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Resolution blowups, spectral convergence
and quasi-asymptotically conical spaces

Rafe Mazzeo

1. Introduction

In the class of all stratified spaces are those spaces obtained by an iterated coning
procedure. We define this subclass of ‘iterated cone-edge’ spaces in more detail
below. A complete analysis of the natural elliptic operators in this class of spaces
remains a challenge, although by know there are many approaches and proposals for
how to proceed. In the geometric context this was initiated by Cheeger [2], but the
ideas proposed by Melrose [12] will likely provide the best framework for carrying
this out in detail; see also [14] and [13] for other approaches. For manifolds with
isolated conic or simple edge singularities, the theory is quite refined, see [11], [9],
[6] and references therein.

The present paper is concerned not only with this class I of singular spaces, but
also with two related classes of smooth manifolds: the class D of ‘resolution blowups’
of elements of I, and the class Q of quasi-asymptotically conic (QAC) spaces, which
(by definition) have ‘link’ an element of D. One of the main goals of this paper is to
describe more precisely the web of connections between I, D and Q, and to explain
how the analysis of elliptic operators on an element in any one of these three classes
relies on the analysis of induced operators on ‘subsystem spaces’ in the other two
classes. We state some basic results in the elliptic theory on each type of space, and
in particular sketch the proof of a result about the convergence of the spectrum
for generalized Laplacians on resolution blowups as the space collapses to one with
iterated cone-edge singularities. The proof of this last result is not self-contained
since it is part of a larger induction scheme which also involves QAC spaces. It
is a generalization of the proof in the ‘depth 1 case’, which appears in the recent
work of Rowlett [15]. Complete details concerning the geometry of these various
classes of spaces, as well as a thorough treatment of this spectral convergence result
and various results concerning Fredholm properties of generalized Laplacians on
weighted Sobolev and Hölder spaces, will appear in a forthcoming joint work with
Anda Degeratu [4].

Before proceeding, let us state that in this paper a generalized Laplacian will
refer to an elliptic operator of the form L = ∇∗∇ + R, acting on sections of some
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bundle E over a (possibly singular) Riemannian manifold X. We assume that E is
a parallel subbundle of the tensor bundle of X (possibly tensored with the spinor
bundle and an auxiliary flat bundle), and that ∇ is the Levi-Civita connection. The
self-adjoint endomorphism R of E is assumed to be constructed using the curvature
tensor and its covariant derivatives, and is conformally covariant of degree −2 with
respect to homothetic rescalings of the metric. A useful feature of these operators
is that they are canonically associated to a metric, and thus can be transfered from
one space to another without having to list a host of technical assumptions.

Before stating the main result about spectral convergence, it is necessary to give
a rather lengthy discussion of the geometric setting, and of the precise modes of
geometric degeneration treated here. In broad terms, we are interested in families of
metrics hε on a compact smooth manifold Y such that, as ε↘ 0, (Y, hε) converges to
a Riemannian stratified space (Y0, h0) in the class I of iterated cone-edge spaces; in
this singular limit, some finite collection of QAC spaces is ‘pinched off’. The spectral
and Fredholm properties of the induced operators LZ on each of these QAC spaces
plays a role in understanding whether the spectrum of LY,hε converges to that of
LY0,h0 .

Let us begin with the simplest example. Suppose that (Z, gZ) is an asymptotically
conical (AC) manifold. This means that there exists some compact subset K =
KZ ⊂ Z such that Z \ KZ is diffeomorphic to a product [1,∞) × Σ. Here Σ is
a smooth compact manifold endowed with a Riemannian metric κ, and we have
specified a diffeomorphism identifying ∂KZ with {1}×Σ. The coordinate ρ ∈ [1,∞)
is called a radial function, and in terms of this data, the metric gZ takes the form

gZ ∼ dρ2 + ρ2κ

on this neighbourhood of infinity. Here and elsewhere in this paper, we shall use
the shorthand notation that a metric g is similar to (∼) some normal form to mean
that g is equal to this normal form plus an error term which decays in the relevant
asymptotic region (here, as ρ → ∞). The manifold Σ is called the link of Z. The
homothetic rescalings (Z, ε2gZ) converge in the pointed Gromov-Hausdorff sense to
the complete Riemannian cone (C(Σ), dρ̂ 2+ρ̂ 2κ); here, as usual, C(Σ) is the product
[0,∞)ρ̂ × Σ where the boundary {0} × Σ is collapsed to a point (as indicated by
the degeneration of the metric at ρ̂ = 0). In this collapse, all the topology of KZ is
squeezed to a point. Conversely, we can also regard the space Z as a resolution of
this conic singular space C(Σ).

Suppose now that (Y0, h0) is a compact Riemannian space with isolated conic
singularity, with link (Σ, κ), at a point p. Thus, near p, h0 ∼ dr2 + r2κ as r ↘ 0.
We may now ‘resolve’ the singularity of (Y0, h0) using the AC space (Z, gZ) above,
since both have the same link (Σ, k), to obtain a smooth compact manifold Y and a
family of Riemannian metrics hε such that (Y, hε) → (Y0, h0) not only in the sense of
Gromov-Hausdorff limits, but also in C∞ away from the conic point. More precisely,
Y is obtained by replacing a small neighbourhood of the conic point in Y0 with some
compact truncation of Z. The metric hε is defined by pasting together h0 and ε2gZ .
This is the first example of what we shall call a resolution blowup (here, of Y0 along
Z). One could also let (Y0, h0) have a simple edge singularity, i.e. a single singular
stratum S, some collar neighbourhood of which is modelled on a cone bundle over
S, with each fibre a truncated cone over Σ. One can then carry out this resolution
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process fibrewise to obtain a smooth manifold and a degenerating family of metrics,
much as before.

A central question, and the main one we consider here, is whether the spectrum
of LY,hε converges to that of LY0,h0 . Note that since Y0 is incomplete, we must specify
a self-adjoint extension of this operator and (subject to some mild restrictions on
the curvature term R) we shall always use the Friedrichs extension. It turns out
that in order to answer this, one needs to know something about the mapping
properties for the operator LZ on weighted Sobolev spaces. In other words, this
spectral convergence problem relies on Fredholm theory of the elliptic operator LZ
on the complete space Z.

This Fredholm theory on Z is an interesting problem in its own right. It is impor-
tant here that the term of order 0 in LZ scales like ρ−2. (The analysis of operators
with more general nondecaying lower order terms, for example, LZ − λ with λ > 0,
turns out to have a very different nature.) For simplicity, we just recall the ‘classical’
result for a perturbation ∆+V of the scalar Laplacian for gZ , where we assume that
V ∈ C∞(Z), V ∼ α/ρ2, α ∈ R, as ρ → ∞ (where the Laplacian is a nonnegative
operator). Then

∆gZ
+ V : ρδL2(M ; dVgZ

) −→ ρδ−2L2(M ; dVgZ
)

is Fredholm provided δ lies in a range of weights R \ {±γj}, where the numbers γj
are determined by the spectrum {λj+α} of the induced operator ∆k+α on the link
Σ: γj =

√
(n−2)2

4
+ λj + α. This sets the stage for a closer study of the regularity

properties of solutions, Hodge and index theory, etc.
We now explain an interesting generalization of AC geometry and of this Fredholm

result. There is a class of smooth manifolds in complex algebraic geometry, called
QALE (for quasi-asymptotically locally Euclidean) spaces. These are obtained as
so-called crepant resolutions of complex orbifolds Cn/Γ, where Γ ⊂ SU(n) is a
finite subgroup. If Γ acts freely away from 0, the corresponding QALE space is
asymptotically conical in the sense above; however, in general, the fixed point set
of Γ is a union of subspaces {Wj}, each stabilized by a different isotropy subgroup
of Γ. These crepant resolutions, Z → Cn/Γ are of interest for many reasons, but
particularly because, as proved by Dominic Joyce, they all admit complete Ricci-flat
Kähler-Einstein metrics. We refer to [7] for a description of (and more references on)
these resolutions as well as Joyce’s construction of these metrics using the complex
Monge-Ampere equation. QALE spaces (Z, gZ) have many interesting properties,
but we emphasize only a few of these here. First, if Z is a resolution of the quotient
Cn/Γ, then the homothetic rescalings (Z, ε2gZ) converge to Cn/Γ in pointed Gromov-
Hausdorff norm as ε → 0. There is a smoothly bounded compact submanifold KZ ,
the exterior of which is diffeomorphic to [1,∞)× Y , as in the AC case, with radial
function ρ as the first coordinate; in terms of this diffeomorphism, gZ ∼ dρ2+ρ2h(ρ)
where {h(ρ)} is a family of metrics on the link Y such that as ρ → ∞, (Y, h(ρ))
converges to S2n−1/Γ (with its round orbifold metric), which is an element of I.
This is a geometric correspondence dual to the one above; namely, the rescaled
cross-sections of QALE spaces collapse onto orbifolds, and the geometry of this
collapse is precisely the type in which we are interested. Joyce obtained certain
weaker mapping properties of the scalar Laplacian (which was all he needed) using
the maximum principle, but in order to obtain the Fredholm theory for systems,
e.g. for the generalized Laplacian LZ , with an optimal range of weights, one needs
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to understand the spectral convergence for the family of induced operators on this
degenerating link. This is a problem of lower geometric complexity (i.e. lower depth)
than Z itself, so the spectral convergence of LY,h(ρ) can be analyzed in terms of the
Fredholm theory of still simpler QALE spaces.

The general scheme of what we are proposing to do should now be clear. We
describe this in a slightly broader setting which leaves the confines of the algebro-
geometric setting of the original QALE construction, and recasts the resolution
process more geometrically.

Define I to be the class of compact stratified spaces with iterated cone-edge singu-
larities and with a compatible Riemannian metric; Ik denotes the subset consisting
of spaces which can be defined using at most k iterated conings. Next, Dk is the
class of compact spaces Y equipped with a ‘blowdown map’ β : Y → Y0, Y0 ∈ Ik,
and a family of Riemannian metrics hε so that (Y, hε) → (Y0, h0) in the Gromov-
Hausdorff sense, and in C∞ away from the singular locus of Y0; we write D = ∪kDk.
Finally, Q is the class of quasi-asymptotically conical (QAC) manifolds, again fil-
tered by ‘depth’, soQ = ∪kQk. Each (Z, gZ) ∈ Qk is a smooth complete Riemannian
manifold with the following properties; there exists a compact smoothly bounded
submanifold KZ such that Z \KZ is diffeomorphic to [1,∞)ρ × Y and with respect
to this diffeomorphism, gZ ∼ dρ2 + ρ2h1/ρ, where (Y, hε) ∈ Dk.

Each resolution Y → Y0, with Y ∈ Dk, Y0 ∈ Ik, is defined by an iterative process
of attaching collections of spaces {Zj ∈ Qj}j<k. In the example above, the AC
space (Z, gZ) and its link (Σ, κ) lie in Q0 and D0, respectively. The degenerating
family (Y, hε) we constructed by gluing (Z, gZ) to the complement of the singularity
in the conic space (Y0, h0) ∈ I1 is an element of D1. Next, one can construct an
element (Z ′, gZ′) ∈ Q1 with (Y, hε) as its link. This requires a choice of a smooth
compact manifold with boundary KZ′ such that ∂KZ′ = Y ; this is the new part of
the resolution, and of course there is considerable freedom in choosing this (provided
that it exists at all!). Outside of KZ′ we specify that Z ′ is diffeomorphic to [1,∞)ρ′×
Y with gZ′ ∼ d(ρ′)2 + (ρ′)2h1/ρ′ , as before, and hence (Z ′, ε2gZ′) → (C(Y0), dρ̂

2 +
ρ̂ 2h0) (where ρ̂ is the limit of the variable ερ′). In this limit, KZ′ collapses to a point.

To summarize, there is a natural map Dk → Ik; this is not surjective since there
are many spaces (Y0, h0) ∈ Ik which admit no smoothings at all. There is also a
natural map Qk → Dk obtained by taking the link family (Y, hε) of a QAC space
(Z, gZ), which is also not surjective; the range consists of those manifolds Y (with
appropriate degenerating metric) which smoothly bound, but even on this subset
there is no obvious inverse mapping (it is, of course, an interesting question whether
there are minimal, or in some other way canonical, fillings in the smooth category).
Finally, the resolution blowup is defined on some appropriate subset of Ik×∪j<kQj

and has image in Dk.
There are numerous analytic problems to be studied in this setting. We men-

tion just a few. One direction is to study generalized Laplace operators on QAC
spaces; a first step is to prove that these operators are Fredholm on natural weighted
spaces, and after that to go on to study the Hodge theory, index theory of Dirac-
type operators and finally more subtle problems in scattering theory, etc. Another
direction is to study these generalized Laplacians on the compact smooth spaces
(Y, hε) ∈ Dk. Here the initial step is to prove convergence of spec (LY,hε) as ε → 0;
further refinements include the limiting behaviour of spectral invariants, such as the
determinant, eta invariant, etc. These two directions are closely linked: the range of
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allowable weights for the Fredholm theory of LZ , where (Z, gZ) ∈ Qk, is determined
by the limiting behaviour of the spectrum of the induced generalized Laplacian on
its link (Y, hε) ∈ Dk; conversely, aspects of the Fredholm theory on the subsystem
QAC spaces (Zj, gZj

) appearing in the resolution blowup Y → Y0 are needed to
understand the limiting behaviour of the spectrum on (Y, hε).

Concerning the history, Joyce [7] obtained the Fredholm theory for the scalar
Laplacian on QALE spaces. His methods do not extend readily to systems, and are
also not sharp with respect to the range of allowable weights. The Hodge theory for
QALE spaces of depth 1, was studied recently by Carron [1], using a very interesting
refinement of the Mayer-Vietoris sequence adapted to certain noncompact settings.
As is clear in his proof, the underlying complex geometry of a QALE space allows for
various simplifications of the computation, making it more tractable than is likely for
a general QAC space. The index theory has, to my knowledge, not been attempted in
this setting. There is a much more extensive history for the study of the spectrum of
various types of Laplacians on collapsing families of compact Riemannian manifolds.
On the one hand is the work of Cheeger-Colding [3], Lott [8] and Ding [5], which
addresses much more general types of collapse. On the other hand, McDonald [10]
studied the resolvent for a simple form of conic collapse, while the very recent work
of Rowlett [15] specifically treats the spectral convergence and also obtains detailed
results about the convergence of the heat kernel for (Y, hε) ∈ D1.

The goals in this paper are, first to lay out this general program, and second, to
sketch the proof of spectral convergence for generalized Laplacians on degenerating
families (Y, hε). This is the technically easiest step in the whole chain, yet it gives
some idea of the arguments used. Since this is part of an induction, this proof
is unavoidably not self-contained, but relies at one point on some aspects of the
mapping properties on QAC spaces of lower depth. More specifically, we prove the

Theorem (Spectral Convergence). Let (Y, hε) ∈ Dk, and suppose that Lε =
∇∗∇+R is a generalized Laplacian with respect to the metric hε acting on sections
of some subbundle of the full tensor bundle of Y , as described earlier, with R ≥ 0.
Denote by {Zj}j<k the collection of QAC spaces of depth j < k used in the resolution
blowup Y → Y0. We assume that each LZj

≥ 0, and that moreover 0 is not an L2

eigenvalue of any LZj
, for all j < k. If Λε = {λj(ε)} is the spectrum of Lε and

Λ0 the spectrum of the Friedrichs extension of LY0,h0, then the set of accumulation
points of Λε as ε→ 0 is equal to Λ0, and in fact Λε → Λ0 as sets with multiplicity.

As already noted, the argument used to prove this theorem is a generalization of
the one in [15], which treats the case k = 1 (and achieves far more than just this
spectral convergence), and that one in turn is based upon ideas developed in a larger
ongoing project, joint with Anda Degeratu [4], to study the Fredholm theory and
other aspects of the elliptic theory for such operators on general QAC spaces. This
last-cited paper will contain a more detailed development of all of the definitions
and basic results here, and for this reason the present discussion will be somewhat
abbreviated.

The limitation to ‘geometric Laplacians’ L = ∇∗∇ + R is not serious, of course,
and there are analogous results for more general operators (including ones with-
out diagonal principal part), and also for first-order (e.g. Dirac-type) operators.

VIII–5



Extending these results to such operators requires some laborious structure con-
ditions, which follow directly from the metric asymptotics when discussing these
Laplace-type operators.

Finally, it is worth re-emphasizing that this result about spectral convergence is
one of the weaker results one can prove in this setting, as will be clear from the rather
elementary nature of the proof. In particular, we obtain no information about uni-
formity of the rate of convergence, and hence this cannot be used directly to study
spectral invariants, nor any of the more refined problems beyond the Fredholm the-
ory on QAC spaces. It will probably be necessary to carry out a more sophisticated
parametrix construction (as has been done for D1 in [15]) to achieve these ends;
such a construction will unfortunately be quite intricate. This has prompted the
development of the more elementary arguments suggested here.

Thanks are due to Anda Degeratu for allowing me to report on our joint work
about QAC spaces; she and also Pierre Albin read this paper carefully and made
many valuable remarks. I have also had helpful discussions concerning generalized
conic degeneration with Julie Rowlett. A detailed microlocal treatment of analysis
on iterated cone-edge spaces was planned and sketched out a (very) long time ago
with Richard Melrose, to whom I owe apologies for letting that project lie dormant
for so long; his point of view on degeneration problems has, of course, been very
influential on my own, though that may not be so evident here. Finally, thanks are
due to Frank Pacard, with whom I have been discussing problems and methods
closely related to the ones here for many years.

2. Resolution blowups

We now give a more careful description of the geometry of iterated cone-edge spaces,
resolution blowups and QAC spaces. We shall always be working with Riemannian
spaces, and so shall describe the differential topology and the metric simultaneously.

2.1. Iterated cone-edge spaces
Let us begin with the basic notion of a Riemannian cone. Suppose that (Σ, h) is a
stratified Riemannian space. The (complete) cone over Σ is space [0,∞)r × Σ/ ∼,
where the boundary {0} × Σ is dentified to a point, with metric dr2 + r2κ; the
truncated cone Ca,b(Σ) denotes the subset where a ≤ r ≤ b. Note that any singular
stratum S ⊂ Σ induces a singular stratum C(S) of one higher dimension in the cone
C(Σ).

Definition. For each k ≥ 0 the class of iterated cone-edge spaces of depth k, denoted
Ik, is defined by induction on k. An iterated cone-edge space of depth 0 is a compact
smooth manifold. A stratified space X lies in Ik if for any p ∈ X, if S is the open
singular stratum containing p and dimS = `, then there exists a neighbourhood U of
p in X which is diffeomorphic to the product V × C0,1(Σ) where V ⊂ R` is an open
Euclidean ball diffeomorphic to a neighbourhood in S and Σ ∈ Ij for some j < k,
and the integer n = ` + dimC(Σ) is independent of the point p, and is called the
dimension of X. If dimS > 0, then we say that it is an edge in X with fibre C(Σ)
and link Σ. Thus X ∈ Ik if it can be formed by a k-fold iterated coning or edging
procedure. An iterated cone-edge metric g on X is by definition one which respects
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this diffeomorphism, i.e. is locally of the form g ∼ dr2 + r2h + κ, where h is an
iterated cone-edge metric on Σ and κ is a metric on S. The entire class of iterated
cone-edge spaces I is the union over all k of these subclasses Ik.

It is often helpful, and not too restrictive, to assume slightly more structure on
the metric g near a nonisolated singular stratum; namely, suppose that the link of
this stratum with metric h+κ is a Riemannian submersion over the stratum (S, κ).

A useful tool in the study of iterated cone-edge spaces is the notion of radial
blowup. This is a natural operation which replaces the singular space X ∈ Ik with a
manifold with corners X. The radial blowup of a truncated cone C0,1(Σ) is obtained
by replacing the vertex by the boundary {0} × Σ. (The conic metric lifts to be
degenerate at this boundary.) The iterated radial blowup of a space X ∈ Ik is
defined by radially blowing up the strata in order of decreasing codimension.

Proposition. If X ∈ Ik, then its iterated radial blowup X is a manifold with corners
of codimension k. Every boundary face H ⊂ X is the total space of a fibration, where
the base is the iterated radial blowup S of a stratum S ⊂ X, which is itself a manifold
with corners, and with fibre the iterated radial blowup of the link Σ for that stratum.
There is a natural blowdown map πX : X → X.

Let p̄ ∈ X with p = πX(p̄) lying on the interior of some stratum S, and fix a
diffeomorphism of an neighbourhood of p in X with a product V ×C0,1(Σ), Σ ∈ Ij.
There is a coordinate system near p̄ comprised of radial coordinates r0, . . . , r` for
some ` ≤ j, with each ri ∈ [0, 1), and coordinates in a product of Euclidean balls,
(y, z) ∈ Br ×Bs, r+ s = n− `− 1. Here r0 is the radial function for the cone C(Σ)
and y is a local coordinate on S; the remaining coordinates (r1, . . . , r`, z) are of the
same inductively determined type on the radial blowup of the link Σ.

We conclude with one final remark. If Y0 ∈ Ik and Sk is the stratum of greatest
depth, k, then Y0 \ Sk has iterated cone-edge singularities only up to depth k − 1.
All of the geometric constructions here are essentially local, and since the inductive
hypothesis will be that we have carried out our various constructions for all spaces of
depth less than k, completing the inductive step will simply involve showing that we
can extend these constructions over this final depth k stratum, or over the smooth
spaces which converge to it.

2.2. QAC spaces and resolution blowups
We have already provided some indication of the definition of QAC manifolds, and
of the way these can be used to resolve iterated cone-edge spaces. We now carry
this out more precisely, and give two interlocking definitions, one for the class Q of
QAC spaces and the other for the class D of resolution blowups of iterated cone-
edge spaces. Both Q and D are filtered by subclasses Qk and Dk, respectively; Q0

consists precisely of the AC spaces, and D0 consists of compact smooth manifolds
with fixed metric.

Before embarking on the general case, we begin with a more careful description
than was given in the introduction of the resolution blowup (Y, hε) ∈ D1 of Y0 ∈ I1.
Suppose that Y0 ∈ I1 has a simple edge singularity along the stratum S = S1.
Since it has greatest depth, S is compact and smooth, and by definition of I1,
some neighbourhood of it in Y0 is diffeomorphic to a bundle over S with fibre a
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truncated cone C0,1(Σ), where Σ ∈ D0. In this neighbourhood, the edge metric has
the form h0 ∼ dr2 + r2hΣ + κS. Suppose that (Z, gZ) ∈ Q0 has link (Σ, hΣ); thus
there exists a smooth compact submanifold with boundary K = KZ ⊂ Z such that
Z \K ∼= C1,∞(Σ) and gZ ∼ dρ2 + ρ2hΣ. The metrics g0 and gZ on Z are compatible
in the sense they induce the same metric hΣ on the link.

For any a < 1, denote by Ba(S) the bundle over S with fibre the truncated cone
C0,a(Σ). Similarly, for any b > 1, denote by Zb the truncation K ∪ {ρ < b} ⊂ Z,
and set B̃b(S) equal to the bundle over S where each cone C0,a(Σ) is replaced by
Zb. Thus B̃b(S) may be regarded as a resolution of Ba(S). The resolution blowup of
Y0 is now defined by excising the neighbourhood Ba(S) from Y0 and replacing it by
B̃1/a(S). This can be done at any scale: thus, for any ε < 1, define the gluing map

ψε : B̃(S)1/ε \ B̃(S)1 −→ B1(S) \Bε(S), ψε(ρ, y, s) = (ερ, y, s), y ∈ Σ, s ∈ S.
This allows us to define the smooth manifold

Yε = Y0 \Bε(S) ∪ψε Z1/ε.

The metrics h0 and gZ glue together in an obvious way on this space to produce
a degenerating family of metrics hε. Note that all the manifolds Yε, ε > 0, are
diffeomorphic to one another, but the metric hε is most naturally defined via the
attaching map ψε, so it is useful to keep the notation Yε to remind us of the scale
of the gluing map. In any case, we have now defined (Yε, hε), which is an element of
D1. Following this same convention, we shall often write an element of Dk as (Yε, hε)
even though the manifolds Yε are mutually diffeomorphic when ε > 0.

Following this gluing scheme we now proceed to define the higher depth elements
of each of these classes by induction on k. Note that we have already defined Ik for
every k.

2.2.1. Dk  Qk

Let (Yε, hε) ∈ Dk, and suppose that Y = ∂K for some compact smooth manifold K.
We then define Z ∈ Qk as the union of K with [1,∞)× Y , where ∂K is identified
with {1} × Y , and endow it with the metric

gZ ∼ dρ2 + ρ2h1/ρ,

at least on Y × (1,∞); its extension over K is arbitrary. The space (Z, gZ) is, by
definition, an element of Qk associated to the degenerating family (Yε, hε).

Conversely, and again by definition, the link of any (Z, gZ) ∈ Qk is an element
(Yε, hε) ∈ Dk.

Slightly more generally, if Wε is the total space of a fibration with fibre Y ∼= Yε ∈
Dk and base S, we may then construct the corresponding bundle with fibre Z ∈ Qk

and the same base.

2.2.2. ∪j<kQj + Ik  Dk

Fix (Y0, h0) ∈ Ik. Our goal is to define the resolution blowup Y (or Yε) of Y0 using an
appropriate collection of QAC spaces Zj, j < k. Not every such Y0 is smoothable, so
we must choose one that is. The precise criterion for smoothability has a slight twist
since we wish to ensure that the smoothing respects the local fibration structures,
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and so is defined inductively. The condition is vacuous when k = 0. When k ≥ 1, a
neighbourhood of Sk in Y0 is a cone bundle with (singular) fibre Σ. Assume that we
have already chosen an appropriate smoothing of Y0 \Sk, which we denote Ỹ (k); this
is an open manifold with end identified with a bundle of truncated cones over Sk with
link a smooth manifold Σ̃, which is itself a resolution blowup of Σ. Set Y ′ = ∂Ỹ (k)

(this is of course the bundle over Sk with fibre Σ̃). We now require that Σ̃ is the
boundary of a smooth compact manifold K; the final smoothing of Y0 is obtained
by replacing each truncated cone in this bundle with a copy of K, identifying ∂K
with Σ̃ on each fibre. The smoothing at each step is highly nonunique, and earlier
choices may obstruct smoothability at a lower depth, but we fix the choices below.

In order to modify this description to obtain the resolution blowup of Y0 we
must show how to incorporate the degeneration parameter ε. Let Sj be the union of
singular strata of depth j in Y0. Assume by induction that we have chosen Zj−1 ∈
Qj−1 to resolve the cone bundle over Sj, and hence have defined a resolution blowup
(Ỹ (k)

ε , h(k)
ε ) of Ỹ (k). Note that this is done ‘in reverse order’, i.e. we first resolve the

singularity at Sk−1 \ Sk and then continue in order of decreasing depth. The radial
variable r for Y0 at Sk can be lifted to a radial variable near the end of Ỹ (k)

ε . We excise
the region r ≤ 1; the resulting smoothed manifold with boundary has boundary Vε,
which is a bundle over Sk with fibre Y ′ε . Denote by h′ε the restriction of h(k)

ε to each
of these fibres; thus (Y ′ε , h

′
ε) ∈ Dk−1. Finally, suppose that (Z, gZ) is an element of

Qk−1 with link (Y ′ε , h
′
ε). We attach these spaces in fibrewise in the bundle Vε using

the same radial identification map exactly as above. This completes the construction
of Yε.

As for the metric, we can certainly assume that h(k)
ε extends to {ε < r ≤ 1} × Vε

with the form dr2 +r2h′ε/r+κ. Since the metric on Z has the form gZ ∼ dρ2 +ρ2h′1/ρ,
we can join the metrics h(k)

ε and ε2gZ just as for k = 1 via the identification ερ = r
to get a metric hε. The resulting space Y = Yε is a smooth manifold, and altogether
we obtain the element (Yε, hε) ∈ Dk.

2.2.3. Resolved total boundary defining function

Choose Y0 ∈ Ik, with radial blowup Y 0, and fix also a resolution blowup Yε → Y0.
The codimension one boundary faces of Y 0 are in bĳective correspondence with the
singular strata of Y0. Denote by rj a defining function for the (possibly disconnected)
boundary hypersurface corresponding to the stratum Sj. The product R = r1 . . . rk
is called a ‘total boundary defining function’; it is positive precisely on the open
dense principal stratum S0, and pushes forward to a continuous function on Y0.

Our aim in this subsection is to construct a family of weight functions Rε on Yε
converging to R with ε. The motivation is as follows. The natural elliptic estimates
on Y0 for a generalized Laplacian are those involving Sobolev or Hölder spaces
weighted by various powers of the rj. For the particular arguments in this paper, it
is sufficient to use powers of R as weight functions. The approximations Rε will be
used to properly phrase estimates for generalized Laplacians on Yε which are uniform
in ε. We shall not need to state the most precise sense in which Rε → R; at first it
suffices to know that this convergence holds locally uniformly on compact subsets
of the principal open stratum of Y0, but in the course of the construction it will
be made clear that these functions have precise limiting behaviour near the various
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singular strata as ε→ 0. To obtain the most satisfactory and precise description of
these functions, we regard Rε as a single function on

Y0 = Y0 × {0} ∪
⋃

0<ε≤1

Yε × {ε}.

Note that Y0 is metrically complete with respect to G = dε2 + hε. Its singularities
may be resolved by radial blowup of the singular strata at ε = 0, as usual in order of
decreasing depth of the singularity. The space obtained in this way is denoted Y and
called the single space of this resolution blowup. This is a manifold with corners; its
various boundary faces at ε = 0 correspond to the compactifications of the various
QAC components of the resolution blowup Yε → Y0, or to the resolved single spaces
of the (Dj, j < k) links of these QAC spaces. The most precise description of {Rε}
then is that it is a polyhomogeneous function with specific behaviour at each of
these boundary faces of Y . We do not pursue this description here since relatively
little about it is needed below, but this point of view is developed and explained
more carefully in [4].

Parenthetically, the name ‘single space’ may not seem particularly descriptive,
but in further developments of this subject it is meant to indicate that Y has two
counterparts, the double and triple spaces, which are needed to study the uniform
behaviour of degenerating differential and pseudodifferential operators on Yε, their
composition properties, etc.; see [15] for more on all of this when k = 1.

The functions Rε are constructed, as usual, by induction on the depth. When
Y ∈ D0, we set Rε ≡ 1. Now suppose that Rε has been chosen on every (Y ′, h′ε) ∈ Dj,
j < k, and consider some element (Yε, hε) ∈ Dk. By definition, there is some family
of QAC spaces Z ∈ Qk−1 which pinch off in the limit as ε → 0 and (Yε, hε) →
(Y0, h0) ∈ Ik. For simplicity, assume that Sk is a single point. Recall the definition
Yε = Ỹ

(k)
0,1 ∪ψεZ1/ε. As in the previous inductive arguments, assume that Rε has been

chosen on the depth k − 1 region where r ≥ 1 in Ỹ
(k)
0 , so we need only extend it

over this final region Z1/ε, which is a truncated QAC space. Denote the boundary
{r = 1} as (Y ′ε , h

′
ε) ∈ Dk−1; this is also identified with (∂Z1/ε, ε

2gZ |Y ′
ε
). As ε → 0,

this converges to Y0 \ {r < 1}. Let R′ε be the restriction of Rε to this boundary.
To define its extension to Z1/ε, recall first that the restriction of the metric hε to

this region is ε2gZ , and that in terms of some radial function ρ on the original QAC
space Z, ε2gZ ∼ dr2 + r2hε/r where r = ερ, for ε ≤ r ≤ 1.

The boundary Y ′ε decomposes into three regions, the first where R′ε = ε, the
second where R′ε = 1 and the third where ε < R′ε < 1. Similarly, for each ε ≤ r ≤ 1,
the level set Zr/ε decomposes into three regions, where R′ε/r = ε/r, R′ε/r = 1 and
R′ε/r(q) ∈ (ε/r, 1), respectively. The union of the first regions, over ε ≤ r ≤ 1, has the
form of a product KZ′ × [ε, 1], and the metric here is also of (approximate) product
form. (Here Z ′ is the element of Qk which pinches of in Y ′ε as ε → 0.) We define
Rε = ε on this entire region. Similarly, on the union of the third regions, where
R′ε/r = 1, we set Rε = r. This is just the linear ‘radial’ extension from the portion
of Y ′ε where R′ε = 1. In the middle region, the definition is more complicated. The
idea, however, is that we are regarding the union of this region and the first one as
a ‘sector’ in Z ′ × [ε, 1] of the form {(z′, r) : R′ε(z

′) ≤ r}, with the product metric,
and we would like Rε to be the restriction to this sector of the pullback of R′ε to this
product. In other words, we simply extend Rε linearly along each level set where r
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is constant. The precise formula is, for ε < r < 1 and y′ ∈ Y ′r/ε,

Rε(r, y
′) =

r(rR′ε/r(y
′)− ε)

r − ε
+
rε(1−R′ε/r(y

′))

r − ε
.

As a check, note that when R′ε/r = ε/r, Rε(r, y
′) = ε, while when R′ε/r(y

′) = 1,
Rε(r, y

′) = r.
This completes the extension of Rε to all of Yε. It is not hard to show that Rε lifts

nicely to the single space Y , but we leave details to the interested reader.

3. Spectral convergence of generalized Laplacians

We now come to the main result on spectral convergence which asserts that if Lε is
a generalized Laplacian on (Yε, hε) for ε > 0, where (Yε, hε) ∈ Dk, then under certain
natural hypotheses, the spectrum of Lε converges to that of the Friedrichs extension
of L0 on the limiting space Y0 ∈ Ik.

We give a fairly detailed sketch of the proof of this result. There are two things to
prove: first, if λ̄ ∈ R is an accumulation point as ε→ 0 of the spectrum of Lε, then λ̄
is in the spectrum of the Friedrichs extension of L0 on Y0; second, if λ̄ ∈ spec (LY0),
then it is an accumulation point of the spectrum of Lε as ε → 0. We shall restrict
attention to the first implication since its converse is proved in a straightforward
way by truncating the Friedrichs eigenfunctions on Y0, transplanting these to Yε and
using minimax. This last argument is explained in detail when k = 1 in [15], and in
general in [4].

The argument now proceeds as follows. Suppose that εj ↘ 0 and there exists
λ(εj) ∈ spec (Lεj) with λ(εj) → λ̄. Denote by φj the corresponding eigensection;
thus (

Lεj − λ(εj)
)
φj = 0.

To show that λ̄ ∈ spec (L0), we prove that φj converges to a nontrivial function φ̄,
that (L0 − λ̄)φ̄ = 0, and that φ̄ lies in the Friedrichs domain of L0.

Since Y is compact, we can normalize by replacing each φj be a constant multiple,
and so assume that the sequence {φj} is bounded in C3, for example, and then using
Arzela-Ascoli, we can pass to a subsequence which converges locally uniformly on
any compact subset of the principal top-dimensional stratum of Y0. Using local
elliptic estimates, this convergence is in C∞. However, the limiting function could
be identically zero. To preclude this, we choose a different normalization, using the
functions Rε constructed in the last section, which also gives some information about
the growth rate of the limiting function near the singular strata. The normalization
is now obtained by multiplying each φj by an appropriate constant so that

sup
q∈Yε

Rδ
ε |φε| = 1. (1)

The constant δ > 0 will be chosen later in the argument. For simplicity, drop the
subscript j and index q, R, λ and φ by ε→ 0.

Suppose that the supremum in (1) is attained at some point qε. The simplest case
occurs when qε → q̄ and this limit point lies in the interior of the regular part of
Y0. Since Rε → R, we have lim infε→0Rε(qε) > 0. Thus, passing to a limit in this
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equation yields φε → φ̄ where (L0 − λ̄)φ̄ = 0 and

|φ̄(q)| ≤ R−δ for all q,

and moreover, φ̄(q̄) = R(q̄)−δ 6= 0, so φ̄ 6≡ 0.
Under these conditions, if we choose 0 < δ < `/2 − 1, where ` is the minimal

codimension of any of the singular strata of Y0, then φ̄ is in the Friedrichs domain
of L0. This is a straightforward computation, at least when ` > 2. When ` = 2, one
must modify the normalization slightly and work a bit harder to characterize the
Friedrichs domain, cf. [4].

It must be shown that this is the only possibility. In other words, we must prove
that any case in which Rε(qε) → 0, so that the limit q̄ lies on one of the singular
strata of Y0, leads to a contradiction. This has many possible subcases, depending
on precisely how quickly and in what direction qε converges to one of these strata.
We shall explain this in detail, first when k = 1, then when k = 2, and then indicate
the inductive argument for the general case.

k = 1: (This already appears in Rowlett’s thesis [15]) We are assuming thatRε(qε) →
0, and there are two subcases, depending on whether Rε(qε) ≤ Cε or Rε(qε)/ε→∞.
In the first of these, qε lies in some fixed compact subset of the expanding AC space
Z1/ε. Rewriting the eigenvalue equation in this region in terms of the metric gZ
(instead of ε2gZ), we get that

(ε−2LZ − λε)φε = ε−2(LZ − ε2λe)φε = 0.

Now, replace φε by ψε = ε−δφε, so that |ψε(qε)| is bounded away from 0 as ε → 0.
Pass to a limit, to obtain a nontrivial function ψ̄ defined on the entirety of Z which
satisfies

LZψ̄ = 0 and |ψ̄| ≤ ρ−δ.

By the hypothesis of the theorem, such a function cannot exist, which shows that
this subcase cannot occur.

In the second situation, we perform a similar rescaling. However, now qε lies on the
expanding conic region of Z1/ε and escapes from every compact subset of Z. Using
the usual coordinates (ρ, y) on this subset, replace ρ by ρ̂ = ρ/ρ(qε), and rescale the
metric and φε accordingly. The rescaled space now converges to the complete cone
C(Y ′) (where Y ′ is the limiting cross-section of Z, which since k = 1 is simply a
compact smooth manifold), and the limiting function ψ̄ satisfies

LC(Y ′)ψ̄ = 0, and |ψ̄| ≤ ρ̂−δ.

Provided δ is not an indicial root of this conic operator, this too is impossible, since
although there are solutions which can decay like ρ̂−δ as ρ̂→∞, they must blow up
at a faster rate as ρ̂→ 0, and vice versa. Therefore, this subcase is also impossible.
This proves the result when k = 1.

k = 2: This case is slightly more involved, but incorporates all the issues which
appear in the general situation. For simplicity, assume that the depth 2 stratum
of the limiting space Y0 ∈ I0 is a single point (rather than an edge); there is an
element Z ∈ Q1 which is pinched off in the limit, and it has link at infinity Y ′0 ∈ I1.
The element of Q0 which is pinched off along the depth 1 stratum is Z ′ with link
the smooth manifold Y ′′0 ∈ I0. As before, we are in the situation where Rε(qε) → 0.
By a similar process of recentering the coordinate system, rescaling the metric and
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renormalizing the function φε, we can again arrange to pass to a nontrivial limit ψ̄.
There are now four subcases:

i) ψ̄ is defined on Z ∈ Q1 and satisfies |ψ̄| ≤ ρ−δ;

ii) ψ̄ is defined on C(Y ′0) and satisfies |ψ̄| ≤ ρ̂−δ;

iii) ψ̄ is defined on the cylindrical set Z ′ ×R` and satisfies |ψ̄| ≤ ρ−δ, where now
ρ is the radial function on Z ′, so in particular this bound is uniform in the R`

directions;

iv) ψ̄ is defined on the cylindrical set C(Y ′′0 ) × R` and satisfies |ψ̄| ≤ ρ̂−δ where
ρ̂ is the radial function on the first conic factor.

These cases correspond, respectively, to when qε converges to the depth 2 singular
locus with distance comparable to ε, to when it converges to this same locus at a
slower rate while remaining away from the adjacent depth 1 edge, or to when qε
converges to this depth 1 edge more quickly than to the depth 2 locus; this last case
splits into two subcases depending on whether Rε(qε) ≤ Cε or not.

In order to rule out each of these cases, we require the following

Lemma. Suppose that Z ∈ Q0 and LZφ = 0 has no solutions which decay like ρ−δ.
Lift ρ to Z×R` so that it is constant with respect to the second factor. If LZ×R`φ = 0
and |φ| ≤ ρ−δ, then φ ≡ 0. Similarly, if Σ is any smooth manifold and 0 < δ is
sufficiently small, if LC(Σ)×R`φ = 0 and |φ| ≤ s−δ, where s is the radial variable on
the cone, then φ ≡ 0.

Proof. Let W denote either Z or C(Σ). Then

LW×R` = LW + ∆R` .

The goal is to prove that if φ is in the nullspace of this operator and has a uniform
bound in the second R` factor, then it is actually independent of R`, so that we can
regard it as a function on W and hence reduce to the hypothesis of the theorem. Let
u be a linear variable in R`. Replacing δ by any slightly smaller positive number, it
suffices to prove that

LW×R` : S ′(R`; ρ−δ+n/2L2(W )) −→ S ′(R`, ρ−δ−2+n/2L2(W ))

is injective, where n = dimW , or equivalently, by duality, that

LW×R` : S(R`; ρδ−n/2+2L2(W )) −→ S(R`; ρδ−n/2L2(W ))

is surjective. For this, take the Fourier transform in the R` direction. The fact that

LW − |η|2 : S(R`
η; ρ

δ+n/2L2(W )) −→ S(R`
η; ρ

δ−2+n/2L2(W ))

is surjective for every η follows easily from the hypothesis that LW is self-adjoint and
nonnegative and that LW is surjective. A right inverse for LW×R` is then constructed
by Fourier synthesis. �

k > 2: It should be clear now how to proceed to the general case. The steps are the
same. The point qε can approach the singular strata in many different ways now, but
by induction, it suffices only to consider the same sort of situation as we encountered
earlier in the construction of the function Rε. Namely, assume for simplicity that
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the stratum of depth k in Y0 is an isolated point and suppose that qε converges to
this point. Then we may consider qε as lying in the rescaled truncated space Z1/ε,
Z ∈ Qk−1. If qε remains in a compact subset of this space, then an appropriate
rescaling converges to a limiting solution of LZψ = 0 on all of Z which satisfies
|ψ| ≤ ρ−δ. However, if ρ(qε) → ∞ then rescale by ρ̂ = ρ/ρ(qε) so as to assume
that the rescaled point q̂ε remains on the slice ρ̂ = 1. This slice, however, is now
Y ′1/ρ(qε) ∈ Dk−1, and there are various possibilities for whether q̂ε approaches the
singular stratum of this space, and if so, how and in what asymptotic direction. The
rescalings necessary in all of these cases are covered by the inductive procedure, with
the result that we always get a limiting solution ψ on a space W ×R` where now W
is either an element of Qj or else a cone over some element Y ′′0 ∈ Ij for j < k. It is
necessary to prove the extension of the Lemma to this more general setting. This is
precisely the point where the main inductive hypothesis enters. Namely, we wish to
simply assume that there are no decaying solutions φ to LZφ = 0 on the QAC space
of greatest depth which pinches off in this limit; however, in the duality argument,
we then need the fact that LZ is also surjective on spaces of sections decaying like
some small power of ρ on Z. This fact follows from the Fredholm theory for LZ since
Z ∈ Qk−1 has already been treated in a previous step of the big induction scheme.
This finishes the proof in all cases.

4. Further directions

As explained in the introduction, this note is intended as an announcement of the
work in [4] and a preliminary attack on the sorts of iteration arguments needed to
understand the elliptic theory on these various classes of spaces. There are numerous
issues which we have either discussed very briefly or omitted altogether, so these
proofs are incomplete as presented here (when k > 1). More complete explanations
of these arguments and the development of the Fredholm theory in weighted Sobolev
and Hölder spaces for generalized Laplacians on QAC manifolds is contained in [4].

We shall conclude with a brief discussion of the most important directions beyond
the results achieved in that paper.

First, there is a very refined elliptic theory on AC spaces, i.e. for generalized
Laplacians LZ where Z ∈ Q0, which relies on the techniques of geometric microlocal
analysis, see [11]. One obvious direction would be to replace the crude rescaling
arguments used here with a parametrix construction in a pseudodifferential calculus
adapted to the geometries of elements in Qk for any k. This is indeed possible,
albeit a moderately daunting task (even at just a combinatorial level). Some specific
problems which should be attacked are the understanding of Hodge theory, i.e. the
topological identification of L2 harmonic forms, as well as Atiyah-Patodi-Singer type
index theorems in this setting. Of particular interest will be the specializations of
these results to the special setting of crepant resolutions of Kähler orbifolds.

Very closely related to this is the need for a refinement of the spectral convergence
results for elements of Dk. The proofs here give no uniformity at all. It is possible
(as in [5]) to carry out similar proofs for the heat kernel restricted to times t ≥
t0 > 0, which then gives some control on the rates of convergence. However, this is
not sufficient if one wishes to understand the limiting behaviour of global spectral
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invariants, including determinants, eta functions, etc. This too can be approached
via parametrix methods; the case k = 1 appears in [15].
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