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Journées Équations aux dérivées partielles
Évian-les-Bains, 5 juin–9 juin 2006
GDR 2434 (CNRS)

High frequency limit of Helmholtz equations:
the case of a discontinuous index

Elise Fouassier

Abstract

In this text, we compute the high frequency limit of the Hemholtz equation
with source term, in the case of a refraction index that is discontinuous along
a sharp interface between two unbounded media. The asymptotic propagation
of energy is studied using Wigner measures.

1. Introduction

In this talk, we are interested in the analysis of the high frequency limit of the
following Helmholtz equation

− iαεεu
ε + ε2∆uε + n2(x)uε = −f ε(x) =

−1

ε
d−1
2

f
(x
ε

)
, (1.1)

where the variable x belongs to Rd for some d ≥ 3.
We assume that the refraction index is given by

n2(x) =

n2
+(x) if xd ≥ 1

n2
−(x) if xd < 1.

(1.2)

We also assume that there exists n0 > 0 such that n2(x) ≥ n2
0 for all x ∈ Rd, which

means that equation (1.1) is uniformly of “Helmholtz type”. Problem (1.1), (1.2)
corresponds to a transmission problem across the flat interface Γ = {xd = 1}. We
assume that the jump at the interface Γ satisfies [n2](x) = n2

−(x) − n2
+(x) > 0 for

all x ∈ Γ. This is the only interesting situation, as we explain below.
Equation (1.1) modelizes the propagation of a source wave in a medium with

refraction index n2(x). There, the small positive parameter ε is related to the fre-
quency ω = 1

2πε
of uε. In this text, we study the high frequency limit, i.e. the

asymptotics ε→ 0.
The source term f ε models a source signal concentrating close to the origin at the

scale ε, the concentration profile f being a given function. Since ε is also the scale of
the oscillations dictated by the Helmholtz operator ∆ + n2(x)

ε2 , resonant interactions
can occur between these oscillations and the oscillations due to the source f ε.
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Moreover, the interface induces a refraction phenomenon of the energy. As we will
see later on, the energy concentrates along the rays of geometric optics. We choose
here the jump of the index at the interface to be positive, which is the interesting
case since those rays are attracted by the regions of high index.

These are the two phenomena that we aim at studying quantitatively in the
asymptotics ε → 0. We refer to Section 2 for the precise assumptions we need on
the source f , together with the refraction index n2.

We assume that the regularizing parameter αε is positive, with αε → 0 as ε→ 0.
The positivity of αε ensures the existence and uniqueness of a solution uε to the
Helmholtz equation (1.1) in L2(Rd) for any ε > 0. In some sense, the sign of the
term −iαεεu

ε prescribes a radiation condition at infinity for uε. One of the key dif-
ficulties in our problem is to follow this condition in the limiting process ε→ 0. We
will discuss that point later on.

We study the high frequency limit in terms of Wigner measures (or semiclassical
measures). This is a means of describing the propagation of quadratic quantities,
like the local energy density |uε(x)|2, as ε → 0. The Wigner measure µ(x, ξ) is the
energy carried by rays at the point x with frequency ξ. These measures were in-
troduced by E. Wigner [20] and then mathematically developed by P. Gérard [9],
P.-L. Lions, T. Paul [15]. They are relevant when a typical length ε is prescribed.
They have already proven to be an efficient tool in such problems ([2], [3], [10], [17]).

Let us now state our main results. First, we introduce various measures: µ, µ±
denote the Wigner measures associated respectively with uε and with the restrictions
uε
± of uε to each medium. These three measures are defined on T ∗Rd. Last, we prove

that there exist two measures µ∂± defined on T ∗Γ that are, in some sense, the traces
of µ± at the interface:

µ± = 1{xd≷1}µ± + δ(xd − 1)⊗ δ(ξd)⊗ µ∂± .

Our first result, that is valid for a general index of refraction, describes how the
sharp interface induces a refraction phenomenon. Depending on the propagation
direction, the energy density is either totally reflected, or partially reflected and
partially transmitted according to Snell-Descartes’s law. More precisely, we prove
the following theorem.

Theorem 1. (General case)
Assume there is dispersion at infinity of the rays of geometrical optics (which corre-
sponds to geometrical hypotheses on the refraction index n, see (H2)-(H6) page 5).
Assume also:

(a) non-interference (no density comes from both sides at a same point of the inter-
face,

(b) no energy is trapped in the interface (µ∂± = 0).

Then, the Wigner measure associated with (uε) is given by

µ(x, ξ) =
∫ 0

−∞
(S∗tQ)(x, ξ)dt, (1.3)
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where S∗t is the Snell-Descartes semi-group associated with the refraction index n
and Q is given by

Q(x, ξ) =
1

2d+1πd−1
δ(x)δ

(
|ξ|2 − n2(0)

)(
|f̂(ξ)|2 + f̂(ξ)q̄(ξ)

)
, (1.4)

where q is an L2 density on the sphere {|ξ|2 = n2(0)}.

In this theorem, formula (1.3) means that µ is the integral along all the rays
of geometric optics, and up to infinite time, of the energy source Q. Outside the
interface, the rays, more precisely the bicaracteristics, are given by{

Ẋ(t) = Ξ(t), X(0) = x

Ξ̇(t) = 1
2
∇xn

2 (X(t)) , Ξ(0) = ξ,

The Snell-Descartes semigroup also contains the relations of reflexion/transmission
at the interface. In this text, we will not give a precise definition of Snell’s semi-
group. We refer, for instance, to [13], [17], or [7].

The energy source Q comes from the resonant interaction between the source f ε

and the solution uε. In particular, Q is concentrated at the origin via the Dirac
mass δ(x) and on the resonant frequencies |ξ|2 = n2(0). The value of the auxiliary
function q is related to the radiation condition at infinity satisfied by the weak limit
w of the rescaled sequence of solutions wε(x) = ε

d−1
2 uε(εx). This limit w clearly

satisfies the following Helmholtz equation with constant index

∆w + n2(0)w = −f. (1.5)

Unfortunately, the equation (1.5) does not identify w in a unique way. In the general
case, we cannot identify w as the outgoing solution to this equation, i.e. we cannot
identify q. Two difficulties arise: the treatment of the interface and the variability
of the indices n±(x).

Also, in the expression (1.3), the integral up to infinite time translates the radia-
tion condition at infinity satisfied by the measure µ. The follow-up of this condition
in the limiting process is one the key difficulties in our study. Last, the assumption
that no energy is trapped in the interface is linked both with the radiation condition
at infinity satisfied by the trace of the Wigner measure µ on the interface, and with
the (absence of) energy carried by gliding rays at the interface.

In the particular case when the indices n+ and n− are constant, a situation that
we call the homogeneous case in the sequel, we prove that the previous assumptions
are satisfied. The dispersion at infinity is obvious in that case since the rays are
pieces of lines. The proofs of hypotheses (a)-(b) together with the identification of
q in that case constitute our second main result.

Theorem 2. (Homogeneous case)
When the two indices n+ and n− are constant, we have:
(i) the non-interference hypothesis is satisfied,
(ii) µ∂± = 0,
(iii) q = 0 (i.e. w is the outgoing solution to the Helmholtz equation ∆w+n2

−w = f).

The combination of Theorem 1 and Theorem 2 gives a completely explicit expres-
sion for the Wigner measure µ in the homogeneous case.
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Our text is organized as follows. In Section 2, we first recall some definitions and
we then give our main assumptions on the refraction index and the source profile f .
In Section 3, we establish uniform bounds on the sequence (uε) and the sequence of
Wigner transforms (W ε(uε)), in order to ensure the existence of a Wigner measure
associated with (uε). In Section 4, we obtain the transport equations satisfied by
Wigner measures outside the interface and up to the boundary. In Sections 5 and
6, we give the outline of the proofs of Theorem 1 and Theorem 2 respectively.

2. Notations and assumptions on the source and the refrac-
tion index

2.1. Semiclassical measures and Wigner transform

In this section, we recall some usual definitions and notations.

We use the following definition for the Fourier transform:

û(ξ) = (Fx→ξu(x))(ξ) =
1

(2π)d

∫
Rd
e−ix·ξu(x)dx.

The Weyl semiclassical operator aw(x, εDx) (or Opw
ε (a)) is the continuous opera-

tor from S(Rd) to S ′(Rd) associated with the symbol a ∈ S ′(T ∗Rd) by the Weyl
quantization rule

(aw(x, εDx)u)(x) =
1

(2πε)d

∫
Rd

ξ

∫
Rd

y

ei(x−y)·ξ/εa
(x+ y

2
, ξ
)
f(y)dξdy.

For u, v ∈ S(Rd) and ε > 0, we define the Wigner transform

W ε(u, v)(x, ξ) = Fy→ξ(u
(
x+

ε

2
y
)
v̄
(
x− ε

2
y
)
),

W ε(u) = W ε(u, u).

We have the following formula: for u, v ∈ S ′(Rd) and a ∈ S(Rd × Rd),

〈W ε(u, v), a〉S′,S = 〈u, aw(x, εDx)v〉S′,S , (2.1)

where the duality brackets 〈., .〉 are semi-linear with respect to the first argument.
This formula is also valid for u, v lying in other spaces as we will see in Section 3.

If (uε) is a bounded sequence in L2(Rd) (or some weighted L2 space as we will
see in the sequel), it turns out that, up to extracting a subsequence, there exists
a Wigner measure (or semiclassical measure) µ associated with (uε), i.e. a positive
Radon measure on the phase space T ∗Rd = Rd

x × Rd
ξ satisfying:

∀a ∈ C∞c (R2d), lim
ε→0

〈uε, aw(x, εDx)u
ε〉L2 = lim

ε→0
〈W ε(uε), a〉 =

∫
a(x, ξ)dµ

2.2. Assumptions on the refraction index and the source

In the sequel, we denote x = (x′, xd) a point in Rd.
In order to get uniform (in ε) bounds on the sequence (uε), we use the following
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homogeneous Besov-like norms: for u, f ∈ L2
loc,

‖u‖Ḃ∗ = sup
R>0

1

R

∫
B(R)

|u|2dx,

‖f‖Ḃ =
∑
j∈Z

(
2j+1

∫
C(j)

|f |2dx
)1/2

,

where B(R) denotes the ball of radius R, and C(j) the ring {x ∈ Rd/2j ≤ |x| <
2j+1}.
These norms were introduced (in their inhomogeneous version) by Agmon and Hör-
mander [1], and they have been used recently by Perthame and Vega [18].
They satisfy the following duality relation∣∣∣∣∫ u(x)f(x)dx

∣∣∣∣ ≤ ‖u‖Ḃ∗‖f‖Ḃ.

We denote for x ∈ Rd, |x| =
√∑d

j=1 x
2
j and 〈x〉 = (1 + |x|2)1/2.

We are now ready to state our assumptions. Our first (technical) assumption, bor-
rowed from [2], concerns the regularizing parameter:

(H1) αε ≥ εγ for some γ > 0.

Next, we need assumptions on the refraction index that are mainly related to the
dispersion at infinity of the rays of geometric optics. The following five are those
made in [7] to obtain the estimates on uε.

(H2)There exists c > 0 such that [n2](x) ≥ c for all x ∈ Γ.

(H3) There exists n0 > 0 such that n ∈ L∞, n ≥ n0.

(H4)

2
∑
j∈Z

sup
C(j)

(x · ∇n2(x))−
n2(x)

:= β1 <∞.

(H5) ∑
j∈Z

sup
C(j)

2j+1 (∂dn
2(x))+

n2(x)
:= β2 <∞.

(H6) β1 + β2 < 1.

Next, following Benamou et al. [2], in order to follow the radiation condition in the
limiting process, we assume a stronger decay at infinity on the index:

(H7) 〈x〉N0∇xn
2
± ∈ L∞ for some N0 > 2.

(H8) ∇xn
2
± are locally Lipschitz on {x ∈ Rd/xd ≷ 1}.

As we will see in Section 3, to get uniform bounds on uε, we assume that the source
term satisfies
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(H9) ‖f‖Ḃ, ‖∇f‖Ḃ <∞.

In order to compute the limit of the energy source, we make, as in [2], the stronger
assumption

(H10) 〈x〉Nf ∈ L2(Rd) for some N > 1
2

+ 3γ
γ+1

, and 〈x〉N1∂xd
f ∈ L2(Rd) for some

N1 > 1/2.

Finally, we assume

(H11) f ∈ H 1
2
+s(Rd) for some s > 0,

so that the traces of f on hyperplanes are well-defined in L2(Rd−1
x′ ), and

(H12) limε→0 ‖f
(
·, 1

ε

)
‖L2(Rd−1

x′ ) = 0.

The last assumption can be rewritten as ‖f ε(·, 1)‖L2(Rd−1
x′ ) → 0 as ε→ 0, so it means

that no source density remains at the interface as ε→ 0.
Rather than keeping in mind these (weak) assumptions on the source f , one can

think about f as a smooth and compactly supported function. It is not a key diffi-
culty in our analysis.

Let us comment the assumptions we make on the index n. The conditions (H2)
and (H5) are specific to the case with interface: they mainly ensure that the energy
goes from one side of the interface to the other. The hypothesis (H4) together with
(H3), ensures the dispersion at infinity of the rays of geometrical optics outside the
interface. (H4) is a kind of a virial assumption. We would like to point out that we
do not require that the index n goes to a constant at infinity.

3. Bounds on uε, W ε(uε), W ε(f ε, uε)

The first step in our study is to prove uniform bounds on the sequence of Wigner
transforms (W ε(uε)), which will ensure the existence of a Wigner measure associated
with the sequence of solutions (uε) (up to extracting a subsequence). As in [2], we
deduce these bounds from uniform homogeneous bounds on (uε).

3.1. Bounds on the solution to the Helmholtz equation

In this part, we give uniform bounds on the sequences (uε) and (ε∇uε) and their
traces on the interface. This will allow us to define the various Wigner measures that
appear in our problem. The following theorem is proved in [7] (using the multiplier
method introduced by Perthame and Vega [18]):
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Theorem 3.1. ([7]) Under the hypothesis (H2)-(H7), the solution to the Helmholtz
equation (1.1) satisfies

‖ε∇uε‖2
Ḃ∗ + ‖uε‖2

Ḃ∗ +
∫
Γ

∣∣∣[n2]
∣∣∣ |uε|2dx′ +

∫
Γ

∣∣∣[n2]
∣∣∣ |ε∇uε|2dx′ ≤ C(‖f‖2

Ḃ
+ ‖∇f‖2

Ḃ
),

(3.1)
where C does not depend on ε.

We draw a consequence of these bounds that will be useful for our purpose. First,
we study the limit of the rescaled sequence defined by

wε(x) = ε
d−1
2 uε(εx)

that appears while computing the limit of the source term in the transport equation
satisfied by the Wigner measure µ. One can notice that, thanks to the homogeneity
of the norm Ḃ∗, we have the following scaling invariance

‖wε‖Ḃ∗ = ‖uε‖Ḃ∗ ,

‖∇wε‖Ḃ∗ = ‖ε∇uε‖Ḃ∗ .

Proposition 3.2. We can extract from (wε) a subsequence which converges weak-∗
in Ḃ∗ and strongly in L2

loc(Rd) to a solution w of

∆w + n(0)2w = −f. (3.2)

As a consequence, there exists a density q ∈ L2(|ξ|2 = n2(0)) such that

ŵ(ξ) = ŵ0(ξ) + i
π

2
q(ξ)δ(|ξ|2 − n2(0)), (3.3)

where w0 is the outgoing solution to (3.2), given by

ŵ0(ξ) = (|ξ|2 − n2(0) + i0)−1f̂(ξ) =
(
p.v.

( 1

|ξ|2 − n2(0)

)
+ i

π

2
δ(|ξ|2 − n2(0))

)
f̂(ξ).

Remark In general, we cannot identify w as the outgoing solution to (3.2). This
problem already appears in the case of a smooth index of refraction (i.e. without
interface). It has been solved in that case only recently by two different approaches
by Castella [4], and Wang, Zhang [19]. Here, we only prove that w = w0 in the
homogeneous case (Theorem 2).

Proof. The first part of point (i) can be easily deduced from Theorem 3.1 using
Rellich’s theorem. The formula (3.3) can be found in [1]. �

3.2. Bounds on the Wigner transforms W ε(uε) and W ε(f ε, uε)

From Theorem 3.1, we now deduce bounds on the sequences of Wigner transforms
(W ε(uε)) and (W ε(f ε, uε)). We obviously need uniform bounds on (W ε(uε)). The
study of the sequence (W ε(f ε, uε)) is also necessary to handle the source term in
the high frequency limit. Indeed, W ε(uε) satisfies the following equation, where W ε

stands for W ε(uε):

αεW
ε + ξ · ∇xW

ε + Zε ?ξ W
ε =

i

2ε
Im W ε(f ε, uε) =: Qε (3.4)
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with Zε(x, ξ) = i
2ε
Fy→ξ

(
n2
(
x+ ε

2
y
)
− n2

(
x− ε

2
y
))

.

The following two results are proved in [2]. The second point is due to the partic-
ular choice of the scaling of the source term in the Helmholtz equation (1.1).

Proposition 3.3. Assume that the sequence (uε) is bounded in Ḃ∗, and f ∈ L2
N(Rd)

with N > 1
2
.

(i) For any λ > 0, the sequence of Wigner transforms (W ε(uε)) is bounded in
the Banach space X∗

λ below and , extracting a subsequence, converges weak-∗ to a
nonnegative, locally bounded measure µ.
The Banach space X∗

λ is defined as the dual space of the set Xλ of functions ϕ̂(x, ξ)
such that ϕ(x, y) := Fξ→y(ϕ̂(x, ξ)) satisfies∫

Rd
y

sup
x∈Rd

(1 + |x|+ |y|)1+λ|ϕ(x, y)|dy <∞. (3.5)

(ii) If we denote f ε(x) = 1

ε
d−1
2

f
(

x
ε

)
, the sequence (W ε(f ε, uε)) is bounded in

S ′(T ∗Rd) and for all ψ ∈ S(T ∗Rd), we have

lim
ε→0

1

ε
〈W ε(f ε, uε), ψ〉S′,S =

1

(2π)d

∫
Rd

¯̂w(ξ)f̂(ξ)ψ(0, ξ)dξ, (3.6)

where w is defined in Proposition 3.2.

4. Transport equations on the Wigner measures

The next step in our study is the derivation of the transport equations satisfied by
the various Wigner measures that appear in our problem. These equations are of
two different types. The first one is the transport equation satisfied by the Wigner
measure µ in the interior of each medium, it is deduced from the case with a smooth
index of refraction studied in [2]. The other two equations concern the Wigner
measures associated with the restrictions of (uε) to each side of the interface up to
the boundary: the presence of the interface induces some extra source terms in these
equations that involve the Wigner measures associated with the traces of uε and
ε∂du

ε on the interface.
As we have already noted for the Helmholtz equation, the kinetic transport equation
(of Liouville type) satisfied by the Wigner measure µ must be complemented by a
radiation condition at infinity to determine a unique solution.

4.1. Notations
Throughout our study, we shall use the following notations:

For a function ϕ defined on Rd × Rk for some k ≥ 0, we denote ϕeΓ the trace of
ϕ on Γ× Rk.

For all x ∈ Rd, ξ′ ∈ Rd−1, we denote ω±(x, ξ′) = n2
±(x)− |ξ′|2.

We denote uε
± = 1{xd≷1}u

ε the restrictions of uε in each medium, defined on Rd.
Next, the sequences (uε

±) are bounded in Ḃ∗(Rd). Thus, we can associate with them
two Wigner measures µ− and µ+ on T ∗Rd as defined in Theorem 3.3.

Since the sequences of traces (uε
eΓ) and ((ε∂xd

uε)eΓ) are bounded in L2(Γ), we can

IV–8



also associate with the sequence (uε
eΓ , (ε∂xd

uε)eΓ) a matrix valued Wigner measure(
ν ν̄J

νJ ν̇

)
.

4.2. Behavior of the Wigner measure in the interior of each
medium

In the interior of each medium, the refraction index is smooth. The behavior of the
Wigner measure in that case is studied in Benamou et al [2]. We recall their result
in Theorem 4.2. Actually, they proved the analogous of Theorem 4.2 with a weaker
radiation condition at infinity. The condition we state here can be easily deduced
from the one they proved together with the following localization property. It is
well-known without source term, and it is still valid here thanks to the particular
scaling of f ε.

Proposition 4.1.

supp(1T ∗(Rd\Γ)µ) ⊂ {(x, ξ) ∈ T ∗Rd/ |ξ|2 = n(x)2}.

Theorem 4.2. Under the assumptions (H1)-(H10), the measure µ satisfies the fol-
lowing transport equation as a distribution in D′(T ∗(Rd \ Γ)):

ξ · ∇xµ+
1

2
∇xn

2(x) · ∇ξµ = Q(x, ξ) in T ∗(Rd \ Γ), (4.1)

where Q(x, ξ) = 1
2d+1πd−1 δ(x)δ(|ξ|2−n2(0))f̂(ξ)(

¯̂
f(ξ)+ q̄(ξ)), and q ∈ L2(ξ2 = n2(0))

is given in Proposition 3.2.
Moreover, µ satisfies the following outgoing condition at infinity:

µ(x, ξ) → 0 when |x| → ∞ with x · ξ < 0 and xd 6= 1.

4.3. Study up to the boundary
The above result does not say anything about the Wigner measure µ close to the
boundary Γ, where refraction occurs. We write the transport equations up to the
boundary using only test functions that are polynomials with respect to the ξd-
variable, which corresponds to tangential test operators. These operators, that act
as differential operators in the d-th variable, will be adapted to the treatment of the
interface (by integration by parts).
Using these test operators, we then study the propagation of the Wigner measure
up to the boundary. More precisely, since the behaviour at the boundary depends
on the side from which the rays come, we study separately the measures associated
with the restrictions of (uε) to each medium, µ±.

First, as for the Wigner measure µ, we have the following localization property
for the measures associated with the restrictions (uε

±).

Proposition 4.3.

(i) supp(µ±) ⊂ {|ξ|2 = n2
±(x)}.
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(ii) µ = µ+ + µ−.

Proof. Point (ii) is consequence of point (i) together with the orthogonality property
on Wigner measures. �

The following property specifies what happens at the boundary.

Proposition 4.4. For all ϕ0, ϕ1 in Ĉ∞c (Rd
x × Rd−1

ξ′ ), we have

−
〈
µ±,

(
ξ · ∇x +

1

2
∇xn

2
± · ∇ξ

)
(ϕ0 + ϕ1ξd)

〉
= 〈Q±, ϕ0 + ϕ1ξd〉

± 1

2
〈ν, (|ξ′|2 − n2

±)ϕ1eΓ〉T ∗Γ ± 〈Re νJ , ϕ0eΓ〉T ∗Γ ±
1

2
〈ν̇, ϕ1eΓ〉T ∗Γ (4.2)

where Q+ = 0, and Q− = 1
2d+1πd−1 δ(x)δ(|ξ|2 − n2(0))

(
|f̂(ξ)|2 + f̂(ξ)q̄(ξ)

)
, q being

given in Proposition 3.2.

5. Outline of the proof of the refraction result for two homo-
geneous media

In this text, we only give details about the proof of Theorem 1 in the case of two
homogeneous media. Indeed, the strategy of proof is exactly the same as in the gen-
eral case but the geometry of the rays is easy to treat in that particular case (the
rays are pieces of lines). Moreover, in this special case, we get a completely explicit
formula for the Wigner measure associated with (uε), in particular because we can
identify the various radiation conditions at infinity that are necessary to entirely
determine the Wigner measure µ. We refer to [8] for details about the general case.

In this section, we assume that n+ and n− are two constants with n− > n+ > 0.
Now we state our main result in the case of two homogeneous media.

Theorem 5.1. Assume (H1) and (H9)-(H12). Let uε be the solution to the Helmholtz
equation (1.1). Assume that the refraction indices n+ and n− are constant, with
n− > n+. Then, the Wigner measure associated with (uε) is given by

µ(x, ξ) =

1{xd<1,ξd≥0}

∫ 0

−∞
Q(x+ tξ, ξ)dt

+ 1{xd≤1,−
√

[n2]≤ξd<0}

(∫ 0

1−xd
ξd

Q(x+ tξ, ξ)dt+
∫ 1−xd

ξd

−∞
Q(x̌+ tξ̌, ξ̌)dt

)

+ 1{xd≤1,ξd<−
√

[n2]}

(∫ 0

1−xd
ξd

Q(x+ tξ, ξ)dt+
∫ 1−xd

ξd

−∞
αR(ξ′)Q(x̌+ tξ̌, ξ̌)dt

)

+ 1{xd≥1,ξd>0}

(∫ 0

1−xd
ξd

Q(x+ tξ, ξ)dt+
∫ 1−xd

ξd

−∞
αT (ξ′)Q(x̃+ tξ̃, ξ̃)dt

)
,
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where

Q(x, ξ) =
1

2d+1πd−1
δ(x)δ(ξ2 − n2

−)|f̂(ξ)|2,

ξ̌ = (ξ′,−ξd), x̌ = (x′, 2− xd),

ξ̃ =
(
ξ′, sgn(ξd)

√
ξ2
d + [n2]

)
, x̃ =

(
x′, 1 + (xd − 1)

ξ̃d
|ξd|

)
,

and the coefficients of partial reflection and partial transmission are

αR(ξ′) =

∣∣∣∣∣ 2
√
ω−(ξ′)√

ω+(ξ′) +
√
ω−(ξ′)

∣∣∣∣∣
2

, αT (ξ′) =

∣∣∣∣∣
√
ω+(ξ′)−

√
ω−(ξ′)√

ω+(ξ′) +
√
ω−(ξ′)

∣∣∣∣∣
2

.

x

αT

αR

(x, ξ) ∈ V1

(x, ξ) ∈ V2

(x, ξ) ∈ V3

(x, ξ) ∈ V4

t = 1−xd

ξd

x

x ξ

t = 1−xd

ξd

t→ −∞
t→ −∞

t→ −∞

t→ −∞

t→ −∞

ξ

ξ

+

+

+ξ x

Figure 1: Rays of geometrical optics in the homogeneous case.

Before going further, let us comment Theorem 5.1 with the help of Figure 1
(where the regions Vj, j = 1, . . . 4 are defined in Section 5.2). In order to compute
the value of µ at the point (x, ξ), we first use the transport equation (4.1) to obtain
the relation between µ(x, ξ) and the value of µ along the bicaracteristics (x+ tξ, ξ)
until the time when this curve reaches the interface:

µ(x, ξ) = µ(x+ tξ, ξ) +
∫ 0

t
Q(x+ sξ, ξ)ds.

The first part of µ in Theorem 5.1, i.e. when (x, ξ) ∈ V1 in Figure 1, corresponds to
points (x, ξ) on the left side of the interface such that the bicaracteristics passing
through (x, ξ) at t = 0 does not reach the interface for t ∈ (−∞, 0). The value of µ
at such points is obtained using the radiation condition at infinity. The second part
of µ, i.e. when (x, ξ) ∈ V2 in Figure 1, corresponds to points (x, ξ) on the left side
of the interface such that the bicaracteristics passing through (x, ξ) at t = 0 reaches
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the interface at a point where the ray is totally reflected (at time (1− xd)/ξd). Fi-
nally, the third and fourth parts of µ correspond to the two parts of the ray drawn
for (x, ξ) ∈ V3 in Figure 1. For such points, the energy is partially reflected and
partially transmitted at the interface.

We give the outline of the proof of Theorem 5.1 in the subsequent sections 5.1 and
5.2. We first define the boundary measures (related to the traces of the measures
µ± at the boundary). Then, we obtain the propagation relations at the boundary
(total reflexion and refraction) using the transport equations up to the boundary
obtained in the previous section. Finally, we get the Wigner measure µ by solving
the transport equation satisfied by µ and using both the radiation condition at
infinity and the propagation relations at the boundary.

5.1. Boundary measures
In this section, we introduce the boundary measures related to the trace of µ on
the interface and we give relations between these measures and the semiclassical
measures ν, ν̇ and νJ associated with the traces of uε and its derivative ε∂du

ε on
the interface. This task is performed using the transport equations on µ± up to the
boundary (4.2).

Existence and notations
Since outside the interface, µ is a solution to the transport equation

ξ · ∇xµ = Q(x, ξ) =
1

2d+1πd−1
δ(x)δ(|ξ|2 − n2

−)|f̂(ξ)|2,

we deduce
µ ∈ C

(
Rxd

,D′
(
Rd−1

x′ × (Rd
ξ \ {ξd = 0})

))
.

For this reason, we can define, in {ξd 6= 0}, the traces

µ0
± = µexd=1± . (5.1)

These measures inherit the positivity of µ and they satisfy the jump formula:

∂xd
(1xd≷1µ) = 1xd≷1∂xd

µ± δ(xd − 1)⊗ µ0
±.

Since we have the localization property supp(µ±) ⊂ {|ξ|2 = n2
±}, there exist four

nonnegative measures µout
± , µin

± (see Figure 2) such that

µ0
+ = δ(ξd +

√
ω+)⊗ µin

+ + δ(ξd −
√
ω+)⊗ µout

+ , (5.2)
µ0
− = δ(ξd −

√
ω−)⊗ µin

− + δ(ξd +
√
ω−)⊗ µout

− , (5.3)

where ω± has been defined in Section 4.1, ω± = n2
± − ξ′2.

Our goal is now to find relations between µin
− , µin

+ , µout
− and µout

+ that translate
the transmission/reflection phenomena at the interface.

First, let us introduce the following last measures.

Lemma 5.2. There exist two nonnegative measures µ∂± on T ∗Γ with support in the
set {|ξ′|2 = n2

±} such that

µ± = 1{xd≷1}µ± + δ(xd − 1)⊗ δ(ξd)⊗ µ∂± .
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xd = 1

µin
+

µout
+

µin
−

µout
−

Figure 2: Boundary measures

Remark This means that the density at the interface (xd = 1) can be only carried
by the gliding rays ξd = 0. In the particular case we are studying, these rays don’t
"come from" one medium since ξ is constant along a ray. Hence, we will have to
study separately the density inside the interface.

Next, we get the relations that we are looking for, depending on the regions of T ∗Γ.
They are obtained by "taking the trace" of the transport equations in Proposition
4.4 (choosing appropriate test functions).

Lemma 5.3. For ξd 6= 0, in the set {ω± > 0}, we have

(i) ±Re νJ =
√
ω±(µout

± − µin
± ),

(ii) 1
2
ν̇ = ω±(µout

± + µin
± − 1

2
ν).

Lemma 5.4.

(i) ν̇ = 0 on {ω+ = 0}.

(ii) Re(νJ) = 0 on {ω+ ≤ 0}.

5.2. Reflexion/transmission at the interface

In this section, we end the proof of our main theorem in the case of two homo-
geneous media. We prove it by solving Cauchy problems with respect to the xd

variable. These problems are of two types: in the regions where the rays of geomet-
rical optics do not reach the interface when t → −∞, we solve Cauchy problems
with boundary conditions at infinity in space; in the other regions, we solve Cauchy
problems with initial data at xd = 1.
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We use the following partition of phase space

T ∗Rd = {xd < 1, ξd ≥ 0} ∪ {xd ≤ 1,−
√

[n2] ≤ ξd < 0}

∪{xd ≤ 1, ξd < −
√

[n2]} ∪ {xd > 1, ξd ≤ 0}
∪{xd ≥ 1, ξd > 0} ∪ {xd = 1, ξd = 0}

= V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6.

The value of µ in the first five regions will be obtained by solving the transport equa-
tion (4.1) on each region Vj (j = 1, . . . , 5), using the radiation condition at infinity
and Lemmas 5.3 and 5.4 to get the values at the boundary. At variance, the value
of µ in V6 cannot be obtained using a transport equation since no ray coming from
one media reaches the interface with ξd = 0 (the rays are given by (x+ tξ, ξ) in the
homogeneous case). Thus, we have to study directly µ∂± . The following proposition
implies that µ = 0 in the region V6.

In the first region V1, µ is the solution to ξ ·∇xµ = Q with the outgoing condition
at infinity µ(x, ξ) → 0 as |x| → ∞ with x ·ξ < 0 (it is a consequence of the radiation
condition). On the other hand, if (x, ξ) ∈ V1, then for all t < 0, (x+ tξ, ξ) ∈ V1. We
deduce

µ(x, ξ) = µ(x+ tξ, ξ) +
∫ 0

t
Q(x+ sξ, ξ)ds.

Taking the limit t→ −∞, we obtain the value of µ in V1:

µ(x, ξ) =
∫ 0

−∞
Q(x+ sξ, ξ)ds.

As a consequence,

δ(ξd −
√
ω−)⊗ µin

− (x′, ξ′) =
∫ 0

−∞
Q(x′ + sξ′, 1 + sξd, ξ)dt.

In particular, the measure µin
− is known.

Now, we compute µ in the region V2. We consider the following part of the in-
terface: {ω− > 0} ∩ {ω+ ≤ 0}, which corresponds to 0 < ω− ≤ [n2]. On this set,
since Re νJ = 0, from Propositions 5.3 and 5.4, we get µout

− = µin
− . Hence, for

−
√

[n2] ≤ ξd < 0, we recover

δ(ξd +
√
ω−)⊗ µout

− = δ(ξ̌d −
√
ω−)⊗ µin

− (x′, ξ̌′)

=
∫ 0

−∞
Q(x′ + sξ̌′, 1 + sξ̌d, ξ̌)ds, (5.4)

where ξ̌ = (ξ′,−ξd). Hence, we are left with the following Cauchy problem in the xd

variable with initial data (5.4) at the interface xd = 1: For (x, ξ) ∈ V2,{
∂xd

µ+ ξ−1
d ξ′ · ∇x′µ = ξ−1

d Q, xd < 1,

µ|{xd=1}(x
′, ξ) =

∫ 0
−∞Q(x′ + sξ̌′, 1 + sξ̌d, ξ̌)ds.
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This problem is explicitely solvable. For (x, ξ) ∈ V2, we obtain

µ(x, ξ) = µ|{xd=1}(x
′ +

1− xd

ξd
ξ′, ξ)−

∫ 1

xd

Q(x′ +
s− xd

ξd
ξ′, s, ξ)

ds

ξd

=
∫ 0

−∞
Q
(
x′ +

(1− xd

ξd
+ s

)
ξ̌′, 1 + sξ̌d, ξ̌

)
ds

−
∫ 1

xd

Q(x′ +
s− xd

ξd
ξ′, s, ξ)

ds

ξd

=
∫ 1−xd

ξd

−∞
Q(x′ + tξ̌′, 2− xd + tξ̌d, ξ̌)ds

+
∫ 0

1−xd
ξd

Q(x′ + tξ′, xd + tξd, ξ)ds

xd = 1

(x, ξ)

t = 0

t→ −∞

t = 1−xd

ξd

(x′, 2− xd, ξ̌)

Figure 3: Total reflection

Remark One can notice that 1−xd

ξd
is the time at which the bicharacteristics reaches

the interface. The point (x′, 2−xd) is the symmetric of x with respect to the interface
(see Figure 3).

Next, we consider the part {ω− > 0} ∩ {ω+ > 0} of the interface. In the region
V4, µ satisfies the equation ξ · ∇xµ = 0 with the outgoing radiation condition at
infinity µ(x, ξ) → 0 as |x| → ∞, x · ξ < 0. Hence, µ = 0 in this region and

µin
+ = 0.

In the next lemma, we write the relations between the other three measures µin
− ,

µout
− , µout

+ . These relations translate the refraction phenomenon. The proof of this
result is borrowed from [16].

Lemma 5.5. If µin
+ = 0, then µout

+ = αTµin
− and µout

− = αRµin
− .

Proof. Using Lemma 5.3, and the fact that µin
+ , we get

ν̇ + ω+ν = 2ω+µ
out
+ = 2

√
ω+ Re νJ .
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But the matrix measure
(

ν ν̄J

νJ ν̇

)
is hermitian so that

|νJ | ≤ (ν)
1
2 (ν̇)

1
2 .

Hence, we recover

2(ω+ν)
1
2 (ν̇)

1
2 ≤ ν̇ + ω+ν = 2

√
ω+ Re νJ ≤ 2(ω+ν)

1
2 (ν̇)

1
2

and
ν̇ = ω+ν in {ω− > 0} ∩ {ω+ > 0}.

Thus, we now have five equations (the equation above and the four equations in
Lemma 5.3) involving the six unknown measures ν, ν̇, νJ , µout

+ , µin
+ and µin

− . After
some calculations, we deduce {

µout
+ = αTµin

− ,
µin

+ = αRµin
− ,

where the coefficients αR and αT are defined in Theorem 5.1. �

Using this lemma, we can now determine µ in the remaining regions V3 and V5

by solving Cauchy problems with initial data at xd = 1.
In the region V3, making the same calculations as in the second region, we obtain

the reflected part (with a partial reflexion coefficient):

µ(x, ξ) =
∫ 0

1−xd
ξd

Q(x′ + tξ′, xd + tξd, ξ)ds+
∫ 1−xd

ξd

−∞
αR(ξ)Q(x′ + tξ̌′, 2− xd + tξ̌d, ξ̌)ds.

In the region V5, we have

µ(x, ξ) =
∫ 0

1−xd
ξd

Q(x+ tξ, ξ)dt+
∫ 0

−∞
αT (ξ)Q

(
x′ +

1− xd

ξd
ξ′ + tξ′, 1 + tξ̃d, ξ̃

)
dt,

so

µ(x, ξ) =
∫ 1−xd

ξd

0
Q(x+ sξ, ξ)ds+

∫ 1−xd
ξd

−∞
αT (ξ)Q

(
x′ + sξ′, 1 + (xd − 1)

ξ̃d
ξd

+ sξ̃d, ξ̃
)
ds.

This ends the proof of Theorem 5.1. �

5.3. Remarks
We would like to end this section by making some comments on the assumptions
(a) and (b) in Theorem 1.

With the notations we have now introduced, hypothesis (a) is equivalent to the
fact that µin

+ and µin
− are mutually singular. We have just proved that in the case

of two homogeneous media, µin
+ = 0, so that the hypothesis of non interference

is satisfied. This is due to the fact that the source is situated on one side of the
interface and that the rays only reach once the interface. In the general case, this
hypothesis may not be satisfied: for instance, because of rays coming from the left,
tranmistted and that may go back to the interface from the right side.

Let us know comment on hypothesis (b). The energy trapped in the interface can
only be supported by rays such that ξd = 0. In the general case, there exist glancing
rays that come from the two media, and thus could carry energy up to the interface.
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Hence, in order to prove that the non-trapping hypothesis is satisfied, one should
try to prove a radiation condition satisfied by the measure inside the interface.

6. Outline of the proof of Theorem 2

As we proved in the previous section, the measure µin
+ vanishes in the case of two

homogeneous media, hence point (i) is proved.
In order to prove (ii) and (iii), we use the explicit formula that is available in

this particular case for the resolvent of the Helmholtz operator. Here we only detail
the proof of point (ii).

Intuitively, since the source f ε is situated outside the interface, and since the
glancing rays (ξd = 0) do not come from any of the two media in the homogeneous
case (ξ is constant along the bicaracteristics), the source cannot carry energy inside
the interface ( indeed, µ∂± has support in ξd = 0). However, we cannot show that
µ∂± = 0 by local methods. The Helmholtz equation takes into account the rays up to
infinite time. We need global information, that is the reason why we use the explicit
formula for the resolvant.

Using this explicit expression, our study rests on (non-)stationary phase method
with singularity. Indeed, we already know that µ has support in the set {ξ2 = n(x)2}.
Hence, if we denote ξ = (ξ′, ξd) ∈ Rd, the roots

ωε
±(ξ′) =

√
ξ′2 − n2

± ± iαεε

of the equations ξ2
d = n2

± − ξ′2(−iαεε) naturally appear both in the phase and in
the test functions. Typically, we need to estimate terms of the following type:

1

ε
3d+1

2

∫ 1

ωε
−(ξ′)

ei
(x′−y′)·ζ′

ε
+i y′·ξ′

ε
−

ωε
−(ξ′)

ε A(x′, y′, ζ ′, ξ′)dy′dξ′dζ ′, (6.1)

where x′ is bounded, and the amplitude A is supported near ζ ′2 = n2
−. First, for

|ξ′| far from n−, the phase is non-stationary with respect to the y′-variable. Hence,
we are left with the case when |ξ′| is close to n−, i.e. close to the singularity of ωε

−.
After a change of variable, the term we have to estimate is of the form

1

ε
3d+1

2

∫ 1√
t+ iαεε

ei

√
t+n2

−
ε

−
√

t+iαεε
ε B(t)dt, (6.2)

where B is supported close to t = 0.
Now, in order to treat the singularity of

√
t+ iαεε when ε → 0 in (6.2), the key

ingredient is a contour deformation in the complex plane, together with the use of
almost-analytic extensions: there exists a extension B̃ of B to the complex plane
(compactly supported in C if B is compactly supported in R) such that, for all N ,∣∣∣∣∣ ∂∂z̄ B̃(z)

∣∣∣∣∣ ≤ CN |Im z|N . (6.3)

Using this extension and the Green-Riemann formula, we decompose the previous
integral into the sum of an integral of B̃ over {Im z = β} (β > 0 fixed) and of an
integral of ∂B̃/∂z̄ over {αεε ≤ Im z ≤ β}. The first part can be estimated using the
usual non-stationary phase theorem, since the root

√
t+ iβ is not singular anymore.

To bound the second part, we separate the domains |Im z| ≤ εδ and |Im z| ≥ εδ. For
|Im z| ≤ εδ, we use the property (6.3) of almost-analytic extensions. For |Im z| ≥
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εδ, we use the fact that
√
z is bounded from below by εδ/2, so that each integration

by part gives a power of ε1−δ/2. All these estimates allow us in fine to prove that
the integral (6.2) is O(ε∞).
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