s book [1] —
will greatly improve the naive number of such eigenvalues that could be hoped for
by a simple perturbation analysis.

The idea to use a Birkhoff normal form in semiclassical analysis is not new.
After Gustavson popularised Birkhoff’s construction, many theoretical physicists
have used it in different fields of quantum physics, with great success in particular in
spectroscopy. A mathematical formulation in terms of pseudo-differential operators
appears in [11], [9], [7] and certainly many other articles. Please refer to our original
article [3] for a slightly more complete bibliography.

2. Hamiltonian classical mechanics

Our phase space is here R2n with canonical variables (x, ξ). The Hamiltonian func-
tion H(x, ξ) into consideration is the energy of the classical system.

For instance, the Hamiltonian function corresponding to the Schrödinger operator
is H(x, ξ) = 1

2
‖ξ‖2 + V (x).

Any function H in C∞(R2n) gives rise to a dynamical system{
ẋ = ∂H

∂ξ

ξ̇ = −∂H
∂x

More generally at this point (M,ω) could be any symplectic manifold. A function
H ∈ C∞(M) defines a vector field XH on M by duality:

ω(XH , ·) = −dH.

The corresponding evolution of a point m ∈M is then the dynamical system dm
dt

=
XH(m).

If M = R2n, the symplectic form is the canonical 2-form ω =
∑

j dξj ∧ dxj.
In any case, the basic fact for such a Hamiltonian system is that the function H

is constant along trajectories.
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3. Classical wells

We are interested in non-degenerate global wells (although many constructions re-
main valid for local wells), which precisely means the following:

(H1).

There is a unique global minimum z0 for H, and it is non-degenerate:

H(z0) = 0, dH(z0) = 0, H”(z0) is invertible.
Moreover ∃E∞ > 0 such that {H 6 E∞} is compact.

An immediate consequence of this hypothesis is that z0 is a fixed point, and more-
over for any E 6 E∞, trajectories in H−1(E) are complete. Of course, all trajectories
starting close to the bottom of the well will stay forever in a small neighbourhood
of it. But this would still hold for local minima. The global assumption will ensure
that, for the corresponding quantum system, no “tunneling effect” can occur, and
all eigenfunctions contributing to the low eigenvalues are indeed localised near z0.

4. The classical Birkhoff normal form

The Birkhoff normal form is a well known refinement of the averaging method :
under a suitable canonical transformation, a perturbation of a harmonic oscillator
H2 can be replaced by its average along the classical Hamiltonian flow generated
by H2. With the averaging method, this remains valid as long as one restricts the
dynamics to times bounded by O(1/ε), where ε is the size of the perturbation. Using
the Birkhoff normal form, this time can be extended to O(1/εN) for arbitrary N ,
provided one takes into account higher order terms which are also averaged, but in
a more intricate sense.

Let H(x, ξ) be a Hamiltonian function in C∞(R2n) with a global non-degenerate
well at z0 = 0.

Then by a simple argument of symplectic linear algebra, there exist canonical
coordinates (x, ξ) in which H = H2 + O((x, ξ)3) where H2 is a harmonic oscillator :

H2(x, ξ) =
n∑

j=1

νj(x
2
j + ξ2

j )/2, νj > 0.

The classical Birkhoff normal form is a formal result, in terms of Taylor series,
which can be stated as follows.

Theorem 4.1. there exists a formal Taylor series

K = K3 +K4 + · · · , with Kj homogenenous of degree j in (x, ξ)

and new formal canonical coordinates (x, ξ) such that

H(x, ξ) = H2 +K

where K is invariant under the flow of H2: {H2, K} = 0.

5. Classical dynamics

What can we get from the Birkhoff normal form ? Of course, one can truncate the
Taylor series at an arbitrary order, for the normal form K itself but also for the
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normalising canonical transformation as well. This shows that, for points starting
close to the origin, K is an approximate integral of motion for H.

Hence the motion (approximately) takes place in a submanifold of dimension
2n− 2, instead of the usual codimension-1 hypersurface given by fixing the energy
H.

In general one can do much better.

• if the frequencies νj are Q-independent then, as a formal series,K = f(I1, . . . , In)
with Ij = (x2

j + ξ2
j )/2. So we have actually n independent commuting integral

of motion !

The dynamics is (formally) completely integrable and the flow of H2 winds
densely on a Lagrangian n-torus.

• if the frequencies are completely resonant: νj = νcpj with pj ∈ N, νc ∈ R+.
Then there is no (obvious) integral for H, apart from K(1). But the flow of
H2 is periodic, and we can at least use this new symmetry to gain a better
understanding of the dynamics.

• Of course there are intermediate cases, where the dimension of the Q-vector
space generated by ν1, . . . , νn may range from 2 to n − 1..., and which in
principle could be handled by a combination of both techniques. We do not
deal with them here.

6. Extensions

This well-known Birkhoff normal form still raises fascinating questions.

• Natural question for a mathematician. What about convergence of the series
(for the normal form K and/or the canonical transformation) ? This question
is known to be very difficult, and was already raised by Poincaré. Amongst
recent results, one can cite :

– The canonical transformation is convergent if H is analytic and inte-
grable [14].

– The convergence of the normal form itself is more difficult. A partial
answer was given in [8] and states that it is “either always convergent or
generically divergent”.

We won’t be interested here in these convergence issues. For us, H is any C∞

function, and its Birkhoff normal form can safely be considered divergent.

• Natural question for a physicist. What about quantum mechanics ? Many
formal results by physicists and quantum chemists since at least 1960 attest
the interest to perform such a normal formal in quantum mechanics. It may
lead to very accurate numerics, much more accurate than could be achieved
by a simple perturbation analysis. Many works show that resonances (integer

(1)For instance when ν = (1, 1, 2) Duistermaat proved that in general H cannot be completely
integrable [5].
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valued relations between the frequencies νj) are very important. Even though,
from a purist viewpoint, one could consider that in nature no such resonance
can occur and that the generic case of non-resonant frequencies is the only
relevant one, this would lead to huge problems. When frequencies are close to
being resonant, then small denominators appear in the normal form, making
it very rapidly divergent. In many cases, it is much wiser to deal with such
systems are perturbations of resonant cases. This phenomenon shows up, for
instance, in the so-called Fermi resonance for the CO2 molecule.

The goal of this talk is to explain what kind of rigorous statements one can
obtain by using a quantum mechanical Birkhoff normal form. Of course we
shall have to give sense to divergent series. This is another reason why the
semiclassical limit is so useful : divergent series can still produce asymptotic
expansions when ~ → 0.

7. Schrödinger operators with a potential well

Let us return to our Schrödinger operator P = −~2

2
∆ + V (x). Assume V has a

global, non-degenerate minimum at x0 = 0 with V (0) = 0.
By a linear, unitary change of variables in local position coordinates x = (x1, . . . , xn)

near 0, V ′′(0) is diagonal; let (ν2
1 , . . . , ν

2
n) be its eigenvalues, with νj > 0.

Now, the rescaling xj 7→
√
νjxj transforms P into a perturbation of the harmonic

oscillator Ĥ2:

P = Ĥ2 +W (x), with Ĥ2 =
n∑

i=1

νj

2

(
−~2 ∂

2

∂x2
j

+ x2
j

)
,

where W (x) is a smooth potential of order O(|x|3) at the origin. We are thus in
position to discuss Birkhoff normal forms.

In fact, in the article [3] we just assume that P is a self-adjoint pseudo-differential
operator in a standard class with symbol p(x, ξ) having a global non-degenerate well
in the sense of hypothesis (H1). Since we don’t use any specific property of the
Schrödinger operator, everything still goes through.

Then the spectrum of P is discrete below E∞: let us denote its eigenvalues by
λP

1 (~) 6 λP
2 (~) 6 . . . .

In 1983, Simon and Helffer-Sjöstrand proved independently that for any fixed j,
λP

j (~) admits an asymptotic expansion in half-integer powers of ~. The appearance of
these non-integer exponents was a bit of a surprise. They do not appear in dimension
1, and in general they do not appear for non-resonant systems. However they do
show up for the Fermi resonance 1 : 2.

8. Known results for semi-excited states

The Helffer-Sjöstrand result was not completely satisfactory in the sense that, if one
fixes the index j (in λP

j (~)), then this means that we are looking at a very small
energy: E = O(~).

So how to reach higher energies is a natural question if we have physical applica-
tions in mind.

The answer is known for non-resonant frequencies and is due to Sjöstrand:
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Theorem 8.1 ([11]). If the νi’s are independent over Q, then

Spec(P ) ∩ [0, C~δ] = {f(~(k1 + 1
2
), . . . , ~(kn + 1

2
); ~), ki ∈ N}+O(~∞)

where f = f(I1, . . . , In; ~) admits an asymptotic expansion in integral powers of ~.

We can thus describe a growing to infinity number of eigenvalues in the limit
~ → 0, provided the energy does not exceed C~δ. The corresponding states were
called semi-excited states, understanding that true excited states should be those
corresponding to a fixed spectral interval, not shrinking with ~.

9. Heuristics

Let us explain heuristically how the Birkhoff normal form is likely to produce such
a result as Sjöstrand’s theorem, and why the important resonant case was more
difficult to handle.

• The non-resonant case (where K is formally completely integrable).

It is fairly easy to understand. The original HamiltonianH become f(I1, . . . , In)
under some canonical transformation, up to an error term R.

Using pseudo-differential operators and the Fourier integral calculus, one can
quantise this transformation: then P = Ĥ becomes microlocally unitarily
equivalent to f(Î1, . . . , În). Since the spectrum of Ij is merely ~(N+ 1

2
),N ∈ N,

this give the expected quasi-eigenvalues, with corresponding quasi-modes.

Then this gives the whole spectrum because H is confining, which ensures not
only that no other eigenvalue might show up, but also that the error term R
must be very small. Techniques for this step are now quite standard in the
pseudo-differential setting.

• The resonant case. The possibilities for the normal form K are vast. Essen-
tially, the only thing we have is an S1 symmetry. Hence one should perform
a reduction. But this is not easy for several reasons:

– the S1 action is in general not free: the orbit space is not a manifold...
(in general it has orbifold singularities);

– unfortunately, pseudo-differential operators are not stable by reduction...

Only these reasons were enough to make the problem look quite unpleas-
ant. The fact that several unsuccessful attempts were made doesn’t add any
encouragement(2). Nevertheless, related results exist in the literature, which
could serve as guides, as the well-known clustering phenomenon for operators
with periodic bicharacteristics.

(2)For instance, in [12], I could only deal with the case ν1 = ν2 = · · · = νn.
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10. Asymptotics for eigenvalue clusters

There is a long tradition of results for pseudo-differential operators with periodic
bicharacteristics, in the hands of Weinstein, Colin de Verdière, Guillemin, Helffer,
Dozias, and certainly many others.

The main message is the following:

Theorem 10.1 ([13], [4], etc.). Consider a pseudo-differential operator P . If the
Hamiltonian flow of the principal symbol is simply periodic (in particular without
fixed points) around a smooth energy hypersurface P = E, and the subprincipal
symbol vanishes there, then the spectrum around E is clustered on an arithmetic
progression α+β~(N + γ), N ∈ Z, where the width of the cluster is of order O(~2).

∼ ~
2

β~

E

Proof . Using the pseudo-differential calculus, one can perturb P by adding a
smaller order term in such a way that the new operator P̃ satisfies

exp(−iP̃ /β~) = C.Id. See [4].

�

In view of our initial problem, this theorem raises the following questions:

• Does it hold for fixed points (bottom of well) ?

• Can we describe the internal structure of each cluster ?

For the sake of simplicity, let us assume here that νc = 1, so that all frequencies
νi are positive integers.

Let EN = ~( |ν|
2

+N), N ∈ N, be the eigenvalues of Ĥ2.
Then one of the main results of [3] is the following:

Theorem 10.2 ([3]). 1. There exists ~0 > 0 and C > 0 such that for every
~ ∈ (0, ~0]

Spec(P ) ∩ (−∞, C~
2
3 ) ⊂

⋃
EN∈Spec(Ĥ2)

[
EN − ~

3
, EN +

~
3

]
.

2. When EN 6 C~ 2
3 , let m(EN , ~) = #Spec(P ) ∩

[
EN − ~

3
, EN + ~

3

]
. Then for

~ < ~0, m(EN , ~) is precisely the dimension of ker(Ĥ2 − EN).

3. Let k = k(x, ξ) be the average of W along the flow of H2.

Let SN ⊂ R2n be the sphere: SN = {(x, ξ) ∈ R2n, H2(x, ξ) = EN}.
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Let EN + λ1(EN , ~), . . . , EN + λm(EN ,~)(EN , ~) be the eigenvalues of P in this
N-eth band in increasing order. Then, uniformly for ~ < ~0 and N such that
EN 6 C~ 2

3 ,

λ1(EN , ~) = inf
(x,ξ)∈SN

|k(x, ξ)|+ (EN)
3
2 O(N−1),

λm(EN ,~)(EN , ~) = sup
(x,ξ)∈SN

|k(x, ξ)|+ (EN)
3
2 O(N−1)

and for any function g ∈ C∞(R),
m(EN ,~)∑

i=1

g
(
λi(EN , ~)

(EN)
3
2

)
=
(

1

2π~

)n−1∫
SN

g
(
k(x, ξ)

(EN)
3
2

)
µEN

(x, ξ) + O(N2−n)

where µEN
is the Liouville measure of SN .

The first point establishes the existence of clusters. The second one relates these
clusters to the corresponding eigenspaces of Ĥ2. The last point gives the asymptotics
for the spectral density in each cluster. One can remark that these asymptotics
behave as if we had a new semiclassical problem restricted to each cluster, whose
principal symbol is the averaged perturbation k.

Remark: In our article [3] we explain how to improve the exponent 2/3 in the
spectral upper bound ~2/3 — and the corresponding inverse exponent 3/2 in (EN)3/2

– in some situations.

11. The formal Birkhoff normal form

Let us mention now some of the most important steps leading to the above theorem.
As usual, the Birkhoff normal form is primarily a formal result, and this can be
formulated directly in a quantum setting.

We work with the space

E = C [[x1, . . . , xn, ξ1, . . . , ξn, ~]],

and define the weight of the monomial xαξβ~` to be |α|+ |β|+2`. The finite dimen-
sional vector space spanned by monomials of weight N is denoted by DN . Let ON

be the subspace consisting of formal series whose coefficients of weight < N vanish.
(ON)N∈N is a filtration :

E = O0 ⊃ O1 ⊃ · · · ,
⋂
N

ON = {0}.

The space E becomes an associative algebra under the Weyl product (the usual
Weyl star-product of R2n, for which ~ is a central element). We consider it as a Lie
algebra with the corresponding associative bracket.

The formal quantum Birkhoff normal form can be expressed as follows.

Theorem 11.1. Let H2 ∈ D2 be the harmonic oscillator (as before) and L ∈ O3.
Then there exists A ∈ O3 and K ∈ O3 such that

• ei~−1adA(H2 + L) = H2 +K ;

• [K,H2] = 0 .
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Moreover if H2 and L have real coefficients then A and K can be chosen to have
real coefficients as well.

Here adA is the endomorphism: L 7→ [A,L], and the series ei~−1adA(H2 +L), which
is convergent in the filtration (ON), can be seen as the formal conjugation of H2 +L

by ei~−1A.
The proof is very easy. When one expands the wanted relation in the ON -filtration,

one remarks that the formula can be verified inductively if the operator i~−1adH2

restricts to a semisimple endomorphism of each DN . This fact is indeed true, and
can be explicitly verified on the basis consisting of the monomials ~`zβ z̄γ, with
zj = xj + iξj, z̄j = xj − iξj, thanks to the formula

~−1adH2(z
β z̄γ) = 〈β − γ, ν〉zβ z̄γ.

12. The quantum Birkhoff normal form

We are now looking for a concrete, usable version of the Birkhoff normal form.
The following version is a refinement of Sjöstrand’s statement in [11]; it has the
advantage of controlling independently asymptotics both in the energy E and the
semiclassical parameter ~.

Theorem 12.1 ([3]). Let P be a semiclassical self-adjoint pseudo-differential oper-
ator of order zero such that the principal symbol p admits a non-degenerate global
well in the sense of (H1), with arbitrary frequencies νi > 0.

Then for any compact domain D ⊂ R2n containing the origin in its interior there
exists a pseudo-differential operator K of order zero such that

• [K, Ĥ2] = 0;

• K vanishes microlocally outside of D;

• the total Weyl symbol σW (K) ∈ O3,

and for each η > 0 there exists E0 > 0, ~0 > 0 and for each N a constant CN > 0
such that for all (~, E) ∈ [0, ~0]× [0, E0],(

λP
j 6 E or λQ

j 6 E
)
⇒
∣∣∣λP

j − λQ
j

∣∣∣ 6 CN(EN + ~N),

where Q = Q((1 + η)E) := (Ĥ2 +K)
�Π

Ĥ2
(−∞,(1+η)E]

(L2(Rn))
.

Here ΠĤ2
J is the spectral projector of Ĥ2 on the interval J , and λQ

1 6 λQ
2 6 · · ·

are the eigenvalues of Q.

Actually, we have assumed in this statement that the subprincipal symbol of P
vanishes, as in the case of the Schrödinger operator. But here it is not a problem
to bring it back, since it only affects the result by a shift of the spectrum by the
amount ~H0, where H0 is the value of the subprincipal symbol at the origin. See [3].

13. Applications

Besides being the first step for the proof of theorem 10.2, this quantum Birkhoff
normal form has many applications. Let us mention some of them here.
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1. One can recover the semi-excited states of Sjöstrand [11] (in the non-resonant
case). Indeed, it essentially amounts to apply the theorem with E = C~γ, for some
γ ∈ (0, 1).

2. One can find a good approximation of the spectrum using only polynomial
differential operators (this, in particular, gives a mathematical justification for the
accurate numerics of spectroscopists.)

3. One can prove a “semi-excited Weyl law” for the spectral counting function:

N P (E, ~) ∼ 1

(2π~)n

∫
p6E

|dxdξ| .

4. One can recover the Low-Lying Eigenvalues of Helffer-Sjöstrand [6] and Si-
mon [10]. For this purpose, just use the theorem with E = C~. Then Q is a finite
dimensional matrix (of size independent of ~), and standard perturbations results
for eigenvalues apply. The appearance of non-integer exponents of ~ is guaranteed
if the normal form K has a non-vanishing part in D3.

14. The Bargmann side

In order to deal with the difficulties mentioned earlier in the case of completely
resonant frequencies νj, we find it appropriate to work in the Bargmann represen-
tation, not only for the harmonic oscillator Ĥ2, but also for all pseudo-differential
operators, which then become Toeplitz operators.

The Bargmann space B~ is the space of entire holomorphic functions on Cn with
finite L2 norm, with a weighted scalar product:

〈ψ, ψ′〉Cn =
∫

Cn
(ψ, ψ′)(z)µ(z), with (ψ, ψ′)(z) = ψ(z)ψ′(z)e−|z|

2/~

where |z|2 =
∑
ziz̄i and µ is the Lebesgue measure on Cn = R2n.

Operators on L2(Rn) can be transported on B~ via the Bargmann transform
which is the unitary map UB : L2(Rn) → B~ given by

UB(ϕ)(z) =
2n/4

(2π~)3n/4

∫
Rn
e~−1(z·x

√
2−(z2+x2)/2)ϕ(x)dx, (1)

where z · x =
∑
zixi, z2 = z · z, x2 = x · x.

The harmonic oscillator becomes

ĤB
2 (~) := UBH̃2(~)U∗

B = ~
n∑

j=1

νj

(
zj

∂

∂zj

+ 1
2

)
.

and H2 =
∑

j νj |zj|2.

15. Toeplitz operators

Using the Bargmann transform, pseudo-differential operators P are transformed into
Toeplitz operators Tg : B~ → B~, ψ 7→ ΠB(gψ), where ΠB is the orthogonal
projector of L2(Cn, e−|z|

2/~) onto B~, and g = g(~) is a function on Cn with an
asymptotic expansion in powers of h. The principal term g0 is just the principal
symbol of P , when we identify Cn with T ∗R by zj = (xj − iξj)/

√
2.
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Let us go back to the resonant case. We have our S1 action, which is given by the
flow of H2. Then the essential ingredient of the proof is, roughly, the following:

Let KN : HN → HN be the restriction of K to HN = ker(Ĥ2 − EN) , the N -th
eigenspace of Ĥ2.

Let M = MEN
be the symplectic reduced space at energy EN : M = H−1

2 (EN)/S1.
It would be awkward to try and use Toeplitz quantisation directly on MEN

, since
this orbifold shrinks to a point as E → 0. The trick here is to use the homogeneity
of the harmonic oscillator : the unitary map f(x) 7→ E

n
4 f(E

1
2x) allows us to identify

ker(Ĥ2(~) − E) with ker(Ĥ2(~/E) − 1). Thus we may choose h = ~/EN ∼ 1/N as
a new semiclassical parameter, and then only consider the reduced space M = M1.
We can now state the result.

Theorem 15.1 ([3]). KN can be identified to a semiclassical Toeplitz operator on
M :

KN = ΠNg + O(N−∞)

where g is a smooth function on M admitting an asymptotic expansion in powers of
N−1.

The technical details needed for a precise formulation of this result are not so
important for this talk. The main idea to have in mind is that this gives a strong
version of the “quantisation commutes with reduction” principle. Here the symmetry
is the S1 action, the reduced symplectic orbifold is M , and its quantising Hilbert
spaces are simply the N -th eigenspaces of Ĥ2 for N ∈ N. This version is strong in the
sense that our whole algebra of pseudo-differential operators commuting with Ĥ2 is
now reduced to an algebra of Toeplitz operators on M . The proof of theorem 10.2
can now be seen as an application of “standard” spectral asymptotics for Toeplitz
operators, developed in the case of orbifolds by Charles [2].
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