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Journées Équations aux dérivées partielles
Évian-les-Bains, 5 juin–9 juin 2006
GDR 2434 (CNRS)

Lecture notes : Stability of Noncharacteristic
Viscous Boundary Layers

Guy Métivier

1. Introduction

The material included in these lectures is taken from a series of joint papers with
O. Guès, M. Williams and K. Zumbrun. They concern the linear and nonlinear
stability of viscous boundary layers which arise when one considers small viscosity
parabolic perturbations of noncharacteristic multidimensional hyperbolic boundary
value problems. The analysis of boundary layers is a major issue in many appli-
cations, for instance in fluid mechanics, and there is a huge literature in books of
mechanics concerning all kinds of layers. Moreover, after suitable modifications, the
study of layers applies to the analysis of shock waves: shock waves can be seen as
(smooth) solutions of a free boundary value problem, or more accurately as solutions
of a transmission problem across a free interface. Classical Lax’s shocks are nonchar-
acteristic, and constitute a major motivation for the analysis presented here. In this
approach, the conservative character of the equations as well as the classical Lax’s
shock conditions are unessential, so that the analysis presented here also applies
to nonclassical shocks (overcompressive or nonconservative) as long as they remain
noncharacteristic.

Several references for the mathematical analysis of boundary layers for linear
equations are [BBB], [BaRa], [Lio]. The semilinear symmetric dissipative case is
completely solved in [Gue1]. This paper gives a rigorous complete asymptotic de-
scription of the layer, at all order of approximation. It also concerns characteristic
and noncharacteristic problems, pointing out a fundamental difference between these
two cases. For noncharacteristic boundaries, the layer has a characteristic width of
order ε, the magnitude of the viscosity, and the layer profile is given by an ordinary
differential equation; for characteristic boundaries, the characteristic width of the
layer is of order

√
ε and the layer is given by a partial differential equation.

The analysis of noncharacteristic boundary layers for quasilinear equations, is
started in [GrGu] for small layers and symmetric systems (see also the results in
one space dimension given in [Gis, GiSe, GrRo] and in [GoXi, Rou2] for shocks).
The case of characteristic boundaries is much more delicate: in the example of
Navier-Stokes equations, the PDE’s governing the layer which are expected after
formal computations, are Prandtl’s equations, which are known to present strong
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unstabilities, in accordance with well known physical unstabilities. This is why,
motivated by the analysis of shock waves and some particular examples of in or out-
flow boundary conditions for Navier-Stokes and MHD equations (see [GMWZ8] and
the references therein), we will restrict our attention to noncharacteristic boundaries.

In [GrGu], the linear and nonlinear stability of the layer is proved under a suf-
ficient smallness condition, whose analogue for shocks is never satisfied. The sharp
conditions for stability can be analyzed using a spectral (Fourier-Laplace) analysis.
The spectral stability conditions have a nice natural formulation in terms of Evans
function. Evans functions have been introduced in the study of the stability of planar
viscous shocks and boundary layers (see, e.g., [GaZu, ZuHo, ZuSe, Zum2, Ser, Rou1],
and references therein). They play the role of the Lopatinski determinant for bound-
ary value problems with constant coefficients. When they vanish in the open left half
plane, the problem is strongly unstable and when they do not vanish in the closed
half space, the problem is expected to be strongly stable. In space dimension one,
this has been proved to be correct for boundary layers in [GrRo] and in [Rou2]
for shocks. Next, this has been extended to any dimension in [MéZu1], for fully
parabolic perturbations of hyperbolic systems with constant multipliciy (see also
[GMWZ1, GMWZ2, GMWZ3] for shocks). The case of partial viscosities such as
Navier-Stokes equations and hyperbolic systems with variable multiplicity such as
magneto-hydodynamics is treated in [GMWZ4, GMWZ5, GMWZ6].

We now briefly describe the main lines of these lectures. We denote by t the time
variable and by (y, x) ∈ Rd−1×R the space variables. We consider a boundary value
problems, for simplicity in the half space {x > 0},

L(u, ∂)u− εB(u, ∂u, ∂2u) = 0, Υ(u, ε∂u) = 0. (1.1)

Here L is a first order hyperbolic problem, B a second order term, partially elliptic
in the spatial derivatives and Υ denotes the boundary conditions. The precise as-
sumptions are given in Section 2. The main goal is to study the small viscosity limit
ε→ 0. The limiting hyperbolic equation is

L(u, ∂)u = 0 (1.2)

for which the boundary conditions Υ are not (in general) adapted. In the interior,
the solutions uε of (1.1) converge to a solution u0 of (1.2). Part of the problem is to
find the boundary conditions

Γ0(u) = 0 (1.3)

satisfied by the limit u0. In general, uε−u0 is small in the interior but is large at the
boundary because of the mismatch of the boundary values. This means that uε−u0

has a rapid variation near the boundary : this is the boundary layer.

Example 1.1. Consider the model case{
∂tuε − ∂xuε − ε∂2

xuε = f, x > 0,

uε(0) = 0.
(1.4)

The limiting problem is

∂tu− ∂xu = f,
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without any boundary condition (the field is propagating to the left). For f = e−x,
the stationary solution is

uε(x) =
1

1− ε
e−x − 1

1− ε
e−x/ε.

The first term converges to u0(x) = e−x and the second term is the boundary
layer which makes the connection with the boundary condition uε(0) = 0. It is
exponentially decaying in x/ε; this will be a general feature of the layers considered
in these notes.

The main idea is that the solutions uε of (1.1) look like

uε(t, y, x) = u0(t, y, x) + U(t, y,
x

ε
) +O(ε) (1.5)

where u0 is a solution of (1.2) and U satisfies

lim
z→+∞

U(t, y, z) = 0.

Plugging (1.5) into the equation, reveals a singular term in ε−1. Equating this term
to 0 shows that for fixed (t, y, x), the function z 7→ w(z) := u(t, y, x) + U(t, y, z)
satisfies a second order ordinary differential system

L′0(w, ∂zw, ∂
2
zw) = 0. (1.6)

Moreover, for x = 0, w must satisfy the boundary condition

Υ(w, ∂zw)|z=0 = 0 (1.7)

and the end point condition

lim
z→+∞

w(z) = u0(t, y, 0). (1.8)

This indicates what are the natural boundary conditions for u0:

Definition 1.2. Let C denote the set of end points u such that there is a solution of
(1.6)− (1.7) which converges to u at infinity. Then the natural boundary conditions
for the limiting hyperbolic system (1.2) are

u0|x=0 ∈ C. (1.9)

In these lectures, we will discuss the following aspects of the problem:
- Construction of layer profiles ; they are exact solutions

uε(x) = w
(x
ε

)
, (1.10)

of (1.1). The profiles w(z) are solutions of (1.6) - (1.7) They converge to a limit as
z tends to infinity:

lim
z→∞

w(z) = w. (1.11)

The form of the equations L′0 = 0 implies that constants are solutions of (1.6).
The central-stable manifold theorem gives the solutions of the profile equation near
infinity, with end state close to a given w. The problem is to find solutions which
extend to z ∈ [0,∞[ and satisfy the boundary condition (1.7). Given such a solution,
the regularity properties of the set C near the end point w depend on transversal-
ity properties of the central-stable manifold and the boundary conditions. This is
detailed in Section 3.
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- Spectral stability ; it expresses the well posedness of the linearized equations
near a layer profile. These linearized equations have the form :

L
(
x

ε
, ε∂t, ε∂y, ε∂x

)
u̇ = ḟ , Υ′(u̇, ε∂yu̇, ε∂xu̇)|x=0 = ġ. (1.12)

They have constant coefficients in (t, y), and following the usual theory of constant
coefficients evolution equations, one performs a Laplace-Fourier transform in (t, y).
After rescaling, one obtains the spectral equation :

L(z, γ + iτ, iη, ∂z)u = f, Υ′(u, iηu, ∂zu)|z=0 = g. (1.13)

The spectral stability conditions concern the well posedness of the equations (1.13)
for γ ≥ 0. They can be formulated using a suitable Evans function. A key point
is to link the spectral stability of the viscous and inviscid problems: this was done
first in [ZuSe] (see also [Rou1]). We will present here a new proof which reduces the
analysis to a nonsingular perturbation problem and does not require any constant
multiplicity assumption. This is explained in Sections 4 and 5.

- Symbolic symmetrizers ; their construction is the main topic discussed in these
lectures, developed in Sections 6 to 9. They are Fourier multipliers that are used
to prove L2 a-priori estimates for the solutions of (1.13). Indeed the one space di-
mension methods used in [GrRo, Rou2] do not extend to the multidimensional case
and the Lp estimates of the Green’s function (see [Zum2] and the references therein)
are insufficient. This is a consequence of focusing and spreading in the underlying
hyperbolic propagation. We want uniform estimates which give the hyperbolic esti-
mates in the limit ε → 0, which translates in the limit ζ := (τ, η, γ) → 0 in (1.13)
due to the rescaling. This leads to look for methods which are suitable for the analy-
sis of both hyperbolic boundary-value problems and their parabolic regularizations.
In multi-dimensions we are restricted by the hyperbolic limit to seeking L2 → L2

bounds. To satisfy these requirements, we follow Kreiss’ analysis of hyperbolic equa-
tions based on the construction of symmetrizers. The basic estimate concerns the L2

stability of the linearized equations, and is proved using symmetrizers and a suitable
extension of Kreiss’ analysis to parabolic-hyperbolic problems.

- The linear stability ; the question is to prove that the linearized equations near
an approximate solution uε of the form (1.5) are well-posed. Keeping only the main
terms, they read

L
(
t, y, x,

x

ε
, ε∂t, ε∂y, ε∂x

)
u̇ = ḟ , Υ′(u̇, ε∂yu̇, ε∂xu̇)|x=0 = ġ. (1.14)

They are slow perturbations in (t, y, x) of (1.12). The main goal is to prove that
the L2 estimates obtained by using Fourier multipliers when uε is a profile (1.10)
extend to the case where uε has the more general form (1.5). This is done using a
suitable pseudo or para-differential calculus, which transforms the Fourier multiplier
calculus into an operator calculus. In this analysis, the Fourier multipliers are used
as the symbols of the operators. However, several calculi are needed to reflect both
the semi-classical aspects and the different homogeneities. This is briefly discussed
in Section 10.

- The nonlinear stability ; the objective is to prove the existence, on an interval of
time independent of ε, of exact solutions satisfying (1.5) of the parabolic-hyperbolic
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equations (1.1). In a first step, one constructs approximate solutions

uapp
ε (t, y, x) =

n∑
k=0

εk
(
uk(t, y, x) + Uk(t, y,

x

ε
)
)

(1.15)

which satisfy the equation up to source term of size O(εn). Next one constructs
exact solutions of the form

uε = uapp
ε + εnvε. (1.16)

The equations for vε are solved by iterative methods which involve the resolution
of linearized problems. Bounds for the iterates and convergence follow from the L2

and Sobolev estimates which have been obtained for the linearized equations. Two
methods are presented in Section 11: for fully elliptic viscosities, strong parabolic es-
timates are available for the linearized equations and the standard implicit function
theorem yields the results with first order approximate solutions (n = 1). In the gen-
eral case, one uses hyperbolic type iterates starting from an accurate approximate
solution, that is with n large in (1.15).

2. Hyperbolic-parabolic boundary value problems

2.1. Structure of the equations
Consider a system of equations

Lε(u) := A0(u)∂tu+
d∑

j=1

Aj(u)∂ju− ε
d∑

j,k=1

∂j

(
Bj,k(u)∂ku

)
= 0. (2.1)

When ε = 0, L0 is first order and assumed to hyperbolic; ε plays the role of a
non-dimensional viscosity and for ε > 0, the system is assumed to be parabolic or
at least partially parabolic, see below. Systems of conservation laws

Lε(u) := ∂tf0(u) +
d∑

j=1

∂jfj(u)− ε
d∑

j,k=1

∂j

(
Bj,k(u)∂ku

)
= 0 (2.2)

are particular cases of systems (2.1) with Aj(u) = ∇ufj(u). Classical examples are
Navier-Stokes equations of gas dynamics, or equations of magneto-hydrodynamics.

The form of the equations is preserved by changes of unknowns u = Φ(ũ) and by
multiplying on the left the equations by constant invertible matrices. To cover the
case of partial viscosity and motivated by the examples of Navier-Stokes equations
and MHD, we make the following assumption

Assumption 2.1. (H0) (Smooth fluxes and viscosity) The matrices Aj and Bj,k

are C∞ N ×N real matrices of the variable u ∈ U∗ ⊂ RN . Moreover, for all u ∈ U∗,
the matrix A0(u) is invertible.

(H1) (Block form) Possibly after a change of unknowns u and multiplying the
system on the left by an invertible constant coefficient matrix, there are coordinates
u = (u1, u2) ∈ RN1 × RN2 and f = (f 1, f2) ∈ RN1 × RN2, with N1 +N2 = N , such
that the following block structure condition is satisfied :

A0(u) =

(
A11

0 0
A21

0 A22
0

)
, Bjk(u) =

(
0 0
0 B22

j,k

)
. (2.3)
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We refer to [GMWZ4] for a geometric formulation of condition (H1), independent
of coordinates u ∈ U∗ and we also refer to [Zum3] for further comments and ex-
planations. From now on we work with variables u = (u1, u2) ∈ U∗ such that (2.3)
holds. We set

Aj = f ′j, Aj = A−1
0 Aj, Bj,k = A−1

0 Bj,k, (2.4)

and systematically use the notation Mαβ for the sub-blocks of a matrix M corre-
sponding to the splitting u = (u1, u2). Note that

Bj,k(u) := A0(u)
−1Bj,k(u) =

(
0 0

0 B
22
j,k(u)

)
. (2.5)

The triangular form of the equations also reveals the importance of the (1, 1) block
which plays a special role in the analysis :

L11(u, ∂) =
d∑

j=0

A11
j (u)∂j , or L

11
(u, ∂) =

(
A11

0 (u)
)−1

L11(u, ∂). (2.6)

In this spirit, the high frequency principal part of the equation is{
L

11
(u, ∂)u1

∂tu
2 − εB

22
(u, ∂)u2

(2.7)

with B22
(u, ξ) =

∑d
j,k=1 ξjξkB

22
j,k(u). The first natural hypothesis is that L11(u, ∂) is

hyperbolic and ∂t −B
22

(u, ∂) is parabolic in the direction dt.

Assumption 2.2. (H2) (Partial parabolicity) There is c > 0 such that for all
u ∈ U∗ and ξ ∈ Rd, the eigenvalues of B22

(u, ξ) satisfy Reµ ≥ c|ξ|2.
(H3) (Hyperbolicity of the 1-1 block) For all u ∈ U∗ and all ξ ∈ Rd\{0},

A
11

(u, ξ) =
∑d

j=1 ξjĀ
11
j (u) has only real eigenvalues.

For the applications we have in mind such as Navier-Stokes and MHD, the oper-
ator L11 is a transport field and (H3) is trivially satisfied.

Next we assume that the inviscid equations are hyperbolic and that Kawashima’s
genuine coupling condition is satisfied for u, in some open subdomain U ⊂ U∗. Let

A(u, ξ) =
d∑

j=1

ξjAj(u) and B(u, ξ) =
d∑

j,k=1

ξjξkBj,k(u). (2.8)

Assumption 2.3. (H4) (Strict dissipativity near the end states) There is c > 0
such that for u ∈ U and ξ ∈ Rd, the eigenvalues of iA(u, ξ) +B(u, ξ) satisfy

Reµ ≥ c
|ξ|2

1 + |ξ|2
. (2.9)

Remark 2.4. (H4) implies hyperbolicity of the inviscid equation : for all u ∈ U and
ξ ∈ Rd\{0} the eigenvalues of A(u, ξ) are real. It is important for applications that
U , the domain of hyperbolicity which will contain end states of the layers, can be
strictly smaller than U∗.

Symmetric systems play an important role, and symmetry will be an important
assumption in some of our results. In particular, the Assumption (H4) is satisfied
when the following conditions are satisfied (see [KaS1, KaS2]):
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Definition 2.5. The system (2.1) is said to be symmetric dissipative if there exists
a real matrix S(u), which depends smoothly on u ∈ U , such that for all u ∈ U
and all ξ ∈ Rd\{0}, the matrix SA0 is symmetric definite positive, S(u)A(u, ξ) is
symmetric and ReS(u)B(u, ξ) is non negative with kernel of dimension N −N2.

Proposition 2.6. If the system is symmetric dissipative, (2.9) is equivalent to the
genuine coupling condition of Kawashima: no eigenvector of Ā(u, ξ) lies in the kernel
of B̄(u, ξ) for ξ ∈ Rd \ {0}.

Navier-Stokes equations satisfy this condition (see e.g. [KaS2]).

Remark 2.7. For systems of conservation laws (2.2), symmetry is implied by the
existence of a strictly convex entropy, see [KaS2].

2.2. Boundary conditions
We consider a boundary value problem for (2.1) in the model case of a half space,
which is given by {x > 0}, in some coordinates (y1, . . . , yd−1, x) for the space vari-
ables. We assume that the boundary is not characteristic both for the viscous and
the inviscid equations. The principal term of the viscous equation is block diagonal
as indicated in (2.7). The B22 block is noncharacteristic by (H2). Restricting U∗ to a
component where the profiles will take their values, the condition for the A11 block
reads

Assumption 2.8. (H5) U∗ is connected and for all u ∈ U∗, detA11
d (u) 6= 0.

For the inviscid equation, restricting U to the component where the hyperbolic
solutions will take their value, the condition reads

Assumption 2.9. (H6) U is connected and for all u ∈ U , det
(
Ad(u)

)
6= 0.

By Assumption (H3) and Remark 2.4, A11
d (u) and Ad(u) have only real eigen-

values, which by (H5) and (H6) never vanish. This leads to two important indices
:

Notations 2.10. With assumptions as above, N+ denotes the number of positive
eigenvalues of Ad(u) for u ∈ U and N1

+ the number of positive eigenvalues of A11
d (u)

for u ∈ U∗. We also set Nb = N2 +N1
+.

The block structure (2.7) suggests that Nb is the correct number of boundary
conditions for the well posedness of (2.1), for solutions with values in U∗. Indeed,
the high frequency decoupling (2.7) suggests that N2 boundary conditions for u2

and N1
+ boundary conditions for u1 are required. On the other hand, N+ is the

correct number of boundary conditions for the inviscid equation for solutions with
values in U . Thus we supplement (2.1) with boundary conditions

Υ(u, ε∂yu
2, ε∂xu

2)|x=0 = 0. (2.10)

Without pretending to maximal generality, we assume that they decouple into zero-
th order boundary conditions for u1 and zero-th order and first order conditions for
u2: 

Υ1(u
1)|x=0 = 0,

Υ2(u
2)|x=0 = 0,

Υ3(u, ε∂yu
2, ε∂xu

2)|x=0 = 0.
(2.11)
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with

Υ3(u, ∂yu
2, ∂xu

2) = Kd∂xu
2 +

d−1∑
j=1

Kj(u)∂ju
2.

Assumption 2.11. (H7) (Smooth boundary conditions) Υ1, Υ2 and Υ3 are smooth
functions of their arguments with values in RN1

+, RN2−N3 and RN3 respectively, where
N3 ∈ {0, 1, . . . , N2}. Moreover, Kd has maximal rank N3 and for all u ∈ U∗ the
Jacobian matrix Υ′

1(u
1) and Υ′

2(u
2) have maximal rank N1

+ and N2−N3 respectively.

3. Layers profiles

3.1. The profile equation

To match constant solutions u of the inviscid problem to solutions satisfying the
boundary conditions, one looks for exact solutions of (2.1) (2.10) of the form:

uε(t, y, x) = w
(
x

ε

)
, (3.1)

such that

lim
z→+∞

w(z) = u . (3.2)

The equation and boundary conditions for w read

Ad(w)∂zw − ∂z

(
Bd,d(w)∂zw

)
= 0, z ≥ 0 (3.3)

Υ(w, 0, ∂zw
2)|z=0 = 0. (3.4)

Solutions are called layer profiles. This equation can be written as a first order
system for U = (w, ∂zw

2), which is nonsingular if and only if A11
d is invertible (this

indicates the strong link between Assumption 2.8 and the ansatz (3.1)):
∂zw

1 = −(A11
d )−1A12

d w
3,

∂zw
2 = w3,

∂z

(
Bd,dw

3) =
(
A22

d − A21
d (A11

d )−1A12
d

)
w3,

(3.5)

and the matrices Ad and Bd,d are evaluated at w = (w1, w2).
For conservative systems, the equations read

∂zfd(w)− ∂z(Bd,d(w)∂zw) = 0. (3.6)

They can be integrated once and, splitting the components w1 and w2 they are
equivalent to  f 1

d (w1, w2)− k1 = 0

Bd,d(w
1, w2)∂zw

2 = f 2
d (w1, w2)− k2,

(3.7)

with k = (k1, k2) constant.

I–8



3.2. Existence of profiles
The constants are trivial solutions of the layer equation (3.3). The invariant manifold
theorem implies that, near u ∈ U , there is a variety of dimension N + Nb − N+ of
solutions

Φ(z, p, a), (3.8)
depending on the parameters p near u and a in a neighborhood of 0 in RNb−N+ , and
such that

lim
z→∞

Φ(z, p, a) = p and Φ(z, p, 0) ≡ p,

(see [Mét4] for fully parabolic viscosity and [GMWZ5] for partial viscosity). Extend
these solutions as maximal solutions. The layer profiles are then determined by
solving the boundary conditions (3.4):

T(p, a) := Υ(Φ, 0, ∂zΦ
2)|z=0 = 0. (3.9)

The existence of small layers can be proved by perturbation arguments (see e.g.
[GiSe] or [GrGu, Mét4]). For shocks the existence of small amplitude profiles is
proved in [MaPe, Peg]. In [Gil] the existence of large profiles for gas dynamics is
studied.

3.3. The inviscid boundary conditions
The natural limiting boundary conditions for the inviscid problem read

u|x=0 ∈ C, (3.10)

where C denotes the set of end points u such that there is a layer profile w ∈
C∞(R+;U∗) satisfying (3.2) (3.3). The properties of the set C depend on the well
posedness of the equation (3.9), which is a system of Nb equations for N + Nb −
N+ unknows. This property is called transversality in [MéZu1, Mét4, GMWZ5,
GMWZ6].

Definition 3.1. The layer profile w(z) = Φ(z, p, a), supposed to be defined on
[0,+∞[, is said to be transversal if the following two conditions holds

rank∇aT(p, a) = Nb −N+ , (3.11)
rank∇a,pT(p, a) = Nb . (3.12)

This definition immediately implies the following

Proposition 3.2. If the profile w(z) = Φ(z, p, a), supposed to be defined on [0,+∞[
is transversal, then near p, C is s smooth manifold of dimension N − N+, defined
by N+ independent equations, T (p) = 0.

Thus, the limiting inviscid boundary conditions (3.10), can be written T (u) = 0.
Note that N+ is the correct number of boundary conditions for the inviscid equation.
For small layers, the transversality condition is satisfied (see e.g. [GrGu]). It is
noticeable that for Lax shocks, the analogue limiting boundary condition always
reduces to the usual Rankine-Hugoniot conditions. Note also that for extreme Lax
shocks, the transversality condition is automatic. The discussion in [Gil] also includes
transversality.

These geometric conditions can be rephrased in terms of properties of the lin-
earized equations from (3.3) (3.4) near w(z), since the derivatives ∂p,aΦ(z, p, a) are
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solutions of these linearized equations and form a basis of the space of bounded
solutions. We abbreviate the linearized equation and boundary condition as{

L(z, ∂z)ẇ, z ≥ 0,

Υ′(ẇ, ∂zẇ
2)|z=0

(3.13)

Proposition 3.3. The layer profile w is transversal if and only if
i) there is no nontrivial solution ẇ of Lẇ which satisfies the boundary conditions

Υ′(ẇ, ∂zẇ
2)|z=0 = 0,

ii) the mapping ẇ 7→ Γ(ẇ, ∂zẇ
2)|z=0 from the space of solutions of Lẇ = 0 to

CNb has rank Nb.

3.4. Examples
1. Burgers equation. In space dimension one, consider for x ≥ 0 the Burgers-Hopf
equation:

∂tu+ u∂xu− ε∂2
xu = 0 , u(0) = 0. (3.14)

In this case, the inner-layer o.d.e is

∂2
zu = u∂zu , u(0) = 0 . (3.15)

The equation can be integrated once yielding

∂zu =
1

2
u2 + k , u(0) = 0 .

Depending on the sign of the constant k, there are two families of solutions:

1) u(z) = −λ tanh
(
λz/2)

2) u(z) = µ tan
(
µz/2) .

Changing λ into −λ or µ into −µ does not change the solution, so we can assume
that the parameters are nonnegative. The two families intersect only on the constant
solution u = 0. Solutions of the second family, have a finite time of existence: they
do not provide solutions of (3.14) on the half line. Thus, we restrict attention to
solutions of the first family, which are globally defined. In this case, we have

lim
z→+∞

u(z) = −λ ≤ 0 .

The end state −λ is noncharacteristic (i.e. satisfies (H4)) if λ 6= 0. Thus we have
shown:

for the Burgers equation (3.14), the set of noncharacteristic end states p which
can be connected to 0 by a solution of (3.15) is C̃ =]−∞, 0[.

2. The linear case. Suppose that Ad and Bd,d are constant (independent of u). The
o.d.e. reads  ∂zu

1 = G12
d ∂zu

2 ,

∂2
zu

2 = G22
d ∂zu

2 ,
(3.16)

with G12
d = −(A11

d )−1A12
d and G22

d = (B22
dd)

−1(A22
d + A21

d G
12
d ). The solutions of the

o.d.e are u
1(z) = u2(z) + p1 ,

u2(z) = p2 + ezG22
d a ,

(3.17)
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with arbitrary constants p and a. Because the eigenvalues ofG22
d are real and different

from zero, the explicit formula implies the following results.
1. The solution is bounded if and only if a ∈ E−(G22

d ), the invariant space for
G22

d associated to eigenvalues in the left half space {Imµ < 0}.
2. Bounded solutions of (3.16) converge at an exponential rate at infinity.
3. The bounded solutions of (3.16) form a manifold of dimension N+N2

−, where
N2
− = dim E−(G22

d ).
We now add boundary conditions for u1 and Dirichlet boundary conditions for u2

Γ1u1
|z=0 = 0, u2

|z=0 = 0.

For the solutions of (3.17) this is equivalent to

Γ1p1 = 0, p2 = −a.

Therefore:
4. The set of end states p = (p1, p2) which can be connected to a data satisfying

the boundary condition is the linear space ker Γ1 × E−(G22
d ).

3. Shock profiles for isentropic Navier-Stokes equations. Consider in Rd the isen-
tropic Navier-Stokes equations{

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p = ε∆u,
(3.18)

with p = P (ρ). The profile equations with speed velocity σ, that is relative to the
front xd = σt, read 

∂zm = 0,

∂z(p+mud) = ∂2
zud,

∂z(mutg) = ∂2
zutg

(3.19)

with m := ρ(ud − σ). We look for solutions defined for z ∈ R which end points
(ρ−, u−) and (ρ+, u+). Integrating once the equations and taking the limits at +∞
and −∞ yields the necessary Rankine-Hugoniot conditions:

[m] = 0 ⇔ [ud] = m[τ ]

[p] +m[ud] = 0,

m[utg] = 0.

(3.20)

with τ = 1/ρ. Thus,

m2 = −[p]/[τ ], [ud] = m[τ ], σ = u+
d −mτ+ = u−d −mτ−. (3.21)

The integrated system (3.19) reads:
ud(z)− σ = mτ(z)

∂z(ud(z)− σ) = m(ud(z)− σ) + p(z)− k

utg(z) = u−tg = u+
tg

(3.22)

with m and k constant. We end up with a scalar equation

∂zτ = mτ +
1

m
ψ(τ)− b, (3.23)
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with ψ(τ) = P (1/τ) and parameters which satisfy the constraints

m = [ud]/[τ ], b = mτ+ +
1

m
ψ(τ+) = mτ− +

1

m
ψ(τ−). (3.24)

The constant k in (3.22) is k = m(u+
d − σ) + p+ = m(u−d − σ) + p−.

A 1-shock satisfies

u+ − c+ < σ < u+, u− − c− > σ, (3.25)

where c = c(ρ) = (1
ρ
P ′(ρ))

1
2 is the sound speed for the state ρ. Thus

0 < mτ+ = u+ − σ < c+, mτ− = u− − σ > c−. (3.26)

This is equivalent to

m > 0, (c−/τ−)2 < m2 < (c+/τ+)2. (3.27)

Since c2/τ 2 = −ψ′(τ), the Lax conditions for 1-shocks reduce to

ψ′(τ+) <
ψ(τ+)− ψ(τ−)

τ+ − τ−
= −m2 < ψ′(τ−) < 0, m > 0 (3.28)

The sign condition for ψ′(τ−) ensures the hyperbolicity of the end states.
Similarly, for 3-shocks the conditions read

u+ + c+ < σ u− + c− > σ > u−, (3.29)

mτ+ = u+ − σ < −c+, 0 > mτ− = u− − σ > −c−, (3.30)
m < 0, (c+/τ+)2 < m2 < (c−/τ−)2. (3.31)

We end up with the conditions

ψ′(τ−) <
ψ(τ+)− ψ(τ−)

τ+ − τ−
= −m2 < ψ′(τ+) < 0, m < 0 (3.32)

As expected, we get the same condition as (3.28) with τ+ and τ− exchanged, since
one passes from 1-shocks to 3-shocks changing x to −x, u, σ,m to −u,−σ,−m,
keeping ρ and inverting the indices + and −.

The equation (3.23) reads
∂zτ = F (τ). (3.33)

The Rankine Hugoniot condition (3.24) implies that F (τ−) = F (τ+) = 0. Thus, for
all initial data in the open interval limited by τ+ and τ−, the solution of (3.23) is
globally defined and remains in this interval. The stability conditions at ±∞ read

F ′(τ+) < 0, F ′(τ−) > 0,

that is
1

m

{
ψ′(τ+)− ψ(τ+)− ψ(τ−)

τ+ − τ−

}
< 0,

1

m

{
ψ′(τ−)− ψ(τ+)− ψ(τ−)

τ+ − τ−

}
> 0.

(3.34)

As expected, they are implied by the Lax shock conditions (3.28) (3.32).
Moreover, for a, and therefore all, solution to pass from τ− to τ+, it is necessary

and sufficient that F has no rest points in the open interval I limited by τ− and τ+:

∀τ ∈ I : F (τ) =
τ − τ+

m

(
ψ(τ)− ψ(τ+)

τ − τ+
− ψ(τ−)− ψ(τ+)

τ− − τ+

)
6= 0. (3.35)
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If ψ is strictly decreasing and strictly convex, all these conditions are satisfied when

m2 = −ψ(τ+)− ψ(τ−)

τ+ − τ−
, m(τ+ − τ−) < 0. (3.36)

Lemma 3.4. Assume that ψ′ < 0 and ψ′′ > 0 on an interval I ⊂]0,+∞[. Then for
all (τ−, τ+) ∈ I × I and m satisfying the stability condition (3.36) and for all initial
data in the open interval limited by τ+ and τ−, the solution of (3.23) is globally
defined, remain in this interval and converges at exponential rate to τ± at ±∞.

When the profile for τ is known, we deduce the profile for u using (3.22).

Remark 3.5. The profile is determined up to an arbitrary choice of τ(0) in the
interval ]τ+, τ−[. This means that there is a one parameter family of solutions of the
profile equations (3.19). Since the profile τ is strictly monotone, (because F does
not vanish) this is equivalent to the expected translation indeterminacy due to the
translation invariance of the shock profiles equations.

4. Spectral stability

4.1. The linearized equations
For further use, it is convenient to enlarge the class of functions w: consider a
function C∞(R+;U∗) which converges at an exponential rate to and end state u ∈ U :
there is δ > 0 such that for all k ∈ N

eδz
∣∣∣∂k

z (w(z)− u)
∣∣∣ ∈ L∞(R+). (4.1)

We refer to such a function as a profile; it need not be a solution of (3.3), though
it will be in applications. Note that solutions of (3.3) (3.2) satisfy the exponential
convergence above.

Consider the linearized equations from (2.1) (2.10) around uε = w(x/ε):

L′uε
u̇ = ḟ , Υ′(u̇, ε∂yu̇, ε∂xu̇)|x=0 = ġ. (4.2)

Here Υ′ is the differential of Υ at (w(0), 0, ∂zw(0)). L′uε
is a differential operator

with coefficients that are smooth functions of z := x/ε. Factoring out ε−1 it also
appears as an operator in ε∂t, ε∂y, ε∂x:

L′uε
=

1

ε
L
(
x

ε
, ε∂t, ε∂y, ε∂x

)
. (4.3)

It has constant coefficients in (t, y), and following the usual theory of constant
coefficient evolution equations, one performs a Laplace-Fourier transform in (t, y),
with frequency variables denoted by γ̃ + iτ̃ and η̃ respectively, yielding the systems

1

ε
L
(
x

ε
, ε(γ̃ + iτ̃), iεη̃, ε∂x

)
.

Next, we introduce explicitely the fast variable z = x/ε, rescale the frequency vari-
ables as ζ = (τ, η, γ) = ε(τ̃ , η̃, γ̃) and multiply the equation by ε, revealing the
equation

L(z, γ + iτ, iη, ∂z)u = f, Υ′(u, iηu, ∂zu)|z=0 = g, (4.4)
with

L = −B(z)∂2
z +A(z, ζ)∂z +M(z, ζ) (4.5)
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with in particular, B(z) = Bd,d(w(z)) and A11(z, ζ) = A11
d (w(z)). We do not give

here the explicit form of A and M. Using (H2) and Assumption 2.2, the equation
is written as a first order system

∂zU = G(z, ζ)U + F, Γ(ζ)U|z=0 = g. (4.6)

for

U =

(
u

∂zu
2

)
=

 u1

u2

∂zu
2

 ∈ CN+N2

(4.7)

F =

 (A11(z))−1f 1

0
(B22(z))−1(−f 2 +A21(z)(A11(z))−1f 1)

 . (4.8)

Similarly, one considers the linearized equations from the inviscid hyperbolic prob-
lem L0(u) = 0 around the constant solution u:

L′0,uu̇ = ḟ . (4.9)

After performing a Laplace-Fourier transform, this equation reads

L0(u, γ + iτ, iη, ∂x)u = f (4.10)

or
∂xu = H0(u, ζ)u+ A−1

d (u)f, (4.11)
with

H0(u, ζ) := −(Ad(u))
−1
(
(iτ + γ)A0(u) +

d−1∑
j=1

iηjAj(u)
)
. (4.12)

4.2. Structure of the linearized equations
The analysis of (4.4) or (4.6) depends on the size of the frequencies ζ. When ζ
is large, the parabolic character is prominent for the component u2. For small or
bounded frequencies ζ, we use the conjugation lemma of [MéZu1]. The condition
(4.1) implies that there is δ > 0 and an end state matrix G(u, ζ), depending on the
endstate u of w, such that

∂k
z (G(z, ζ)−G(u, ζ)) = O(e−δz). (4.13)

Lemma 4.1. Given ζ ∈ Rd+1, there is a smooth invertible matrix Φ(z, ζ) for z ∈ R+

and ζ in a neighborhood of ζ, such that (4.6) is equivalent to

∂zŨ = G(u, ζ)Ũ + F̃ , Γ̃(ζ)Ũ|z=0 = g. (4.14)

with U = Φ(z, ζ)Ũ , F = Φ(z, ζ)F̃ and Γ̃(ζ) = Γ(ζ)Φ(0, ζ). In addition, Φ and Φ−1

converge to the identity matrix at an exponential rate when z →∞.
Moreover, if the coefficients of the operator and w depend smoothly on extra pa-

rameters p (such as the end state u), then Φ can also be chosen to depend smoothly
on p, on a neighborhood of a given p.

Remark 4.2. The linearized profile equations from (3.3) around w, are exactly
(4.4) at the frequency ζ = 0. In particular, Lemma 4.1 implies that these equations
are conjugated to constant coefficient equations, via the conjugation by Φ(·, 0).
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Next we investigate the spectral properties of the matrix G. Below, Rd+1
+ denotes

the open half space {ζ = (τ, η, γ) : γ > 0} and Rd+1

+ its closure {γ ≥ 0}. In addition
to H0 defined in (4.12), we also introduce the matrix

P0(u) := (B22
dd)

−1
(
A22

d − A21
d (A11

d )−1A12
d

)
, (4.15)

Lemma 4.3. i) For u ∈ U , P0(u) has no eigenvalue on the imaginary axis. We
denote by N2

− the number of its eigenvalues in {Reµ < 0}.
ii) For u ∈ U and ζ ∈ Rd+1

+ \{0}, G(u, ζ) has no eigenvalue on the imaginary
axis. The number of its eigenvalues, counted with their multiplicity, in {Reµ < 0}
is equal to N+ +N2

− = Nb := N2 +N1
+.

iii) For a given u ∈ U , there are smooth matrices V (u, ζ) on a neighborhood of
(u, 0) such that

V −1GV =

(
H 0
0 P

)
(4.16)

with H(u, ζ) of dimension N ×N , P (u, ζ) of dimension N2 ×N2, and
a) the eigenvalues of P satisfy |Reµ| ≥ c for some c > 0,
b) there holds

H(u, ζ) = H0(u, ζ) +O(|ζ|2) (4.17)
c ) at ζ = 0, V has a triangular form

V (u, 0) =

(
Id V
0 Id

)
. (4.18)

Proof. i) Take u ∈ U . If v2 ∈ kerP0(u), then t
(
− (A11

d )−1A12
d v

2, v2
)
∈ kerAd,

implying that 0 is not an eigenvalue of P0. Similarly, if iξ is an eigenvalue of P then
0 is an eigenvalue of iξAd + ξ2Bd, which is impossible by (H4) if ξ 6= 0 is real.

ii) Direct computations show that G(u, ζ) = Gd(u, ζ)
−1M(u, ζ) with

Gd(u, ζ) =

(
−Ãd B̃d

J 0

)
, M =

(
M̃ 0N×N2

0N2×N IdN2×N2

)
with, in the splitting u = (u1, u2),

B̃d(u) =

(
0N−N2×N2

B
22
d,d(u)

)
, J =

(
0N2×N−N2 IdN2×N2

)
.

and 
Ã(u, ζ) = Ad(u)−

d−1∑
j=1

iηj(Bj,d(u) +Bd,j(u))

M̃(u, ζ) = (iτ + γ)A0(u) +
d−1∑
j=1

iηjAj(u) +
d−1∑

j,k=1

ηjηkBj,k(u) .

In particular, iξ is an eigenvalue of G(u, ζ) if and only if −(γ+iτ) is an eigenvalue of
iA(η, ξ)+B(η, ξ), which, by (H4), implies either that γ < 0 if ξ is real and (η, ξ) 6= 0
or that ζ = 0.

Thus G(u, ζ) has no eigenvalues on the imaginary axis and the number Ñ of
eigenvalues in {Reµ < 0} is constant for u ∈ U and ζ ∈ Rd+1

+ \{0}. That this
number is equal to Nb = N1

+ + N2 is a consequence of the high frequency analysis
in Lemma 9.3 below (see also Lemma 1.7 in [Zum3]).
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iii) Because M̃(u, 0) = 0 and Ã(u, 0) = Ad(u), there holds

G(u, 0) =

 0N×N

(
−(A11

d )−1A12
d

IdN2×N2

)
0N2×N P0(u)

 (4.19)

Since P0 is invertible, G can be smoothly conjugated to a block diagonal matrix as
in (4.16), with V satisfying (4.18) and H(u, 0) = 0. More precisely, the matrix V is

V =

(
−(A11

d )−1A12
d P

−
0 1

P−1
0

)
(4.20)

The expansion (4.17) can be easily obtained by standard perturbation expansions.
For ζ small, the number of eigenvalues of P in {Reµ < 0} is equal to N2

−, and for
γ > 0, the number of eigenvalues of H0(u, ζ) in the negative half space is constant,
by hyperbolicity, and equal to N+. This implies that Ñ = N+ +N2

−. �

As mentioned in Remark 4.2, the linearized equations from (3.1) around w cor-
respond exactly to the first order system (4.4) with ζ = 0. Thus the homogeneous
problem for (3.13) read {

L(z, 0, ∂z)ẇ = 0, z ≥ 0,

Υ′(ẇ, 0, ∂zẇ
2)|z=0 = 0.

(4.21)

A corollary of Lemmas 4.1 and 4.3 is that the solutions of the homogeneous equation
L(z, 0, ∂z)ẇ = 0 form a space of dimension N + N2, parametrized by (uH , uP ) ∈
CN × CN2 :

ẇ(z) = ΦH(z, 0)uH + ΦP (z, 0)ezP0(u)uP (4.22)

where the matrices ΦH(z, 0) and ΦP (z, 0) are smooth and bounded on R+ and
ΦH(z, 0) → Id as z → Id. The solution is bounded if and only if uP belongs to the
negative space E−(P0(u)) of P0(u), that is the invariant space of P0(u) associated
to the spectrum lying in {Reµ < 0}; thus the space S of bounded solutions has
dimension N +N2

−. The space of solutions that tend to zero at infinity, denoted by
S0, has dimension N2

−, corresponding to the conditions uH = 0 and uP ∈ E−(P0(u)).
The boundary conditions in (3.13) read

ΓHuH + ΓPuP := Γ(ẇ, ∂zẇ
2)|z=0 = 0. (4.23)

Because of Proposition 3.3, the next definition extends to profiles the previous
definition of transversality given in Definition 3.1 for layer profiles.

Definition 4.4. The profile w is said to be transversal if
i) there is no nontrivial solution ẇ ∈ S0 which satisfies the boundary conditions

Γ(ẇ, ∂zẇ
2)|z=0 = 0,

ii) the mapping ẇ 7→ Γ(ẇ, ∂zẇ
2)|z=0 from S to CNb has rank Nb.

Equivalently, i) means that ker ΓP ∩E−(P0(u)) = {0} and ii) that the rank of the
matrix (ΓH ,ΓP ) from CN × E−(P0(u)) to CNb is Nb.
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If the profile satisfies condition i), there is a decomposition

CNb = FH ⊕ FP , FP := ΓP E−(P0(u)) (4.24)

with dim FH = N+ and dim FP = N2
−. Denote by πH and πP the projections asso-

ciated to this splitting.
For ẇ ∈ S given by (4.22), one can eliminate uP from the boundary conditions

(4.23) and write them
ΓreduH = 0, uP = RPuH , (4.25)

with
Γred := πHΓH , RP := −(ΓP )−1πP ΓH (4.26)

and (ΓP )−1 is the inverse of the mapping ΓP from E−(P0(u)) to FP .
With these notations, ii) means that Γred has rank N+. Its kernel ker Γred is the

space of u̇ ∈ Rd such that there is a solution of ẇ of (3.13) with end point u̇. It has
dimension N −N+.

Remark 4.5. When w is a layer profile, solution of (3.3), the transversality con-
dition implies that near the end point u, the set C in (3.10) which describes the
limiting hyperbolic conditions is a smooth manifold of dimension N− = N−N+ and
ker Γred is the tangent space to C at u. Therefore, the natural boundary conditions
for the linearized hyperbolic equation, and in particular for (4.9), are

Γredu = h. (4.27)

4.3. Evans functions and Lopatinski determinant; weak sta-
bility

For a given ζ ∈ Rd+1

+ \{0}, we now investigate the well-posedness of equation
(4.4) or equivalently (4.6) or (4.14). Introduce the space E−(ζ) of initial condi-
tions (u(0), ∂zu

2(0)) (or equivalently U(0)) such that the corresponding solution of
L(z, ζ, ∂z)u = 0 (or ∂zU − G(z, ζ)U = 0) is exponentially decaying at +∞. Lem-
mas 4.1 and 4.3 show that

E−(ζ) = Φ(0, ζ)E−(G(u, ζ)) (4.28)

where we use the following notations:

Notations 4.6. Given a square matrix M , E−(M) [resp. E+(M) denotes the in-
variant space of M associated to the spectrum of M contained in {Reµ < 0} [resp.
{Reµ > 0}].

In particular, by Lemma 4.3, E−(ζ) is a smooth vector bundle for ζ ∈ Rd+1

+ \{0}
and dim(E−(ζ)) = Nb.

The problems (4.4), (4.6) or (4.14) are well posed if and only if

E−(ζ) ∩ ker Γ(ζ) = {0} or E−(G(u, ζ)) ∩ ker Γ̃(ζ) = {0}. (4.29)

Note that, because the rank of Γ is at most Nb and the dimension of E− is Nb, this
condition implies and is equivalent to

CN+N2

= E−(ζ)⊕ ker Γ(ζ) or CN+N2

= E−(G(u, ζ))⊕ ker Γ̃(ζ). (4.30)
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This condition can be expressed using the notion of Evans function, which mea-
sures the “angle” between the two spaces (see e.g. [Zum2, Zum3] and the references
therein). It is defined as

D(ζ) =
∣∣∣ det N+N2

(
E−(ζ), ker Γ(ζ)

)∣∣∣ (4.31)

where, for subspaces E and F of Cn, detn(E,F) is equal to 0 if dim E+dim F 6= n and
is the n×n determinant formed by orthonormal bases in E and F if dim E+dim F =
n.

Remark 4.7. The definition of the determinant above depends on choices of bases.
Note that changing orthonormal bases in E and F changes the determinant by
a complex number of modulus one, thus leaves | det(E,F)| invariant. But it also
depends on the choice of a scalar product on Cn. Changing the scalar products (or
arbitrary changes of bases in Cn)) changes the function det(E,F) to a new function
d̃et(E,F) such that c| det(E,F)| ≤ |d̃et(E,F)| ≤ c−1| det(E,F)| where c > 0 is
independent of the spaces E and F. We will denote by

det ≈ d̃et or D ≈ D̃ (4.32)

this property. In particular all the stability conditions stated below are independent
of orthonormal bases in E− and ker Γ and independent of the choice of the scalar
product.

Remark 4.8. If the coefficients of the operator and the profile depend smoothly on
parameters p, then the Evans function is also a smooth function of the parameters.

These notations being settled, the weak stability condition is a necessary condition
for the well posedness of (4.2) in Sobolev spaces. It reads:

Definition 4.9. Given a profile w, the linearized equation (4.4) satisfies the weak
spectral stability condition if D(ζ) 6= 0 for all ζ ∈ Rd+1

+ \{0}.

The next lemma is useful and elementary.

Lemma 4.10. Suppose that E ⊂ Cn and Γ : Cn 7→ Cm, with rank Γ = dim E = m.
If | det(E, ker Γ)| ≥ c > 0, then there is C, which depends only on c and |Γ∗(ΓΓ∗)−1|
such that

∀U ∈ E, |U | ≤ C|ΓU |.
Conversely, if this estimate is satisfied then | det(E, ker Γ)| ≥ c where c > 0 depends
only on C and |Γ|.

Proof. Let π = Γ∗(ΓΓ∗)−1Γ denote the orthogonal projector on (ker Γ)⊥. Diagonal-
izing the hermitian form (πe, πe), yields orthonormal bases {ej} and {fj} in E and
(ker Γ)⊥ respectively, such that πej = λjfj with 0 < λj ≤ 1. Take any basis {gk}
of ker Γ. Expressing the ej in the base {fk, gl}, implies that | det(E, ker Γ)| =

∏
λj.

Since λj ≤ 1 for all j, if this determinant is larger than or equal to c > 0, then
minλj ≥ c and for all e ∈ E

c|e| ≤ |πe| ≤ |Γ∗(ΓΓ∗)−1| |Γe|.
Conversely, if the estimate is satisfied, then |e| ≤ C|Γ| |πe| since Γe = Γπe for all
e ∈ E. Therefore λjC|Γ| ≥ 1 and the determinant is at least equal to (C|Γ|)−m. �
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Proposition 4.11. For fixed ζ ∈ Rd+1

+ \{0}, the following properties are equivalent:
i) the weak stability condition D(ζ) 6= 0 is satisfied,
ii) there is a constant C such that for all f ∈ L2(R+) and g ∈ CNb, the problem

(4.4) has a unique solution u ∈ H1(R+) and

‖u‖L2 + ‖∂zu
2‖L2 + |u(0)|+ |∂zu

2(0)| ≤ C(‖f‖L2 + |g|). (4.33)

iii) there is a constant C such that for all F ∈ L2(R+) and g ∈ CNb, the problem
(4.6) has a unique solution U ∈ L2(R+) and

‖U‖L2 + |U(0)| ≤ C(‖F‖L2 + |g|). (4.34)

Proof. We show that ii) ⇒ i) ⇒ iii).
a) Uniqueness in ii) implies that E−(ζ) ∩ ker Γ = {0}, thus i).
b) By Lemma 4.1, the linearized equation (4.6) is conjugated to the constant

coefficient system (4.14). By Lemma 4.3 the kernel of ∂z−G(u, ζ) in L2 has dimension
equal to Nb, which is the number of boundary condition. Thus the operator (∂z −
G(u, ζ),Γ) has index 0 from H1 to L2 × CNb . Therefore, condition i) which means
that it is injective, implies that it is surjective and iii) follows.

c) By reduction to first order (4.4) is equivalent to (4.6) for particular F . Thus
iii) immediately implies ii). �

There are analogous definitions for the linearized hyperbolic problem (4.9) with
boundary conditions (4.27). For γ > 0, H0(u, ζ) has no eigenvalues on the imagi-
nary axis, as a consequence of the hyperbolicity assumption (see Remark 2.4). The
Lopatinski determinant is defined for ζ ∈ Rd+1

+ := {γ > 0} by

DLop(ζ) =
∣∣∣ det

(
E−(H0(u, ζ)), ker Γred

)∣∣∣. (4.35)

By homogeneity of H0, this determinant is homogeneous of degree zero in ζ and it
is sufficient to consider the case where ζ ∈ Sd = {|ζ| = 1}.

Definition 4.12. The linearized equation (4.9) (4.27) satisfies the weak spectral
stability condition if DLop(ζ) 6= 0 for all ζ ∈ Rd+1

+ .

Moreover, there is an analogue of Proposition 4.11, for γ > 0.

4.4. Maximal estimates and uniform spectral stability con-
ditions

The next step in the study of the linearized equation is to perform an inverse Fourier-
Laplace transform. This requires suitable estimates for the solutions of (4.4), with
a precise description of the constants in the estimate (4.33) above.

By continuity in ζ, the weak stability condition implies that the estimate (4.33) is
satisfied with a uniform constant C when ζ remains in a compact subset of Rd+1

+ \{0}.
Thus the true question is to get a detailed behavior of the estimate when ζ → 0 and
when |ζ| → ∞.
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4.4.1. Low and medium frequencies

Consider first the low frequency case. Following [MéZu1], the expected maximal
estimates for low and medium frequencies for the solutions of (4.4) read

ϕ‖u‖L2(R+) + ‖∂zu
2‖L2(R+) + |u(0)|+ |∂zu

2(0)| ≤

C
( 1

ϕ
‖f‖L2(R+) + |g|

) (4.36)

where ϕ = (γ + |ζ|2) 1
2 with C independent of ζ ∈ Rd+1

+ \{0}, |ζ| ≤ ρ0. Note that for
fixed |ζ| > 0, this estimate is equivalent to (4.33).

Similarly, the maximal estimates for solutions of the first order system (4.6) read
:

ϕ‖u‖L2(R+) + ‖u3‖L2(R+) + |U(0)| ≤ C
( 1

ϕ
‖F‖L2(R+) + |g|

)
(4.37)

where U = (u, u3) ∈ CN × CN2 . For the constant coefficient system (4.14) the
analogous expected estimates read :

ϕ‖ũ‖L2(R+) + ‖ũ3‖L2(R+) + |Ũ(0)| ≤ C
( 1

ϕ
‖F̃‖L2(R+) + |g|

)
. (4.38)

Lemma 4.13. The estimates (4.38) imply (4.37) which imply (4.36).

Proof. (See [MéZu1]). Clearly, (4.36) is a particular case of (4.37) applied to source
terms F of the special form (4.8). Moreover, using the conjugation Lemma 4.1, there
holds U = O(1)Ũ and Ũ = O(1)U and similar estimates for F and F̃ . Moreover,

U1 = O(1)Ũ , U2 = O(e−θz)Ũ1 +O(1)Ũ2

with θ > 0. We use the inequality

‖e−θzŨ1‖L2 . |Ũ1(0)|+ ‖∂zŨ
1‖L2 .

Moreover, the form of G(u, ζ) at ζ = 0 shows that

∂zŨ
1 = O(|ζ|)Ũ1 +O(1)Ũ2 + F̃ 1.

Therefore,
‖U2‖L2 . ‖Ũ2‖L2 + |Ũ1(0)|+ |ζ|‖Ũ1‖L2 + ‖F̃ 1‖L2 .

Since |ζ| ≤ ϕ, this shows that (4.38) implies (4.37). �

Taking f = 0, we point out the following necessary condition for the validity of
the maximal estimates:

Proposition 4.14. A necessary condition for (4.36) to be valid for 0 < |ζ| ≤ ρ0, is
that there are C and ρ0 > 0 such that

∀ζ ∈ Rd+1

+ , 0 < |ζ| ≤ ρ0, ∀U ∈ E−(ζ) : |U | ≤ C|Γ(ζ)U |. (4.39)

By Assumption 2.11, the rank of Γ(ζ) is always Nb, and the norms of Γ(ζ) and
(ΓΓ∗)−1 are uniformly bounded for ζ bounded. Thus, by Lemma 4.10, the condition
(4.39) is equivalent to requiring that D is bounded from below by a positive constant
for 0 < |ζ| ≤ ρ0. This leads to the following definition (see [MéZu1])

Definition 4.15. Given a profile w, the uniform spectral stability condition for the
linearized equation (4.2) is satisfied for low frequencies when there are c > 0 and
ρ0 > 0 such that D(ζ) ≥ c for all ζ ∈ Rd+1

+ with 0 < |ζ| ≤ ρ0.
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We have seen that the low frequency uniform stability condition is necessary for
the validity of the maximal estimates. A major issue, which is discussed in Sections
6 to 8 is to prove a converse statement.

4.4.2. High frequencies

For the high frequency analysis, we use the special form (2.11) of the boundary
conditions. Their linearized version, Υ′(u, iηu2, ∂zu

2) = g reads
Γ1u

1(0) := Υ′
1(w

1(0)) · u1(0) = g1,
Γ2u

2(0) := Υ′
2(w

2(0)) · u2(0) = g2,
Γ3(ζ)(u

2(0), ∂zu
2(0)) := Kd∂zu

2(0) +Ktg(η)u
2(0) = g3,

(4.40)

with

Ktg(η) =
d−1∑
j=1

iηjKj(w(0)). (4.41)

The maximal extimates that are proven in [GMWZ4, GMWZ6] read

(1 + γ)‖u1‖L2(R+)+Λ‖u2‖L2(R+) + ‖∂zu
2‖L2(R+)

+(1 + γ)
1
2 |u1(0)|+Λ

1
2 |u2(0)|+ Λ−

1
2 |∂zu

2(0)| ≤

C
(
‖f 1‖L2(R+) + Λ−1‖f 2‖L2(R+)

)
+ C

(
(1 + γ)

1
2 |g1|+ Λ

1
2 |g2|+ Λ−

1
2 |g3|

)
(4.42)

with C independent of ζ ∈ Rd+1

+ large. Here, Λ is the natural parabolic weight

Λ(ζ) =
(
1 + τ 2 + γ2 + |η|4

)1/4
. (4.43)

Remark 4.16. The balance between the weights for u1 and for u2 is subtle: these
components are decoupled in the high frequency principal system (2.7) and the
choice of the weights depends on the actual coupling of u1 and for u2 through the
nondiagonal lower order terms and the boundary conditions.

Taking f = 0, (4.42) implies the following necessary condition : there are C and
ρ1 > 0 such that

∀ζ ∈ Rd+1

+ , |ζ| ≥ ρ1, ∀U = (u1, u2, u3) ∈ E−(ζ) :

(1 + γ)
1
2 |u1|+ Λ

1
2 |u2|+ Λ−

1
2 |u3| ≤

C
(
(1 + γ)

1
2 |Γ1u

1|+ Λ
1
2 |Γ2u

2|+ Λ−
1
2 |Γ3(ζ)(u

2, u3)|
)
.

(4.44)

This can be reformulated in terms of a rescaled Evans function (see [MéZu1] : In
CN+N2 and CNb introduce the mappings

Jζ(u
1, u2, u3) :=

(
(1 + γ)

1
2u1,Λ

1
2u2,Λ−

1
2u3

)
Jζ(g

1, g2, g3) :=
(
(1 + γ)

1
2 g1,Λ

1
2 g2,Λ−

1
2 g3

)
.

(4.45)

Note that JζΓ(ζ)U = Γsc(ζ)JζU with

ΓscU =
(
Γ1u

1,Γ2u
2, Kdu

3 + Λ−1Ktg(η)u
2
)
. (4.46)
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Thus (4.44) reads

∀U ∈ JζE−(ζ) : |U | ≤ C|JζΓ(ζ)J−1
ζ U | (4.47)

Introducing the rescaled Evans function

Dsc(ζ) =
∣∣∣ det

(
JζE−(ζ), Jζ ker Γ(ζ)

)∣∣∣. (4.48)

we see that this stability condition is equivalent to the following definition:

Definition 4.17. Given a profile w, the linearized equation (4.2) satisfies the uni-
form spectral stability condition for high frequencies when there are c > 0 and ρ1 > 0

such that Dsc(ζ) ≥ c for all ζ ∈ Rd+1

+ with |ζ| ≥ ρ1.

Note that for ζ in bounded sets, Jζ and J−1
ζ are uniformly bounded and D(ζ) ≈

Dsc(ζ), thus the condition Dsc(ζ) 6= 0 is nothing but a reformulation of the weak
stability condition.

By Lemma 4.10, the high frequency uniform stability is equivalent to (4.44). In
section 9, we will recall from [GMWZ4] that the uniform spectral stability implies
the high frequency maximal estimates (4.42), under structural assumptions on the
system that are satisfied in many examples, including Navier-Stokes and MHD.

4.4.3. The inviscid case

There are analogous definitions for the linearized hyperbolic problem (4.9) with
boundary conditions (4.27). Recall that the Lopatinski determinant is defined at
(4.35). Definition 4.12 of weak stability is strengthened as follows.

Definition 4.18. The linearized equation (4.9) (4.27) satisfies the uniform spectral
stability condition when there are c > 0 such that DLop(ζ) ≥ c for all ζ ∈ Sd

+ :=
Sd ∩ {γ > 0}.

This uniform stability condition is equivalent to a uniform estimate for all ζ ∈ Sd
+:

∀u ∈ E−(H0(u, ζ)) :
∣∣∣u∣∣∣ ≤ C

∣∣∣Γredu
∣∣∣ (4.49)

The expected maximal estimates for solutions of (4.9) (4.27) are

γ
1
2‖u‖L2 + |u(0)| ≤ C

(
γ−

1
2‖f‖L2 + |h|

)
(4.50)

with C independent of ζ ∈ Rd+1
+ .

Remark 4.19. The uniform stability condition is satisfied for small amplitude layers
(see [GrGu] for artificial viscosity and [Rou1] for real viscosity in 1D). In [GMWZ8]
layers for Navier-Stokes equations and in or out-flow boundary conditions are stud-
ied. The analogous uniform stability condition for weak Lax shocks has been recently
proved in [PlZu]. In the inviscid case, we also refer to [Maj1] for the verification of
the uniform Lopatinski condition for Euler’s equation and to [Mét1] for weak Lax
shocks.
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5. The Zumbrun-Serre-Rousset Theorem and the reduced
low frequency problem

A famous result of [ZuSe] and [Rou1] links the low frequency uniform stability of the
viscous regularizations and the uniform stability of the limiting inviscid problem.
We give here the extension proved in [GMWZ6].

5.1. Transversality is necessary
Proposition 5.1. Given a profile w, if the low frequency uniform spectral stability
condition is satisfied, then w is transversal.

Proof. Lemma 4.3 implies that for ζ 6= 0 small enough, Ũ is a solution of (4.14) if
and only if t(uH , uP ) = V −1(ζ)Ũ satisfies

∂zuH = H(u, ζ)uH + fH , (5.1)
∂zuP = P (u, ζ)uP + fP , (5.2)

ΓH(ζ)uH(0) + ΓP (ζ)uP (0) := Γ̃(ζ)Ũ(0) = g, (5.3)

where t(fH , fP ) = V −1(ζ)F̃ and ΓH [resp. ΓP ] denotes the restriction of Γ̃V to
CN × {0} [resp. {0} × CN2 ]. In particular,

E−(G(u, ζ)) = V (ζ)
(

E−(H(u, ζ))⊕ E−(P (u, ζ))
)
.

With (4.39), this shows that the low frequency uniform stability condition holds if
and only if there are C and ρ0 > 0 such that for all ζ ∈ Rd+1

+ with 0 < |ζ| ≤ ρ0

∀uH ∈E−(H(u, ζ)), ∀uP ∈ E−(P (u, ζ)) :∣∣∣uH

∣∣∣+ ∣∣∣uP

∣∣∣ ≤ C
∣∣∣ΓH(ζ)uH + ΓP (ζ)uP

∣∣∣. (5.4)

In particular,
∀uP ∈ E−(P (u, ζ)) :

∣∣∣uP

∣∣∣ ≤ C
∣∣∣ΓP (ζ)uP

∣∣∣. (5.5)

By Lemma 4.3, E−(P (u, ζ)) is a smooth bundle for ζ in a neighborhood of 0.
Moreover, Γ̃(ζ) and ΓP (ζ) are smooth around the origin. This implies that

∣∣∣uP

∣∣∣ ≤
C
∣∣∣ΓP (0)uP

∣∣∣ on E−(P (u, 0)), implying that condition i) of Definition 4.4 is satisfied.
Since dim(E−(G(ζ))) = rank Γ̃(ζ) = Nb, (5.4) implies that for all h ∈ CNb and

all ζ ∈ Rd+1

+ with 0 < |ζ| ≤ ρ0, there is Ũ(ζ) = V (ζ)
(
uH(ζ), uP (ζ)

)
in E−(ζ) ⊂

V (ζ)
(
CN ⊕E−(P (ζ))

)
such that Γ̃(ζ)Ũ(ζ) = h and |Ũ(ζ))| ≤ c|h|. By compactness

and continuity, letting ζ tend to zero, implies that there is Ũ = V (0)
(
uH , uP

)
in

V (0)
(
CN ⊕ E−(P (0))

)
such that Γ̃(0)Ũ = h, showing that condition ii) of Defini-

tion 4.4 is also satisfied. �

5.2. The reduced problem
Suppose that the profile w is transversal. Then, by i) of Definition 4.4 and Re-
mark 4.2, ΓP (ζ) is an isomorphism from E−(P (u, ζ)) to its image F0,P when ζ = 0;
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by continuity this extends to a neighborhood of the origin and the decomposition
(4.24) valid at ζ = 0, extends smoothly on a neighborhood of the origin:

CNb = FH ⊕ FP (ζ), FP (ζ) := ΓP (ζ)E−(P (u, ζ)). (5.6)

Denote by πH(ζ) and πP (ζ) the projections associated to this splitting and define
the reduced boundary operator as

Γred(ζ) := πH(ζ)ΓH(ζ), (5.7)

as well as the reduced boundary value problem

∂zuH −H(u, ζ)uH = fH , Γred(ζ)uH(0) = h. (5.8)

The reduced Evans function is

Dred(ζ) =
∣∣∣ det

(
E−(H(u, ζ)), ker Γred(ζ)

)∣∣∣. (5.9)

Definition 5.2. The reduced uniform stability condition is satisfied if Dred(ζ) ≥
c > 0 for all ζ ∈ Rd+1\{0} with |ζ| small enough.

This is equivalent to the condition

∀u ∈ E−(H(u, ζ)) : |u| ≤ C|Γred(ζ)u|, (5.10)

for ζ ∈ Rd+1\{0} small.

Theorem 5.3. Given a profile w, the linearized equation (4.4) satisfies the low
frequency uniform spectral stability condition if and only if

i) w is transversal,
ii) the reduced problem (5.8) satisfies the reduced uniform stability condition.

Proof. We have already shown that the low frequency uniform stability requires
that w is transversal. Moreover, using the splitting (5.6), we see that the uniform
stability conditions (4.39) or (5.4) are equivalent to∣∣∣uH

∣∣∣+ ∣∣∣uP

∣∣∣ ≤ C
(∣∣∣ΓreduH

∣∣∣+ ∣∣∣ΓPuP + πP ΓHuH

∣∣∣) (5.11)

for all uH ∈ E−(H) and uP ∈ E−(P ) (to lighten notations we have omitted the ζ
dependance). Since ΓP is surjective from E−(P ) onto FP , for all uH ∈ E−(H) there
is uP ∈ E−(P ) such that ΓPuP = −πP ΓHuH and (5.11) implies (5.10).

Conversely, if the profile is transverse, the estimate (5.5) is valid at ζ = 0 and
extend by continuity to ζ in a neighborhood of 0. With (5.10), this clearly implies
(5.11). �

5.3. The ρ→ 0 limit for Evans functions
It remains to link the reduced uniform stability condition to the uniform (Lopatin-
ski) stability condition for the hyperbolic boundary value problem, that is for the
problem (4.9) with boundary conditions (4.27). Note that these boundary conditions
are given by Γred = Γred(0) (see Remark 4.5).

Because H vanishes at ζ = 0, it is natural to use polar coordinates:

ζ = ρζ̌, ρ = |ζ|, ζ̌ ∈ Sd. (5.12)

In these coordinates

H(u, ζ) = ρȞ(u, ζ̌, ρ), Ȟ(u, ζ̌, ρ) = H0(u, ζ̌) +O(ρ). (5.13)
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Changing z to ž = ρz, u(z) to ǔ(ž) and f(z) to ρf̌(ž) the reduced problem (5.8) is
equivalent to

∂žǔH −H(u, ζ̌, ρ)ǔH = f̌H , Γred(ζ)ǔH(0) = h, (5.14)
which, for ρ = 0, is exactly the inviscid problem (4.11) (4.27). We are thus led to a
nonsingular perturbation problem.

Clearly, for ζ ∈ S
d
+ := Sd ∩ {γ̌ ≥ 0}, there holds E−(H(u, ζ)) = E−(Ȟ(u, ζ̌, ρ))

and Dred(ζ) = Ď(ζ̌ , ρ) with

Ď(ζ̌ , ρ) =
∣∣∣ det

(
E−(Ȟ(u, ζ̌, ρ)), ker Γred(ρζ̌)

)∣∣∣ (5.15)

Remark 5.4. For γ̌ > 0, H0(u, ζ̌) has no eigenvalues on the imaginary axis, as
a consequence of hyperbolicity (see Remark 2.4). By perturbation, this property
holds true for Ȟ(u, ζ̌, ρ) for ρ small enough (depending on γ̌ > 0). This shows that
the vector bundle E−(Ȟ(u, ζ̌, ρ)) which was defined on S

d
+×]0, ρ0] has a smooth

extension to ∈ S+ × [0, ρ0], as well as Ď. Comparing with the definition of the
Lopatinski determinant (4.35), we see that

DLop(ζ̌) = Ď(ζ̌ , 0), for γ̌ > 0. (5.16)

The next theorem, combined with Theorem 5.3, extends Rousset’s theorem [Rou1]
(see also [ZuSe] for shocks).

Theorem 5.5. Given a transverse profile w, if the reduced uniform spectral stability
condition is satisfied, then the linearized hyperbolic problem (4.9) (4.27) satisfies the
reduced uniform stability condition.

Conversely, if the linearized hyperbolic problem is uniformly stable and the vector
bundle E−(Ȟ(u, ζ̌, ρ) has a continous extension to Sd

+× [0, ρ0], then the reduced uni-
form spectral stability condition is satisfied and the linearized problem (4.2) satisfies
the uniform low frequency stability condition.

Proof. The uniform estimate (5.10) implies that

|u| ≤ C|Γred(ζ)u|

for u ∈ E−(Ȟ(u, ζ̌, ρ)), ζ̌ ∈ S
d
+ and ρ > 0 small. If γ̌ > 0, every term is continuous

up to ρ = 0 and the estimate above implies (4.49), that is

|u| ≤ C|Γred(0)u|
for u ∈ E−(H0(u, ζ̌)), ζ̌ ∈ Sd

+. This implies that the hyperbolic problem is uniformly
stable.

If E−(Ȟ(u, ζ̌, ρ)) has a continous extension to S
d
+ × [0, ρ0], the reduced Evans

function has a continuous extension to Sd
+× [0, ρ0]. The hyperbolic uniform stability

and (5.16) imply that
Ď(ζ̌ , ρ) ≥ c > 0

for ζ̌ ∈ Sd
+ and ρ = 0. By continuity, this extends first to ζ̌ ∈ S

d
+ and next to

ρ ∈ [0, ρ1] for some ρ1 > 0. �

Remark 5.6. It is proved in [MéZu3] that when the eigenvalues of the hyper-
bolic symbol A(u, ξ) have constant multiplicity, and more generally when there is a
smooth K family of symmetrizers (see the definition below), then the vector bundle
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E−(Ȟ(u, ζ̌, ρ)) has a continuous extension to ρ = 0. The main concern of this paper
is to construct K-families for systems with variable multiplicity. This is possible
under suitable assumptions, and therefore the two theorems above extend a result
of F.Rousset [Rou1]. However, we will also show that the bundle E does not always
admit a continuous extension, with the result that the hyperbolic problem can be
uniformly stable while the viscous problem is strongly unstable in the low frequency
regime. This seems to be a new phenomenon.

5.4. The ρ→ 0 limit for maximal estimates
Assuming transversality of w, Theorem 5.3 implies that the uniform spectral stabil-
ity for low frequency is equivalent to the spectral stability for the reduced problem.
There is an analogue for maximal estimates. The maximal estimates for the reduced
problem (5.14) read

(γ̌ + ρ)
1
2‖ǔH‖L2 + |ǔH(0)| ≤ C

(
(γ̌ + ρ)−

1
2‖f̌H‖L2 + |h|

)
(5.17)

with C independent of ζ̌ ∈ S
d
+ and ρ ∈]0, ρ0]. Note that for ρ = 0 and γ̌ > 0,

this is the maximal estimate for the inviscid problem. Scaling back to the original
variables, this estimate is equivalent to

(γ + |ζ|2)
1
2‖uH‖L2 + |uH(0)| ≤ C

(
(γ + |ζ|2)−

1
2‖fH‖L2 + |h|

)
(5.18)

for the solutions of (5.8).

Theorem 5.7. Suppose that the profile w is transversal. Then the maximal estimates
(4.38) are valid for low frequencies if and only if the maximal estimates (5.17) for
the reduced problem hold true.

Proof. By Lemma 4.3 P (u, ζ) has no purely imaginary eigenvalues. Thus, using
symmetrizers (see e.g. [MéZu1] and Section 6 below), there holds

‖u+
P‖L2 + |u+

P (0)| . ‖f+
P ‖L2 , (5.19)

‖u−P‖L2 . ‖f−P ‖L2 + |u−P (0)|, (5.20)

where ± denotes the smooth projections on the spaces E±(P (u, ζ)).
The splitting (5.6) implies that the boundary condition (5.3) reads

πHg = ΓreduH(0) + πHΓPu
+
P (0),

πPg = ΓPu
−
P (0) + πP ΓHuH(0) + πHΓPu

+
P (0).

Moreover ΓP is invertible on E−(P ), hence |ΓPu
−
P (0)| ≈ |u−P (0)| and

|ΓreduH(0)| . |πHg|+ |u+
P (0)|,

|u−P (0)| . |πPg|+ |uH(0)|+ |u+
P (0)|.

Suppose that the estimate (5.18) is satisfied. Then,

ϕ‖uH‖L2 + |uH(0)| . ϕ−1‖fH‖L2 + |πHg|+ |u+
P (0)|.

With (5.19), this implies that

ϕ‖uH‖L2 + ‖u−P‖L2+|uH(0)|+ |u−P (0)|
. ϕ−1‖fH‖L2 + ‖f−P ‖L2 + |g|+ |u+

P (0)|.
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Thus, with (5.19), we obtain that

ϕ‖uH‖L2 + ‖uP‖L2 + |uH(0)|+ |uP (0)| . ϕ−1‖fH‖L2 + ‖fP‖L2 + |g|.

Because V (u, 0) has the special form (4.18), Ũ = V (uH , uP ) = (Ũ1, Ũ2) satisfies

Ũ1 = O(1)uH +O(1)uP , Ũ1 = O(|ζ|)uH +O(1)uP

Therefore, the solutions of (4.14) satisfy

ϕ‖Ũ1‖L2 + ‖Ũ2‖L2 + |Ũ(0)| . ϕ−1‖F̃‖L2 + |g|.
that is the maximal estimate (4.38).

Conversely, assume that the maximal estimate (4.38) is satisfied. Suppose that
uH is a solution of (5.1). By transversality, ΓP is surjective from E−(P, ζ) to its
image FP (ζ) and there exists there is uP (0) in E−(P, ζ) such that

ΓPuP (0) = −πP ΓHuH(0) ∈ FP (ζ). (5.21)

Consider uP = ezPuP (0) which is well defined and rapidly decaying at infinity since
uP (0) ∈ E−(P, ζ). It is a solution of (5.2) with fP = 0. Then Ũ = V (uH , uP ) is a
solution of (4.14) with F̃ = V (fH , 0). Thus (uH , uP ) = V −1Ũ and there holds

‖uH‖L2 . ‖Ũ‖L2 , |uH(0)| . |Ũ(0)|, ‖F̃‖L2 . ‖fH‖L2

and, by (5.21), Γ̃Ũ(0) = ΓHuH(0)+ΓPuP (0) = ΓreduH(0). Thus the estimate (4.38)
immediately implies (5.18). �

5.5. Viscous unstabilities
The analysis above indicates that when the negative space E− is not continuous in
(ζ̌ , ρ), then the Evans function is likely not continuous and one can expect that the
low frequency uniform stability condition for the viscous problem is strictly stronger
than the similar condition for the inviscid problem. In particular, the inviscid prob-
lem can be strongly stable while the viscous one is strongly unstable. We illustrate
here this phenomenon on an explicit example.

1. An example. Consider the system{
(∂t + ∂y)u1 + ∂xu2 = εµ∆u1,

(∂t + ∂y)u2 + ∂xu1 = εν∆u2.
(5.22)

Taking linear combinations and changing ε, the system is equivalent to

(∂t + ∂y)Id + A∂x − εB∆, A =

(
1 0
0 −1

)
, B =

(
1 a
a 1

)
, (5.23)

with a = |ν − µ|/(ν + µ) ∈ [0, 1[. This system is symmetric and satisfy the assump-
tions (H1) and (H2).

The hyperbolic part is diagonal: the eigenvalues are

λ1 = η + ξ, λ2 = η − ξ. (5.24)

They cross on the line ξ = 0 and are trivially geometrically regular (see Defini-
tion 8.1 below) since the system is already in diagonal form. One of the eigenvalue
is incoming, one is outgoing. The decoupling condition (8.9) is satisfied if and only
if a = 0. In the sequel, we assume that a > 0.

I–27



2. Boundary conditions. Next, consider boundary conditions for (5.23):

u|x=0 + εΓ∂xu|x=0 = 0. (5.25)

We first compute the limiting inviscid boundary conditions, using boundary layers.
The bounded solutions u = w(x/ε) of (5.23) are

w(z) = u+ ezB−1Ah, h ∈ E−B−1A, u ∈ C2. (5.26)

where E−B−1A is the negative space of B−1A. Therefore, u is the endpoint of a profile
which satisfies the boundary condition (5.25), if and only if

u ∈
(
Id + ΓB−1A

)
E−B−1A. (5.27)

Note that given any complex number c, one can choose Γ such that this boundary
condition reads

u1 = cu2 (5.28)
3. Low frequency stability. The first order system (4.6) reads

∂zU −G(ζ)U, G(ζ) =

(
0 Id

σB−1 + η2Id B−1A

)
, (5.29)

with ζ = (τ, η, γ) and σ = γ+i(τ+η). Perform the small frequency reduction (4.16),
using the change of unknows (

u
∂zu

)
= V (ζ)

(
uH

uP

)
.

Then, by Lemma 8.24, there holds

V −1GV =

(
H 0
0 P

)
with P (0) = B−1A and

H(ζ) = −σA+ (σ2 − η2)AB +O(|ζ|3), (5.30)

Since V (0) has the triangular form (4.18), we see that the boundary condition
reads

uH + Γ̃(ζ)uP = 0, Γ̃(0) = Γ + A−1B. (5.31)
The Evans condition is violated at ζ if there is uH ∈ E−H(ζ) and uP ∈ E−P (ζ)
satisfying this boundary condition. The negative space of P (ζ), E−P (ζ) is smooth in
ζ and equal to E−B−1A when ζ = 0. Thus, the Evans condition is violated at ζ if

E−H(ζ) ∩ Γ̃(ζ)E−P (ζ) 6= {0}.

Since A−1B = (B−1A)−1, there holds

Γ̃(0)E−P (0) = (Id + ΓB−1A)E−B−1A.

Comparing with (5.27) and (5.28), we see that for ζ small, the space Γ̃(ζ)E−P (ζ) is
generated by t(c(ζ), 1) where c(ζ) is a smooth function such that c(0) = c. Therefore,
the Evans condition is violated at ζ if and only if(

c(ζ)
1

)
∈ E−H(ζ). (5.32)

I–28



Remark 5.8. The analysis above shows that the reduced boundary condition for
the hyperbolic part H(ζ) reads

u1 = c(ζ)u2. (5.33)

Taking ζ = 0 in this equation, we recover that (5.28) is the natural limiting boundary
condition for the hyperbolic operator H0.

Proposition 5.9. There are choices of a and Γ, such that
i) the inviscid problem (5.23) for ε = 0 with the boundary condition (5.28) is

maximal striclty dissipative thus uniformly stable,
ii) the viscous problem with boundary conditions (5.25) is strongly unstable for

small frequencies, in the sense that there are arbitrarily small frequencies ζ with
γ > 0 where the Evans functions vanishes.

Proof. The matrix

S =

(
1 0
0 s

)
, s > 0 (5.34)

is a symmetrizer for the inviscid problem. If

|c|2 < s, (5.35)

the boundary condition is strictly dissipative for S. This implies that the uniform
Lopatinski condition is satisfied.

We consider frequencies ζ = ρζ̌ with ζ̌ close to (−1, 1, 0) where H0(ζ̌) = 0 has a
double eigenvalue. More precisely we consider frequencies

ζ = (−ρ+ ρ2τ̂ , ρ, ρ2γ̂). (5.36)

In this case, we see that G is a function of σ̂ = γ̂ + iτ̂ and ρ, holomorphic in σ̂, as
well as V , P , H and c. Moreover

H(ζ) = −ρ2(σ̂A+ A−1B +O(ρ)) = ρ2Ĥ(σ̂, ρ). (5.37)

The model operator is

Ĥ(σ̂, 0) = −σ̂A− A−1B =

(
−σ̂ − 1 −a

a σ̂ + 1

)

Ĥ(1, 0) has one eigenvalue with positive real part, with eigenvector t(b, 1) with
b = (2+

√
4− a2)/a (Note here the importance of the assumption a 6= 0). Therefore,

for σ̂ close to 1 and ρ small , the negative space of Ĥ(σ̂, ρ) is generated by t(b(σ̂, ρ), 1)
where b is smooth and holomorphic in σ̂ and b(1, 0) = b. Moreover

∂σ̂b(1, 0) =
1

a

(
1 +

2√
4− a2

)
6= 0. (5.38)

Comparing with (5.32), we see that the stability condition is violated at ζ given by
(5.36), if and only if

b(σ̂, ρ) = c(ζ) = ĉ(σ̂, ρ). (5.39)
Given a ∈]0, 1[, we choose c = b and Γ such that the inviscid boundary condition

reads (5.28). Note that ĉ(σ̂, 0) = c for all σ̂. Thus the equation (5.39) holds at σ̂ = 1
and ρ = 0. Moreover, with (5.38), the implicit function theorem shows that for ρ > 0
small, there is σ̂(ρ close to 1 solution of (5.39), providing frequencies ζ(ρ) = O(ρ)
with γ(ρ) ∼ ρ2 > 0, where the stability condition is violated. �
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4. Smooth symmetrizers. We briefly discuss here the existence of smooth symmetriz-
ers for the hyperbolic operator Ȟ (6.24). In the present case, we deduce from (5.30)
that in polar coordinates ζ = ρζ̌, there holds

Ȟ(ζ̌ , ρ) = −σ̌A+ ρ(σ̌2 − η̌2)AB +O(ρ2), σ̌ = γ̌ + i(τ̌ + η̌). (5.40)

Fix ζ̌ = (1,−1, 0), which corresponds to a multiple root of the hyperbolic part. Then
σ̌ = 0, and near (ζ̌ , 0)

Ȟ(ζ̌ , ρ) = −A(σ̌Id + ρβ(ζ̌)B) +O(ρ2) (5.41)

with β(ζ̌) = 1. Dropping theˇ, and changing ρb to ρ, the matrix Ȟ is a perturbation
for (σ, ρ) close to (0, 0) of the following canonical example(

1 0
0 −1

)
∂x + σ

(
1 0
0 1

)
+ ρ

(
1 a
a 1

)
, Reσ ≥ 0, ρ ≥ 0. (5.42)

Note that (5.37) derives from (5.41) choosing σ̌ = ρσ̂.
Denote by E− the negative space of Ȟ for Reσ+ ρ > 0. On can check directly on

this example that the negative spaces have no limit as (σ, ρ) → (0, 0): the limits are
different when ρ = 0 and σ = 0, since the positive spaces of A and AB are different
when a 6= 0.

On the other hand, blowing up once more the local coordinates near ζ̌, that is
taking polar coordinates (σ, ρ) = r(σ̂, ρ̂), is is clear from (5.41) that E− is a smooth
function of (σ̂, ρ̂).

If Σ(ζ̌ , ρ) is a smooth symmetrizer for Ȟ, then (6.25) implies that Σ = Σ(ζ̌ , 0)
must be a symmetrizer for −(σA+ ρAB) for all σ and ρ, equivalently that S = ΣA
is a symmetrizer for (5.42), that is

S = S∗ � 0, SA = AS, Re (SB) � 0. (5.43)

The first two conditions are satisfied if and only if S is diagonal and positive. Mul-
tiplying it by a positive factor, it must be of the form (5.34).

The third condition holds if and only if

s > a2(1 + s)2/4.

Denoting by smin(a) < 1 < smax(a) < ∞ the roots of the equation 4s = a2(1 + s2),
the condition reads

smin(a) < s < smax(a). (5.44)

This shows that the choice of symmetrizers is much more limited in the viscous case
compared to the inviscid one. In particular, when a is close to 1, (5.44) forces to
choose s in a small interval around 1.

The boundary condition (5.33) is strictly dissipative for Σ, then (5.28) is strictly
dissipative for Σ. This holds if and only if s > |c|2. Therefore:

There is a smooth symmetrizer Σ(ζ̌ , ρ) for Ȟ on a neighborhood of (ζ̌ , 0), adapated
to the boundary conditions (5.33) only if

|c|2 < smax(a). (5.45)
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6. LF and MF symmetrizers

6.1. The method of symmetrizers
This “method” applies to general boundary value problems

∂xu = G(x)u+ f , Γu(0) = g . (6.1)

Here, u and f are functions on [0,∞[ with values in some Hilbert space H, and G(x)
is a C1 family of (possibly unbounded) operators defined on D, dense subspace of
H. In this section we apply the method to finite dimensional spaces H = CN+N2 .
However, after inverse tangential Fourier transform, the space which is actually
considered is rather L2(Rd; CN+N2

). Moreover, when passing to variable coefficients,
one has to work directly in this infinite dimensional space.

A symmetrizer is a family of C1 functions x 7→ S(x) with values in the space of
operators in H such that there are C0 and c > 0 such that

∀x , S(x) = S(x)∗ and |S(x)| ≤ C0 , (6.2)

∀x , ReS(x)G(x) +
1

2
∂xS(x) ≥ cId . (6.3)

In (6.2), the norm of S(x) is the norm in the space of bounded operators in H.
Similarly S∗(x) is the adjoint operator of S(x). The notation ReT = 1

2
(T + T ∗) is

used in (6.3) for the real part of an operator T . When T is unbounded, the meaning
of ReT ≥ λ, is that all u ∈ D belongs to the domain of T and satisfies

Re
(
Tu, u

)
H
≥ λ|u|2 , (6.4)

where (· , · )H is the scalar product in H. The property (6.3) has to be understood
in this sense.

Taking the scalar product of Su with the equation (6.1) and integrating over
[0,∞[, (6.2) and (6.3) imply

c‖u‖2 +
(
S(0)u(0), u(0)

)
H
≤ C2

0

c
‖f‖2, (6.5)

where f = ∂xu−Gu. Here, ‖ · ‖ is the norm in L2([0,∞[;H).
The symmetrizer S is adapted to the boundary condition Γ if there are constants

δ and C1 such that:
S(0) ≥ δId− C1Γ

∗Γ . (6.6)
Hence,

Lemma 6.1. If there is a symmetrizer S adapted to the boundary condition Γ, then
for all u ∈ C1

0([0,∞[;H) ∩ C0([0,∞[;D), one has

λ‖u‖2 + δ|u(0)|2 ≤ C2
0

λ
‖f‖2 + C1|Γu(0)|2 , (6.7)

where f := ∂xu−Gu.

In the finite dimensional constant coefficients case, the usual construction of sym-
metrizers has two parts: first, one constructs families of symmetrizers Sκ satisfying
(6.2) and (6.3). This only uses the structural hyperbolicity-parabolicity Assump-
tions and is independent of the boundary conditions. Second, one chooses κ such
that the third condition (6.6) holds. There we use the stability condition for the
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boundary condition. In this spirit, we end this section with noticing a general recipe
linking Evans-Lopatinski conditions to (6.6).

Proposition 6.2. Suppose that G is a n × n matrix with no eigenvalues on the
imaginary axis and n− of them in the half space {Reµ > 0}. Denote by E− the
invariant space associated to these eigenvalues. Suppose that Γ is a n− × n matrix
and

| det(E−, ker Γ)| ≥ c > 0. (6.8)

Suppose that Sκ is a symmetrizer for G such that(
Sκu, u

)
≥ κ|Π+u|2 − |Π−u|2, (6.9)

where Π± denote the projectors associated to a decomposition

Cn = Ẽ− ⊕ Ẽ+, dim Ẽ− = n−. (6.10)

Then, there are κ0 and C1 which depend only on c, |Γ| and |Γ∗(ΓΓ∗)−1| such that
for κ ≥ κ0 there holds (

Sκu, u
)
≥ |u|2 − C1|Γu|2. (6.11)

Proof. By Lemma 4.10, there is C such that

∀u ∈ E− : |u| ≤ C|Γu|. (6.12)

Next, we note that all element in E− is an initial data for an exponentially decaying
solution of ∂xu − Gu = 0. Therefore, (6.5) implies that for all symmetrizer S of G
there holds

∀u ∈ E− : (Su, u) ≤ 0. (6.13)

In particular, the assumption implies that

∀u ∈ E− : |Π+u| ≤ ε|Π−u|, ε = κ−
1
2 . (6.14)

Thus the mapping Π− from E− to Ẽ− is injective. Because dim E− = dim Ẽ− this
implies that there is a linear mapping A from Ẽ− to Ẽ+ with |A| ≤ ε such that

E− =
{
u− + Au−; u− ∈ Ẽ−

}
. (6.15)

Combining with (6.12), we see that if ε(1 + C|Γ|) ≤ 1
2
, then

∀u− ∈ Ẽ− : |u−| ≤ 2C|Γu−|. (6.16)

This inequality implies that for κ ≥ 2 + 24C2|Γ|2

κ|u+|2 − |u−|2 ≥ |u+ + u−|2 − C1|Γu+ + Γu−|2

and the proposition is proved. �

Remark 6.3. In the limit κ → +∞, (6.14) implies that Ẽ− → E−. This shows
that in the splitting (6.10) there is little choice for Ẽ−. On the contrary, there is no
need for Ẽ+ to be close to the positive invariant space E+. This is important for
the construction of symmetrizers for G(ζ) when the frequency is close to “glancing
frequencies”.
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6.2. Elliptic points and MF symmetrizers
Lemma 6.4. Suppose that G is a matrix with spectrum in {Reµ > 0}. Then, there
is a symmetric definite positive matrix S such that ReSG ≥ Id.

Proof. The assumption implies that e−tG and e−tG∗ are exponentially decaying. A
symmetrizer is

S = 2
∫ ∞

0
e−tG∗e−tGdt.

�

Note that this formula shows that one can choose S depending smoothly on G in
the space of matrices with spectrum in the right open half space.

Proposition 6.5. Suppose that G(p) is a n × n matrix which depend smoothly on
parameters p in a neighborhood of p, with no eigenvalues on the imaginary axis.
Then, for p in a neighborhood of p, there is a family of symmetrizers Sκ(p) for G(p)
which satisfy (6.9) in the decomposition of Cn in invariant spaces E±(p) for G(p)
associated to the eigenvalues in {±Reµ > 0}.

Proof. The spaces E±(p) depend smoothly on p, in a neighborhood of p and there
is a smooth matrix V (p) such that

V GV −1 =

(
G+ 0
0 G−

)
with G± having their spectrum in {±Reµ > 0}. Then there are self adjoint matrices
S±(p) such that ±S±G± ≥ Id. Then,

Sκ = V ∗
(
κS+ 0

0 −S−
)
V

symmetrizes G and satisfies (6.9) �

Thanks to Lemma 4.3, this proposition directly applies to the linearized equations
(4.14) for ζ 6= 0. For clarity, we drop the tildes and reserve the notations u, U... for
the unknowns and call p ∈ U the parameter called u in this equation, which now
reads

∂zU = G(p, ζ)U + F, Γ(p, ζ)U(0) = g. (6.17)
We assume that the assumptions of Section 2 are satisfied.

Proposition 6.6. For all ζ ∈ Rd+1\{0}, there is a neighborhood of (p, ζ) in U×Rd+1

such that for (p, ζ) in this neighborhood there is a smooth splitting

CN2

= E−(p, ζ)⊕ E+(p, ζ). (6.18)

where E±(p, ζ) denote the invariant space of G(p, ζ) associated to the spectrum in
{±Reµ > 0}. Denoting by Π±(p, ζ) the smooth spectral projectors associate to this
splitting, there is a smooth family Σκ(p, ζ) of self adjoint matrices such that for all
(p, ζ) in the given neighborhood and all κ ≥ 1:

i) Re ΣκG > 0,

ii) Re Σκ ≥ κ(Π+)∗Π+ − (Π−)∗Π−.
(6.19)

This provides another proof of the estimates (4.34):
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Corollary 6.7. If the weak spectral stability condition is satisfied, then for all ζ ∈
Rd+1\{0}, there are a constant C and a neighborhood of (p, ζ) in U ×Rd+1 such that
for (p, ζ) in this neighborhood the solutions of (6.17) satisfy

‖U‖L2 + |U(0)| ≤ C
(
‖F‖L2 + |g|

)
. (6.20)

6.3. LF symmetrizers
We now concentrate on low frequencies. By Lemma 4.3, the matrix G(p, ζ) is locally
smoothly conjugated to a block diagonal matrix (4.16) with diagonal blocks with
H(p, ζ) of dimension N×N and P (p, ζ) of dimension N2×N2. The system (6.17) is
therefore equivalent to the equations (5.1) (5.2) coupled by the boundary conditions
(5.3).

In the block diagonal reduction (4.16), we construct symmetrizers

Σκ =

(
Σκ

H 0
0 Σκ

P

)
(6.21)

such that the property (6.9) is satisfied for each block independently.
The construction for the elliptic block P is given by Proposition 6.5, since P (p, 0)

has no eigenvalues on the imaginary axis. Denote by E±P (p, ζ) the subspaces of CN2 ,
invariant for P (p, ζ), associated to the spectrum in {±Reµ > 0}. Thus, for (p, ζ) in
a neighborhood of (p, 0), there is a smooth splitting

CN2

= E−P (p, ζ)⊕ E+
P (p, ζ). (6.22)

Denote by Π±
P (p, ζ) the smooth spectral projectors associate to this splitting.

Proposition 6.8. There is a smooth family of self adjoint matrices Σκ
P on a neigh-

borhood of (p, 0) such that

i) Re Σκ
PP > 0,

ii) Re Σκ
P ≥ κ(Π+

P )∗Π+
P − (Π−

P )∗Π−
P

(6.23)

This implies the estimates (5.19) (5.20) which where used in the previous section.

To analyze H, we use polar coordinates for ζ = ρζ̌ as in (5.12) so that

H(p, ζ) = ρȞ(p, ζ̌, ρ), Ȟ(p, ζ̌, ρ) = H0(p, ζ̌) +O(ρ). (6.24)

By Lemma 4.3, for ζ ∈ Rd+1
+ \{0}, Ȟ has no eigenvalue on the imaginary axis, hence

the number N− of eigenvalues of Ȟ in {Reµ < 0} is constant.
We fix a point ζ̌ ∈ S

d
+, that is ζ̌ = (τ̌ , η̌, γ̌) in the unit sphere with γ̌ ≥ 0. The

goal is to construct smooth symmetrizers for Ȟ, for (p, ζ̌, ρ) close to (p, ζ̌, 0). For
convenience we introduce the following terminology.

Definition 6.9. A smooth symmetrizer for Ȟ on a neighborhood ω of (p, ζ̌, 0) is a
smooth self adjoint matrix Σ̌H(p, ζ̌, ρ) such that

Re Σ̌HȞ =
∑

V ∗
k ΣkVk, (6.25)

where the Vk and Σk are smooth matrices on ω of appropriate dimension so that the
products make sense, satisfying

i)
∑
V ∗

k Vk is definite positive,
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ii) either Σk is definite positive or Σk = γΣk,1+ρΣk,2 with Σk,1 and Σk,2 definite
positive.

Definition 6.10. A family of smooth symmetrizers Σκ on neigborhoods ωκ of (p, ζ̌, 0)

is called a K-family of symmetrizers for Ȟ if there are a decomposition

CN = E−H ⊕ E+
H (6.26)

with dim E− = N− and m(κ) → +∞ as κ→ +∞ such that for all κ

Σκ(p, ζ̌, 0) ≥ m(κ)Π∗
+Π+ − Π∗

−Π−. (6.27)

where Π± are the projectors associated to the splitting (6.26).

Using (6.14), one proves the following result (see [MéZu3]):

Theorem 6.11. Suppose that there exists a K-family of symmetrizers near (p, ζ̌, 0).
Then E−H is the limit of the negative spaces E−H(p, ζ̌, ρ) as (p, ζ̌, ρ) tends to (p, ζ̌, 0)
with ρ > 0.

Remark 6.12. This theorem shows that E−H is uniquely determined. On the other
hand, E+

H is arbitrary, provided that the the splitting (6.26) holds: if (6.27) holds
for some choice of E+, then it also holds for another choice for a multiple of Σκ with
some other function m(κ).

Remark 6.13. The advantage of the notion of K-families is that it is independent of
the boundary conditions. Therefore, their construction depends only on an analysis
of Ȟ. In particular, we can use a spectral block decompositions of Ȟ.

Fix ζ̌ ∈ S
d
+. Consider the distinct eigenvalues µ

k
of H0(p, ζ̌). For (p, ζ̌, ρ) in a

neighborhood of (p, ζ̌, 0), there is a smooth block reduction

V −1ȞV = diag(Ȟk) (6.28)

where the Hk have their spectrum in small discs centered at µ
k

that are pairwise
disjoints. Equivalently, there is a smooth decomposition

CN =
⊕
k

Ek(p, ζ̌, ρ) (6.29)

in invariant spaces for Ȟ(p, ζ̌, ρ) and Ȟk is the restriction of Ȟ to Ek. We denote by
Nk the dimension of Ek, that is the size of Ȟk.

The K-families of symmetrizers are constructed for each block Ȟk separately. If
Σκ

k is a K-family for Ȟk, it is clear that Σκ = V ∗diag(Σκ
k)V has the form (6.25) and

is a K-family for Ȟ.
When the mode is elliptic, that is when Reµ

k
6= 0, the construction of symmetriz-

ers is given by Proposition 6.5

Proposition 6.14. Suppose that µ
k

is an eigenvalue of H0(p, ζ̌) with Reµ
k
6= 0.

Then is a smooth family of self adjoint matrices Σκ
k on a neighborhood of (p, ζ̌, 0)

such that
i) Re (Σκ

kȞk) > 0,

ii) Re Σκ
k ≥ κId if Reµ

k
> 0,

Re Σκ
k ≥ −Id if Reµ

k
< 0.

(6.30)
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Therefore we now restrict our attention to a nonelliptic mode:

µ
k

= iξ̌
d
, ξ̌

d
∈ R. (6.31)

By definition of H0, this implies that −τ̌ + iγ̌ is an eigenvalue λ of A(p, ξ̌) with
ξ̌ = (η̌, ξ̌

d
). In particular, by hyperbolicity, this can only happen when γ̌ = 0. By

Lemma 4.3, Ȟk has no eigenvalue on the imaginary axis when ρ > 0, thus the
number of eigenvalues in {Reµ < 0} is constant. We call it N−

k . The next definition
reformulates Definitions 6.9 and 6.10 for nonelliptic blocks Ȟk.

Definition 6.15. A smooth symmetrizer for a nonelliptic block Ȟk on a neighbor-
hood ω of (p, ζ̌, 0) is a smooth self adjoint matrix Σ(p, ζ̌, ρ) such that, for some C,
c > 0, there holds for all (p, ζ̌, ρ) ∈ ω,

Re ΣȞk = γ̌Σ1 + ρΣ2, (6.32)

with Σ1(p, ζ̌, 0) and Σ2(p, ζ̌, 0) definite positive.
A family of smooth symmetrizers Σκ

k on neigborhoods ωκ of (p, ζ̌, 0) is called a
K-family of symmetrizers for Ȟk if there are a decomposition

Ek(p, ζ̌, 0) = E−k ⊕ E+
k (6.33)

with dim E−k equal to N−
k and m(κ) → +∞ as κ→ +∞ such that for all κ

Σκ
k(p, ζ̌, 0) ≥ m(κ)(Π+

k )∗Π+
k − (Π−

k )∗Π−
k , (6.34)

where Π±
k are the projectors associated to the splitting (6.33).

7. Symmetrizers for nonelliptic blocks; Examples

In this section and the next one, we consider a block Ȟk associated to a purely
imaginary eigenvalue µ

k
= iξ̌

d
of H0(p, ζ̌) with ζ̌ = (τ̌ , η̌, 0) . Equivalently, −τ̌ is an

eigenvalue of A(p, ξ̌), with ξ̌ = (η̌, ξ̌
d
). To build symmetrizers, some knowledge of

properties of Ȟk is necessary. Part of the analysis, is to relate them to properties of
the eigenvalue −τ . In this section, we give examples which help to understand the
general analysis.

7.1. Simple hyperbolic points

Suppose that −τ is a simple eigenvalue of A(p, ξ̌). Thus, in the vicinity of (p, ξ̌, 0),
iA(p, ξ̌) + ρB(p, ξ̌) has a simple eigenvalue

iλ(p, ξ̌, ρ), with τ̌ + λ(p, ξ̌, 0) = 0. (7.1)

Moreover, by Assumption (H4),

Imλ(p, ξ, 0) = 0, ∂ρImλ(p, ξ̌, 0) < 0. (7.2)

In a neighborhood of (p, ζ̌, 0), the eigenvalue H(p, ζ̌, ρ) close to µ are µ = iξ̌ where
ξ̌ solves

τ̌ − iγ̌ + λ(p, η̌, ξ̌, ρ) = 0. (7.3)
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The easiest case occurs when ξ̌ is a simple root of this equation at the base point
(p, ζ̌, 0), that is when

β := ∂ξd
λ(p, ξ̌, 0) 6= 0. (7.4)

Note that β ∈ R. In this case, (τ̌ , ξ̌) is called a simple hyperbolic characteristic point.
The condition (7.4) implies that there is a simple eigenvalue µ(p, ζ̌, ρ) of H(p, ζ̌, ρ)

such that

µ(p, ζ̌, 0) = µ, (7.5)

sign ∂ρReµ(p, ζ̌, 0) = sign ∂γ̌Reµ(p, ζ̌, 0) = −sign β. (7.6)

From that, we see that the invariant space Ek(p, ζ̌, ρ) has dimension equal to one,
and that

E−k = Ek, E+
k = {0}, when β > 0,

E−k = {0}, E+
k = Ek, when β < 0.

(7.7)

Moreover, Ȟk is the multiplication by µ, and therefore, K-families of symmetrizers
for Ȟk are multiplications by

Σκ
k = −1 when β > 0,

Σκ
k = κ when β < 0.

(7.8)

7.2. Simple glancing modes

We still assume that −τ is a simple eigenvalue but that (7.4) is not satisfied. In
geometric optics which applies to the analysis of propagation of singularities or
oscillations, ∇ξλ(p, ξ, 0) is the group velocity at frequency ξ, and the lines x +
t∇ξλ(p, ξ, 0) are the rays of propagation (the equation has constant coefficients). The
condition ∂ξd

λ = 0 means that the corresponding ray is parallel to the boundary, it
is called a glancing and we say that (τ̌ , ξ̌) is a glancing mode.

The simplest case occurs when

∂ξd
λ(p, ξ̌, 0) = 0, β := ∂2

ξd
λ(p, ξ̌, 0) 6= 0. (7.9)

In this case, one can show that dim Ek = 2 and that in a smooth basis Ȟk has the
form

Ȟk = iξ
d
Id + i

(
a 1
b 0

)
(7.10)

with

a(p, ζ̌, 0) = b(p, ζ̌, 0) = 0, (7.11)
Im a = Im b = 0 when γ̌ = ρ = 0, (7.12)
∂γ̌Im b 6= 0, ∂ρIm b 6= 0, (7.13)
sign ∂γ̌Im b = sign ∂ρIm b = sign β. (7.14)

The prototype for Ȟk at p = p, ζ̌ = (τ̌ , η̌, γ̌) and ρ = 0 is

Ȟ =

(
0 i

−βγ̌ 0

)
. (7.15)
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For γ̌ > 0 the invariant spaces are

E− = C
(

1
µ

)
, E+ = C

(
1
−µ

)
(7.16)

where µ is the square root of −iβγ̌ such that Reµ < 0. Note that these spaces have
the same limit as γ̌ → 0. Hence, the spectral projections are not uniformly bounded
so that they cannot be used simultaneously in the construction of symmetrizers.
However, Theorem 6.11 clearly imposes the choice

E− = C
(

1
0

)
(7.17)

which we supplement with

E+ = C
(

0
1

)
. (7.18)

Using Taylor expansions at γ̌ = 0 and ρ = 0

Ȟk = G0 + γ̌G1 + ρG2.

The symmetrizers are constructed as

Σκ = Σκ
0 + γ̌Σκ

1 + ρΣκ
2 .

The first term is searched as

Σκ
0 =

(
σκ ε
ε κ

)
with σκ(p, τ̌ , η̌) real, vanishing at (p, τ̌ , η̌), and ε ∈ {−1,+1} to be chosen later. In
particular, with E± as above, there holds at (p, ζ̌):

(Σκ
0u, u) ≥ (κ− 1)|u2|2 − |u1|2.

Thus, the condition (6.34) will be satisfied with m(κ) = κ− 2 on a small neighbor-
hood of (p, ζ). The function σκ is determined by requiring that

Re Σκ
0G0 = 0.

Denoting by a0 and b0 the restrictions of a and b respectively at γ̌ = ρ = 0, which
are real by (7.12), the condition above reads

σκ = εa0 + κb0.

Next, Σκ
1 and Σκ

2 are searched under the form

Σκ
1 = i

(
0 σκ

1

−σκ
1 0

)
, Σκ

2 = i

(
0 σκ

2

−σκ
2 0

)
with σκ

1 and σκ
2 real. Since

Re ΣκȞk = γ̌Re (Σκ
0G1 + Σκ

1G0) + ρRe (Σκ
0G2 + Σκ

2G0) +O(γ̌2 + ρ2),

for the condition (6.32) to be satisfied on a neigborhood of (p, ζ̌), it is sufficient that

Re (Σκ
0G1 + Σκ

1G0) > 0 and Re (Σκ
0G2 + Σκ

2G0) > 0

at the base point. There,

G1 = i

(
a1 0
b1 0

)
, G2 = i

(
a2 0
b2 0

)
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with Im b1 6= 0 and Im b2 6= 0, having the same sign as β. At the base point,

Re (Σκ
0G1 + Σκ

1G0) = Re

(
iεb1 0

iεa1 + iκb1 σκ
1

)
.

Choosing ε = −sign β and σκ
1 large enough this matrix is definite positive. Proceed-

ing similarly for σκ
2 , this finishes the construction of a K-family of symmetrizers.

Note that the condition (7.14) is essential for the simultaneous construction of Σκ
1

and Σκ
2 .

7.3. Hyperbolic modes with constant multiplicity

We suppose here that for (p, ξ̌) near (p, ξ̌), A(p, σ̌) has a smooth real and semi-simple
eigenvalue λ(p, ξ̌) of constant multiplicity m, such that

τ̌ + λ(p, ξ̌) = 0. (7.19)

This eigenvalue has a complex analytic extension in ξ̌, near ξ̌. We further assume
that this mode in nonglancing, that is

β := ∂ξ̌d
λ(p, ξ̌) 6= 0. (7.20)

In this case, near (p, ξ̌, 0), iA(p, ξ̌) + ρB(p, ξ̌) has an invariant space E of dimension
m and its restriction to this space has the form

iλ(p, ξ̌)Id + ρB](p, ξ̌, ρ). (7.21)

Moreover, Assumption (H4) implies that the spectrum of B](p, ξ̌, 0) is contained in
the right half plane {Reµ > 0}.

For (p, ζ̌) near (p, ζ̌), the equation in ξ̌d

τ̌ − iγ̌ + λ(p, η̌, ξ̌d) = 0 (7.22)

has a unique solution near ξ̌ and µ(p, ζ̌) = iξ̌d is a semi-simple eigenvalue of Ȟ0(p, ζ̌)

with µ(p, ζ̌) = µ
k
. Thus

Ȟk(p, ζ̌, ρ) = µ(p, ζ̌)Id + ρB[(p, ζ̌, ρ). (7.23)

Moreover, denoting by ε the sign of β, there holds

Reµ(p, ζ̌) = 0 when γ̌ = 0, (7.24)
sign ∂γ̌Reµ(p, ζ̌) = −ε, (7.25)

spectrumB[(p, ζ̌) ⊂ {−εReµ > 0}. (7.26)

This implies that

E−k = Ek, E+
k = {0}, when ε = +1,

E−k = {0}, E+
k = Ek, when ε = −1.

(7.27)

By Lemma 6.4, there is a smooth symmetric definite positive matrix S(p, ζ̌, ρ) on Ek

such that −εSB[ is definite positive. Therefore, a smooth K-family of symmetrizers
is

Σκ
k = −S when β > 0,

Σκ
k = κS when β < 0.

(7.28)
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7.4. Smoothly diagonalizable hyperbolic modes
Consider here the more general situation where −τ̌ is a semi-simple eigenvalue of
A(p, ξ̌) of mutliplicity m and A(p, ξ̌) has, near (p, ξ̌), m smooth eigenvalues λj(p, ξ̌),
such that

τ̌ + λj(p, ξ̌) = 0. (7.29)

We further assume that there exist m smooth eigenvectors, ej(p, ξ̌), linearly inde-
pendent:

A(p, ξ̌)ej(p, ξ̌) = λj(p, ξ̌)ej(p, ξ̌). (7.30)

We assume that the λj’s and ej’s have complex analytic extension in ξ̌, near ξ̌. We
denote by `j a dual basis of left eigenvectors:

`j(p, ξ̌)A(p, ξ̌) = λj(p, ξ̌)`j(p, ξ̌), `j · ej′ = δj,j′ . (7.31)

Thus, near (p, ξ̌, 0), iA(p, ξ̌)+ρB(p, ξ̌) has an invariant space E of dimension m and
its restriction to this space has the form

i diag{λj(p, ξ̌)}+ ρB](p, ξ̌, ρ). (7.32)

Moreover, Assumption (H4) implies that the spectrum of B](p, ξ̌, 0) is contained in
the right half plane {Reµ > 0}.

Assume that none of the mode in glancing, that is

∀j, βj := ∂ξ̌d
λj(p, ξ̌) 6= 0. (7.33)

7.4.1. The inviscid case

In the inviscid case, which corresponds exactly to the case ρ = 0, the analysis is
parallel to the constant multiplicity case. For (p, ζ̌) near (p, ζ̌), the equations in ξ̌d

τ̌ − iγ̌ + λj(p, η̌, ξ̌d) = 0

have unique solutions ξd,j(p, ζ̌) near ξ̌ which define eigenvalues µj(p, ζ̌) of Ȟ0(p, ζ̌)

with µ(p, ζ̌) = µ
k
. Moreover the

e]
j(p, ζ) = ej(p, η̌, ξ̌d,j(p, ζ̌))

are eigenvectors of H0(p, ζ̌) associated to the eigenvalues µj, and there are linearly
independent near (p, ζ̌). Thus

Ȟk(p, ζ̌, 0) = diag{µj(p, ζ̌)}. (7.34)

As above, denoting by εj the sign of βj, there holds

Reµj(p, ζ̌) = 0 when γ̌ = 0,

sign ∂γ̌Reµj(p, ζ̌) = −εj.
This implies that

E−k = span{e[
j : εj = +1},

E+
k = span{e[

j : εj = −1}.
(7.35)

One obtains a smooth K-family of symmetrizers setting

Σκ
k = diag{σκ

j } (7.36)
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with

σκ
j =

{−1 when εj = +1,

κ when εj = −1.
(7.37)

7.4.2. The viscous case

The viscous case is much more delicate. In the basis e[
j there holds

Ȟk(p, ζ̌, ρ) = diag{µj(p, ζ̌)}+ ρB[(p, ζ̌, ρ). (7.38)

In general, B] is a full matrix and, if the βj’s have different signs, the real part of
eigenvalues of B[ have different signs. As seen in (7.36), the symmetrizers Σκ do
not give the same weight to indices with positive and negative εj. This leads to
impose a natural decoupling condition, which means that all the entries B[

j,j′ of B[

with εj 6= εj′ , vanish. But this condition is not yet sufficient: for instance, if all the
εj’s are equal, the diagonal form (7.36) is necessary to symmetrize diag{µj}. On
the other hand, the spectral condition on B] is too weak to ensure the existence of
a symmetrizer of B[ having this diagonal form. This leads to a second condition,
which requires that there exists a basis {ej} adapted to B] (see Definition 8.8 below).
These questions will be discussed in Section 8.2 below.

7.5. Totally nonglancing modes and symmetrizable systems
Proposition 7.1 ([GMWZ6]). Suppose that the system is symmetric in the sense of
Definition 2.5. Then, there are K-families of symmetrizers for Ȟk if either E−k = Ek

or E−k = {0}.

Proof. By symmetry, −τ̌ is a semi-simple eigenvalue of A(p, ξ̌), say of multiplicity
m. In [MéZu2], it is proved that the assumption on E−k implies that the multiplicity
of µ

k
as an eigenvalue of H0(p, ζ̌) = Ȟ(p, ζ̌, 0) is equal to m. Denote by Vk a N ×m

matrix the columns of which form a basis of Ek, so that Ek(p, ζ̌, ρ) = Vk(p, ζ̌, ρ)Cm.
Thus

VkȞk = ȞVk. (7.39)
By assumption, there is a definite positive matrix S(p) such that the SAj and

SBj,k are symmetric.

Lemma 7.2. The symmetric matrix

Σk,0(p, ζ) = −V ∗
k (p, ζ, 0)S(p)Ad(p)Vk(p, ζ, 0) . (7.40)

is a symmetrizer for Ȟk on a neighborhood of (p, ζ̌, 0). More precisely, there holds

Re ΣkȞk = γR1 + ρR2 (7.41)

with Σ1(p, ζ̌, 0) and Σ2(p, ζ̌, 0) definite positive.
In addition, Σk(p, ζ, 0) is definite positive [resp. negative] when E−k = Ek [resp.

E−k = {0}].

Proof. According to (6.24), there holds

Ȟ(p, ζ̌, ρ) = H0(p, ζ̌) + ρH ′(p, ζ̌, ρ).
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Using (7.39) and the definition (4.12) of H0, one obtains the identity (7.41) with

R1 = V ∗
k SVk, (7.42)

R2 = V ∗
k (ReSAdH

′)Vk. (7.43)

Because S is definite positive, R1 also has this property. Next, Lemma 8.24 implies
thatH ′(p, ζ̌, 0) = −H1(p, ζ̌) withH1 given by (8.52). SinceH0(p, ζ̌) = µkId = −iξkId
on Ek(p, ζ̌, 0), there holds

H ′(p, ζ̌, 0)Vk(p, ζ̌, 0) = −A−1
d (p)B(p, ξ̌).

Therefore, at the base point (p, cz, 0), there holds

R2(p, cz, 0) = V ∗
k (ReSB)Vk.

The symmetry assumption implies that SB is definite positive on the space Ek(p, ζ̌, 0) =

ker(A(p, ξ̌)+τ̌ Id), implying that R2 is definite positive at (p, cz, 0), hence on a neigh-
borhood of that point.

That Σk(p, ζ, 0) is definite positive [resp. negative] when the mode is totally in-
coming [resp. outgoing] is proved in [MéZu2]. �

This implies that

Σκ
k =

{
Σk in the incoming case,
κΣk in the outgoing case.

(7.44)

are K-familes of symmetrizers for Ȟk.
�

8. Main results from [MéZu2] and [GMWZ6]

The reader is refereed to [MéZu2] and [GMWZ6] for complete proofs of the results
quoted in this section.

8.1. Hyperbolic multiple roots
We first recall several notations and definitions concerning the characteristic roots
of the hyperbolic part L. For simplicity, we suppose, as we may, that the coefficient
of ∂t is A0 = Id, so that, with notations (2.4), L = L. The characteristic determinant
is denoted by

∆(p, τ, ξ) := det(τ Id + A(p, ξ)). (8.1)

Definition 8.1. Consider a root (p, τ , ξ) of ∆(p, τ , ξ)) = 0, of algebraic multiplicity
m in τ .

i) (p, τ , ξ) is algebraically regular, if on a neighborhood ω of (p, ξ) there are m
smooth real functions λj(p, ξ), analytic in ξ, such that λj(p, ξ) = −τ and for (p, ξ) ∈
ω:

∆(p, τ, ξ) = e(p, τ, ξ)
m∏

j=1

(
τ + λj(p, ξ)

)
(8.2)

where e is a polynomial in τ with smooth coefficients such that e(p, τ , ξ) 6= 0.
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ii) (p, τ , ξ) is geometrically regular if in addition there are m smooth functions
ej(p, ξ) on ω with values in CN , analytic in ξ, such that

A(p, ξ)ej(p, ξ) = λj(p, ξ)ej(p, ξ), (8.3)

and the e1, . . . , em are linearly independent.
iii) (p, τ , ξ) is semi-simple with constant multiplicity if all the λj’s are equal.

Case iii) occurs when λ(p, ξ) is a continuous semi-simple eigenvalue of A(p, ξ)
with constant multiplicity near (p, ξ), such τ + λ(p, ξ) = 0. This implies that λ is
smooth and analytic in ξ as well as the eigenspace ker(A− λ). In this case, one can
choose for {ej} any smooth basis of of this eigenspace.

If all the roots at (p, ξ) are geometrically regular, then, locally near (p, ξ), A(p, ξ)
is smoothly diagonalizable, meaning that it has a smooth basis of eigenvectors.

Example 8.2. For the inviscid MHD, the multiple eigenvalues are algebraically
regular, but some are not geometrically regular (see [MéZu2]).

The second notion which plays an important role in the analysis of hyperbolic
boundary value problems is the notion of glancing modes . Recall from [MéZu2] the
following definition. If τ is a root of multiplicity m of the polynomial ∆(p, ·, ξ), then
by hyperbolicity, the Taylor expansion of ∆ at (p, τ , ξ) at the order m− 1 vanishes
so that

∆(p, τ + τ, ξ + ξ) = ∆m(τ, ξ) +O(|τ, ξ|m+1) (8.4)
and ∆m is homogeneous of degree m. Moreover, ∆m is hyperbolic in the time direc-
tion. Indeed, any direction of hyperbolicity for ∆(p, ·) is a direction of hyperbolicity
for ∆m. Denote by Γ+ the open convex cone of hyperbolic directions fot ∆m which
contains dt.

Definition 8.3. The root (p, τ , ξ) of ∆, of multiplicity m, is said nonglancing when
the boundary is noncharacteristic for ∆.

It is totally incoming [resp. outgoing] when the inward [resp. outward] conormal
to the boundary belongs to Γ+.

It is totally nonglancing if is either totally incoming or totally outgoing.

Example 8.4. This definition agrees with the usual one for simple roots, given by
τ + λ(p, ξ) = 0. In this case ∂t +∇ξλ · ∂x is is the Hamiltonian transport field for
the propagation of singularities or oscillations and the glancing condition ∂ξd

λ = 0
precisely means that the field is tangent to the boundary. More generally, if the root
(p, τ , ξ) of ∆ is algebraically regular, then, with notations as in (8.2)

∆m(τ, ξ) = e(p, τ , ξ)
m∏

j=1

(
τ + ξ · ∇ξλj(p, ξ)

)
. (8.5)

The mode is nonglancing if none of the tangential speed ∂ξd
λj(p, ξ) vanish. It is

totally incoming [resp. outgoing] if they all are positive [resp. negative]. In particular,
in the constant multiplicity case, all the λj are equal and they are all glancing,
incoming or outgoing at the same time.

In the study of boundary value problems, the dichotomy incoming vs outgoing
plays a crucial role: for instance, for transport equations one boundary condition is
needed in the first case and none in the second. The symmetrizers are constructed
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in opposite ways. The general Kreiss construction also reflects this dichotomy. In-
troduce the following definition:

Definition 8.5. Suppose that (p, τ , ξ) is an algebraically regular root of ∆. With
notations as in (8.2), denote by νj the order of ξ

d
as a root of order of the equation

τ + λj(p, ξ1
, . . . , ξ

d−1
, ·) = 0, that is the positive integer such that

∂a
ξd
λj(p, ξ) = 0 for a < νj and βj :=

1

νj!
∂

νj

ξd
λj(p, ξ) 6= 0. (8.6)

We say that λj is of type I when either νj is even or νj is odd and βj > 0. It is
of type O when νj is odd and βj < 0.

We denote by JO [resp. JI ] the set of indices j of the corresponding type.

Remark 8.6. When (p, τ̌ , ξ̌) is non glancing, then the all the νj are equal to 1, and
being of type I [resp. type O] means to be incoming [resp. outgoing]. They are all
of the same type exactly when the mode is totally nonglancing.

Remark 8.7. The details of the construction of Kreiss’ symmetrizers depend strongly
on being of type I or O, see [Kre, ChPi, Mét4]. There are no reason other than tech-
nical why even roots are of type I rather than O.

8.2. The decoupling condition
The spectral properties of A(ξ) are modified by the perturbation B. In particular,
since the construction of symmetrizers depends deeply on the property of being in-
coming/outgoing, it is very important that the perturbation respects the decoupling
between the different type of modes.

Definition 8.8. Suppose that (p, τ , ξ) is a geometrically regular root of ∆ of order
m. Consider a basis {ej} as in (8.3) and dual left eigenvectors `j such that

`j
(
τ Id + A(p, ξ)

)
= 0, `j · ej′(p, ξ) = δj,j′ . (8.7)

Consider the m×m matrix with entries

B]
j,j′ = `jB(p, ξ)ej′(p, ξ). (8.8)

i) We say that the decoupling condition is satisfied if

B]
j,j′ = 0 when (j, j′) ∈ (JO × JI) ∪ (JI × JO) (8.9)

where J0 and JI are introduced in Definition 8.5.
ii) We say that the basis {ej} is adapted to B if

ReB] > 0. (8.10)

Definition 8.9. We say that the root (p, τ , ξ) of ∆ satisfies the condition (BS) if it
is a geometrically regular root, it satisfies the decoupling condition (8.9) and there
is an eigenbasis {ej} adapted to B.

We give now several examples and counterexamples.

Theorem 8.10 (Constant multiplicity). Suppose that (p, τ , ξ) is a semi-simple char-
acteristic root with constant multiplicity of ∆. Then the condition (BS) is satisfied.
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Proof. For semi-simple characteristic root λ with constant multiplicity either JO or
JI is empty so that the decoupling condition (8.9) is trivially satisified. Moreover,
it is proved in [MéZu1] that (H1) implies that the spectrum of B] is located in
{Re z > 0}. Thus there is a basis {ej} in ker(A(p, ξ) + τ Id) such that ReB] is
definite positive. Next, since any smooth basis {ej} in ker(A−λ) satisfies (8.3), one
can choose it such that ej(p, ξ) = ej. �

Proposition 8.11 (Artificial viscosity). Suppose that (p, τ , ξ) is geometrically reg-
ular for iA + B in the sense that there are m smooth functions λj(p, ξ, ρ) and m
linearly independent smooth vectors ej(p, ξ, ρ) on a neighborhood of (p, ξ, ρ), analytic
in ξ, such that λj(p, ξ, 0) = −τ for all j and(

iA(p, ξ) + ρB(p, ξ)
)
ej(p, ξ, ρ) = iλj(p, ξ, ρ)ej(p, ξ, ρ). (8.11)

Then, the decoupling condition is satisfied and the basis {ej |ρ=0} is adapted to B.

Proof. Alternately, differentiating (8.3) with respect to ρ and multiplying on the left
by `j′ , implies that B]

j′,j = 0 when j 6= j′. Moreover, (H1) implies that B]
j,j > 0. �

For example, if (p, τ , ξ) is geometrically regular for A in the sense of Definition
8.1 and if B = ∆xId is an artificial viscosity, then (p, τ , ξ) is geometrically regular
for iA+ B. However, this condition is too restrictive for applications, in particular
when A and B do not commute.

Example 8.12. If the root is totally nonglancing, then the decoupling condition is
trivially satisfied since either JI or JO is empty. This applies to fast shocks in MHD.

Counter example 8.13. Slow shocks in MHD do not satisfy the decoupling con-
dition, see [GMWZ6].

The decoupling condition is crucial in the construction of symmetrizers. The sec-
ond condition (8.10) is more technical. One could expect that with the positivity
Assumption (H1), one could always find an adapted basis. This is not clear, except
for mutliplicity 2 or symmetric systems.

Proposition 8.14. Suppose that (p, τ , ξ) is geometrically regular of multiplicity m.
Assume that either m = 2 or that the symmetry assumption (H1’) is satisfied. There
is a basis {ej} adapted to B.

If in addition all the eigenvalues λj are of the same type O or I, then the condition
(BS) is satisfied.

Finally, we recall from [GMWZ6] that the decoupling condition is necessary for
the existence of K-family of symmetrizers and even more, for the continuity of the
negative space E−k .

Theorem 8.15. Suppose that (p, τ̌ , ξ̌) is geometrically regular and nonglancing and
suppose that there exist j ∈ JI and j′ ∈ JO such that

B]
j′,j 6= 0. (8.12)

Then the negative space E−k (p, ζ̌, ρ) has no limit as (ζ̌ , ρ) → (ζ̌ , 0).
In particular, there are no smooth K-families of symmetrizers for Ȟk near (p, ζ̌).
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8.3. The hyperbolic block structure condition

We turn back to the construction of symmetrizers for nonelliptic blocks Ȟk in the
splitting (6.28). The construction of K-families is performed in [MéZu1] provided
that Ȟk can be put in a suitable normal form. This is the so called block structure
condition. We first review this condition in the hyperbolic case, and next extend it
to the hyperbolic-parabolic case.

Consider p and a frequency ζ̌ = (τ̌ , η̌, 0) 6= 0 and a purely imaginary eigenvalue
(6.31) µ

k
= iξ̌

d
of H0(p, ζ̌). Let ξ̌ = (η̌, ξ̌

d
). Then (p, τ̌ , ξ̌) is a root of ∆. We consider

the block Ȟk associated to µ
k

and denote by Ek the corresponding invariant space
of Ȟ. We use the notations Ȟk,0(p, ζ̌) = Ȟk(p, ζ̌, 0) and Ek,0(p, ζ̌) = Ek(p, ζ̌, 0).

Definition 8.16. Ȟk,0 has the block structure property near (p, ζ̌) if there exists a
smooth invertible matrix Vk,0 on a neighborhood of that point such that V −1

k,0 Ȟk,0Vk,0

is block diagonal,

V −1
k,0 Ȟk,0Vk,0 =


Q1 0

0
. . . 0
0 Qm′

 , (8.13)

with diagonal blocks Qj of size νj × νj such that :
Qj(p, ζ̌) has purely imaginary coefficients when γ̌ = 0,

Qj(p, ζ̌) = µ
k
Id + i


0 1 0

0 0
. . . 0

. . . . . . 1
· · · 0

 , (8.14)

and the real part of the lower left hand corner of ∂γ̌Qj(p, ζ), denoted by q[
j, does not

vanish.

When νj = 1, Qj(p, ζ̌) is a scalar. In this case, (8.14) has to be understood as
Qj(p, ζ̌) = µ

k
, with no Jordan’s block. The lower left hand corner of the matrix is

Qj itself and the condition reads q[
j := ∂γ̌Qj(p, ζ̌) 6= 0.

Proposition 8.17 ([MéZu2]). If the root (p, τ̌ , ξ̌) is geometrically regular in the
sense of Definition 8.1, the corresponding block Ȟk,0 satisfies the block structure
condition.

Conversely, if Ȟk,0 satisfies the block structure condition with matrices V that are
real analytic in ζ̌, then the root (p, τ̌ , ξ̌) is geometrically regular.

Remark 8.18. There is a slight discrepancy here between the necessary and the
sufficient condition, due to analyticity conditions. Definition 8.1 requires analyticity
in ξ̌. This is used in the proof of sufficiency. In addition, it implies that the block
structure condition holds with matrices V that are real analytic in ζ̌. Thus, there is
an “if and only if” theorem. However, for the construction of symmetrizers, analyt-
icity of Vk is not needed, this is why we do not insist on it in the definition above.
In addition, note that for fixed p, the existence of C∞ eigenvalues and eigenvectors
for A, implies that these eigenvalues are real analytic in ξ and that one can choose
analytic eigenvectors (see e.g [Shi, Mal]). The question is to control the domain of
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analyticity as p varies. In applications, for this problem, proving analyticity is not
harder than proving the C∞ smoothness.

To prepare the hyperbolic-parabolic analysis, we have to review the proof of
Proposition 8.17. In particular, we reformulate the conditions of Definition 8.16
in a more intrinsic way. The choice of a smooth matrix Vk,0 is equivalent to the
choice of a smooth basis of Ek,0, denoted by {ϕj,a(p, ζ̌)}1≤j≤m′,1≤a≤νj

. The property
(8.14) reads

(H0(p, ζ̌)− µ
k
)ϕj,1(p, ζ̌) = 0, (8.15)

(H0(p, ζ̌)− µ
k
)ϕj,a(p, ζ̌) = iϕj,a−1(p, , ζ̌), 2 ≤ a ≤ νj. (8.16)

With (6.29), there is a unique smooth dual basis ψj,a(p, ζ̌) such that

ψj,a · E′k,0 = 0,

ψj,a · ϕj′,a′ = δj,j′δa,a′ .
(8.17)

Here, E′k,0 denotes the invariant space of H0(p, ζ̌) such that CN = Ek,0 ⊕ E′k,0. It is
the sum of invariant subspaces associated to eigenvalues µ

k′
6= µ

k
.

In the basis ϕj,a, the entries of the matrix V −1
k,0 Ȟk,0Vk,0 are ψj,aH0ϕj′,a′ . The diag-

onal block structure means that

ψj,aH0ϕj′,a′ = 0 when j 6= j′. (8.18)

The other conditions read:

Re (ψj,aH0ϕj,a′) = 0 when γ̌ = 0, (8.19)
Re ∂γ̌(ψj,νj

H0ϕj,1)(p, ζ̌) 6= 0. (8.20)

We first show how to compute this quantity in terms of A only.

Lemma 8.19. Suppose that Ȟk,0 has a block diagonal decomposition (8.13) in a
smooth basis ϕj,a of Ek(p, ζ̌, 0) which satisfies (8.15) (8.16). Let ψj,a denote a dual
basis satisfying (8.17). The lower left hand corner entry of ∂γ̌Qj(p, ζ̌) is equal to the
lower left hand corner entry of −i∂τ̌Qj(p, ζ̌) and equal to

q
j
= −ψj,νj

(p, ζ̌)A−1
d (p)ϕj,1(p, ζ̌). (8.21)

Proof. Let H0 = H0(p, ζ̌). Then H0 − µ
k

is invertible on E′k,0(p, ζ̌). With (8.15)
(8.16), this implies that

range
(
H0 − µ

k
Id
)

= {ψ1,ν1(p, ζ̌), . . . , ψm′,νm′ (p, ζ̌)}⊥, (8.22)

ker
(
H0 − µ

k
Id
)

= {ϕ1,1(p, ζ̌), . . . , ϕm′,1(p, ζ̌)}. (8.23)

In particular, (
H0 − µ

k
Id
)
ϕj,1 = 0 and ψj,νj

(
H0 − µ

k
Id
)

= 0. (8.24)

The entry in consideration is

qj(p, ζ̌) = ψj,νj
H0ϕj,1 = ψj,νj

(
H0 − µ

k
Id
)
ϕj,1 + µ

k
δνj ,1.

Therefore, differentiating in γ̌ and τ̌ and using (4.12), implies that

∂γ̌qj(p, ζ̌) = −i∂τ̌qj(p, ζ̌) = q
j

(8.25)
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is given by (8.21). �

We now discuss how much flexibility there is in the choice of the basis ϕj,a. Recall
that we are considering a purely imaginary eigenvalue µ

k
= iξ

d
of H0(p, ζ̌), so that

−τ̌ is an eigenvalue λ of A(p, ξ̌) with ξ̌ = (η̌, ξ̌
d
).

Lemma 8.20. Suppose that Ȟk,0 has the block structure property near (p, ζ̌) in a
smooth basis ϕj,a and denote by ψj,a the dual basis (8.17). Then,

i) λ is a semi-simple eigenvalue of A(p, ξ̌) with multiplicity m equal to the number
m′ of blocks Qj,

ii) on a neighborhood of (p, ξ̌), there are m smooth eigenvalues λj(p, ξ̌) of A(p, ξ̌)

and m smooth linearly independent eigenvectors ej(p, ξ̌), such that

λj(p, ξ̌) = λ, (8.26)

A(p, ξ̌)ej(p, ξ̌) = λj(p, ξ̌)ej(p, ξ̌), (8.27)
ej(p, ξ̌) = ϕj,1(p, ζ̌), (8.28)

iii) the order of ξ̌
d

as a root of τ̌ + λj(p, η̌, ·) = 0 is equal to νj,
iv) denoting by {`j} the left eigenvector dual basis of {ej} as in (8.7), there holds

`jAd(p) = βjψj,νj
(p, ζ̌). (8.29)

with βj := 1
νj !
∂

νj

ξd
λj(p, ξ̌) as in (8.6),

v) the lower left hand corner entry of ∂γ̌Qj(p, ζ̌) is

q
j
= −1/βj ∈ R. (8.30)

Proof. a) Define ϕ̃j,νj
= ϕj,νj

and for a < νj

ϕ̃j,a(p, ζ) = −i
(
H0(p, ζ)− µ

k

)
ϕj,νj

. (8.31)

By (8.13)(8.14), there holds

ϕ̃j,a(p, ζ̌) = ϕj,a(p, ζ̌). (8.32)

Moreover, in the new basis ϕ̃j,a, the matrix of Qj has the form

Qj = iξ̌
d
Id + i


∗ 1 . . . 0
... 0

. . . 0
∗ 0 . . . 1
∗ 0 . . . 0

 . (8.33)

Thanks to (8.32), the dual basis {ψ̃j,a} associated to {ϕ̃j,a} also satisfies ψ̃j,a(p, ζ̌) =

ψj,a(p, ζ̌). This implies that the lower left hand corner of ∂γ̌Qj(p, ζ̌) is unchanged in
the new basis.

b) Consider the determinant

∆j(p, ζ̌, ξ̌d) = det
(
ξdId + iQj(p, ζ̌)

)
.

It is independent of the basis {ψj,a} or {ψ̃j,a}. Thus, it is real when γ̌ = 0 and
vanishes at (p, ζ̌, ξ̌

d
). Moreover, (8.14) implies that

∂τ̌∆j(p, ζ̌, ξd
) = −q

j
.
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As a byproduct, using also (8.25) this shows that

q
j
∈ R thus q

j
= Re q

j
= q[

j 6= 0. (8.34)

In particular, the implicit function theorem implies that there is a smooth function
λj(p, ξ̌), in a real neighborhood of (p, ξ̌), such that λj(p, ξ̌) = −τ̌ and for ζ̌ = (τ̌ , η̌, 0):

∆j(p, ζ̌, ξ̌d) = αj(p, ζ̌, ξ̌d)
(
τ̌ + λj(p, ξ̌)

)
(8.35)

with αj(p, ζ̌, ξ̌d
) 6= 0.

c) Consider next the eigenvector equation(
ξ̌dId + iQj(p, ζ̌)

)
ej = 0. (8.36)

By (8.33), in the basis {ψ̃j,a}, the νj − 1 first equations determine the last νj − 1
components of ej

(ej)a = (ξ̌d − ξ̌
d
)a−1(ej)1, a ≥ 2. (8.37)

Substituting these values, the last equation is a scalar equation equivalent to ∆j = 0.
Introduce

ζj(p, η̌, ξ̌) =
(
− λj(p, ξ̌), η̌, 0

)
,

and

ej(p, ξ̌) = ϕ̃j,1(p, ζ̌) +
νj∑

a=2

(ξ̌d − ξ̌
d
)j−1ϕ̃j,a(p, ζ̌). (8.38)

This vector is smooth and satisfies (8.36), thus(
A(p, ξ̌)− λj(p, ξ̌)Id

)
ej(p, ξ̌) = Ad(p)

(
iH0(p, ζ̌j) + ξ̌dId

)
ej(p, ξ̌) = 0.

Moreover, the ej(p, ξ̌) = ϕj,1(p, ζ̌) are linearly independent.

d) By (8.35), for ζ̌ = (τ̌ , η̌, 0), there holds

det
(
τ̌ Id + A(p, ξ̌)

)
= det(Ad) det

(
iH0(p, ζ̌) + ξ̌dId

)
= α(p, τ̌ , ξ̌)

m′∏
j=1

(
τ̌ + λj(p, ξ̌)

)
where α(p, τ̌ , ξ̌) 6= 0 and m′ is the number of blocks Qj. This shows that −τ̌ is an
eigenvalue of algebraic order m′ of A(p, ξ̌). By step c), the geometric multiplicity is
at least m′, implying that −τ̌ is semi-simple of order m′.

Moreover, by (8.15), there holds

∆j(p, ζ̌, ξ̌d) = (ξ̌d − ξ̌
d
)νj ,

showing that ξ̌
d

is a root of multiplicity νj of ∆j, thus of τ̌ + λj(p, η̌, ξ̌) = 0.

e) Let `j satisfy (8.7). Thus

Range
(
Ȟ0(p, ζ̌)− µ

k
Id
)

= A−1
d (p)Range

(
τ̌ Id + A(p, ξ̌)

)
= A−1

d (p){`1, . . . , `m}⊥.
.

Comparing with (8.22), this implies that

span
{
ψj,νj

(p, ζ̌), 1 ≤ j ≤ m
}

= span
{
`j, 1 ≤ j ≤ m

}
. (8.39)
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For a ∈ {1, . . . , νj}, introduce

ej,a =
1

(a− 1)!
∂a−1

ξd
ej(p, ξ̌). (8.40)

Because ξ̌
d

is a root of order νj of τ̌ + λj(p, η̌, ξ̌) = 0, the definition (8.38) implies
that

ej,a = ϕ̃j,a(p, ζ̌) = ϕj,a(p, ζ̌) for 1 ≤ a ≤ νj.

In particular, (8.17) implies that

ψj′,νj′
(p, ζ̌) · ej,νj

= ψj′,νj′
(p, ζ̌) · ϕj,νj

(p, ζ̌) = δj,j′ . (8.41)

Differentiating the equation(
A(p, ξ̌)− λj(p, ξ̌)

)
ej(p, ξ̌) = 0 (8.42)

with respect to ξ̌d and at order νj yields(
τ̌ Id + A(p, ξ̌)

)
∂

νj

ξj
ej(p, ξ̌) = −νjAd(p)∂

νj−1
ξd

ej(p, ξ̌) + ∂
νj

ξj
λj(p, ξ̌)ej(p, ξ̌).

Multiplying on the left by `j′ annihilates the left hand side, implying

`j′Ad(p)ej,νj
(p, ζ̌) = βj`j′ · ej(p, ξ̌) = βjδj′,j.

By (8.39), the `jAd and ψj,νj
span the same space. , Therefore, comparing with

(8.41) implies that `j′Ad(p) = βjψj′,νj′
(p, ζ̌).

f) By (8.21) and (8.29), we have

−βjqj
= `jϕj,1(p, ζ̌) = `jej(p, ξ̌) = 1.

The proof of the lemma is complete. �

Remark 8.21. This lemma is a variation on the necessary part in Proposition 8.17
(see [MéZu2]), with useful additional remarks. It shows that the block structure
condition is closely related to a smooth diagonalisation of A. Conversely, if one
starts from a smooth basis ej and a root of τ̌ + λj(p, ξ̌) with (8.6), one constructs
a basis ϕj,a such that ϕj,a(p, ζ̌) is given by (8.40), using an holomorphic extension
of ej to complex values of ξ̌d (see [MéZu2]). Lemma 8.20 implies that the change of
bases which preserve the block structure form are linked to change of bases which
preserve the smooth diagonalization of A.

The construction of K-families of symmetrizers for the blocks Qj is performed
in [Kre, Maj1, Mét4]. The sign of βj and the parity of νj play an important role.
Hyperbolicity implies that H0 and thus the Ȟk and Qj have no purely imaginary
eigenvalues when γ̌ > 0. Denote by E−Qj

the invariant space of Qj associated to the
spectrum in {Reµ < 0} since the definition of the limiting space E−Qj

. Recall that
the limit space at (p, ζ̌) is

E−Qj
= Cν′j × {0}νj−ν′j (8.43)

with

ν ′j =


νj/2 when νj is even,
(νj + 1)/2 when νj is odd and βj > 0,
(νj − 1)/2 when νj is odd and βj < 0.

(8.44)
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Remark 8.22. As a corollary, we have the following characterization of the sets J0

and JI :  j ∈ JI if νj is even or νj is odd and q
[
j < 0,

j ∈ J0 if νj is odd and q
[
j > 0.

(8.45)

8.4. The hyperbolic-parabolic case
We still consider a block Ȟk associated to a purely imaginary eigenvalue (6.31). In
the next section, we show that the following technical conditions are the natural
ones for the construction of Kreiss symmetrizers.

Definition 8.23. Ȟk has the generalized block structure property near (p, ζ̌, 0) if
there exists a smooth invertible matrix Vk on a neighborhood of that point such that

V −1
k ȞkVk =


Q1 · · · 0
... . . . ...
0 · · · Qm

+ ρ


B̃1,1 · · · B̃1,m

... . . . ...
B̃m,1 · · · B̃m,m

 (8.46)

where the Qj(p, ζ̌) satisfy the properties of Definition 8.16. Moreover, the m × m

matrix B[ with entries B[
j,j′ equal to the lower left hand corner of B̃j,j′(p, ζ̌, 0) sat-

isfies
B[

j,j′ = 0 when (j, j′) ∈ (JO × JI) ∪ (JI × JO) (8.47)

where JO and JI are defined by (8.45) and there is a real diagonal matrix D[, with
entries d[

j such that
d[

jq
[
j > 0, ReD[B[ > 0. (8.48)

We show that these conditions are related to the condition (BS) of Definition 8.9
formulated on the original system. We need first a more detailed form of the block
reduction H in (4.16). Introduce the following notations:

B∗,∗(p, ζ) :=
d−1∑

j,k=1

ηjηkBj,k(p), (8.49)

B∗,d(p, ζ) :=
d−1∑
j=1

ηj(Bj,d(p) +Bd,j(p)). (8.50)

Lemma 8.24. One can choose the matrix V in (4.16) such that there holds

H(p, ζ) = H0(p, ζ)−H1(p, ζ) +O(|ζ|3) (8.51)

where
H1 = A−1

d

(
B∗,∗ − iB∗,dH0 −Bd,dH

2
0

)
. (8.52)

Proof. Direct computations show that the kernel of G(p, 0) is CN × {0} and, using
that Ad is invertible, that kerG(p, 0) ∩ range G(p, 0) = {0}. This shows that 0 is a
semi-simple eigenvalue of G(p, 0).

If µ is a purely imaginary eigenvalue of G(p, 0), then 0 is an eigenvalue of iA(p, ξ)+
B(p, ξ) with ξ = (0,−iµ). By Assumption (H1) this requires that ξ = 0, thus µ = 0.
This shows that the nonvanishing eigenvalues of G(p, 0) are not on the imaginary
axis.
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This implies that there is a smooth matrix V (p, ζ) on a neighborhood of (p, 0)
such that (4.16) holds with H(p, 0) = 0 and P (p, 0) invertible with no eigenvalue on
the imaginary axis.

The image of the first N columns of V is the invariant space of G, and H is the
restriction of G to that space. At ζ = 0 this space is kerG, and performing a smooth
change of basis in CN , we can always assume that the first N columns of V are of
the form

VI(p, ζ) =

(
IdN×N

W (p, ζ)

)
(8.53)

with W of size N2 ×N vanishing at ζ = 0. This implies (4.18).
By (4.16) GVI = VIH, hence MVI = GdVIH and

M = −AH +BdWH, W = JH.

Therefore,
M = −AH +BdJH

2 = −AH +Bd,dH
2. (8.54)

Taking the first order term at ζ = 0 shows that the first order term in H0 in H
satisfies

(iτ + γ)Id +
d−1∑
j=1

iηjAj = −Ad(p)H0

and hence is given by (4.12). The second order term H1 in H satsifies

B∗,∗ = −AdH1 + iB∗,dH0 +Bd,dJH
2
0

implying (8.51) and (8.52). �

Parallel to Lemma 8.19, we can now state:

Lemma 8.25. Suppose that the matrix of Ȟk is given by the right hand side of (8.46)
in a smooth basis ϕj,a of Ek(p, ζ̌, ρ) which satisfies (8.15) and (8.16) for ρ = 0. Let
{`j} denote the dual basis of {ej = ϕj,1} satisfying (8.7). The entries of B[ are

B[
j,j′ = − 1

βj

`j B(p, ξ̌)ϕj′,1(p, ζ̌, 0). (8.55)

Proof. In the block reduction (8.46), the lower left hand corner entry of the (j, j′)-
block is

hj,j′ = ψj,νj
Ȟϕj′,1 = ψj,νj

(
Ȟ − µ

k
)ϕj′,1 + µ

k
δj,j′ .

Differentiating in ρ and using the relations (8.24) yields

−B[
j,j′ = ∂ρhj,j′(p, ζ̌, 0) = −ψ

j,νj
B̃(p, ζ̌)ϕ

j,1
,

where ψ
j,νj

and ϕ
j,1

stand for the evaluation at (p, ζ̌, 0) of the corresponding function.

Using the explicit form of B̃ and the relations

H0ϕj,1
= iξ̌

d
ϕ

j,1
, ψ

j,νj
H0 = iξ̌

d
ψ

j,νj

we obtain

ψ
j,νj
B̃(p, ζ̌)ϕ

j,1
= ψ

j,νj
A−1

d

(
B∗,∗(p, η̌) + ξ̌

d
B∗;d(p, η̌) + ξ̌

2

d
Bd,d(p)

)
ϕ

j,1

= ψ
j,νj
B(p, ξ̌)ϕ

j,1

With (8.29), this implies (8.55). �
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Theorem 8.26. If (p, τ̌ , ξ̌) is a geometrically regular characteristic root of ∆ which
satisfies the condition (BS) of Definition 8.9. Then the associated block Ȟk satisfies
the generalized block structure condition.

Proof. Since (p, τ̌ , ξ̌) is geometrically regular, the hyperbolic part Ȟk,0 satisfies the
block structure condition. Moreover, if ej is a basis analytic in ξ, there is a basis
ϕj,a such that ϕj,a(p, ζ̌) = ej(p, ξ̌) (see Remark 8.21 or [MéZu2]). By Lemma 8.25,
(8.9) is equivalent to (8.47).

If once can choose the basis {ej} such that (8.10) holds, then choose d[
j = −βj

and by (8.30) and (8.55) there holds d[
jq

[
j = 1 so that DB[ = B] satisfies (8.48). �

Remark 8.27. Conversely, if the generalized block structure condition holds with
matrices Vk which are real analytic in ζ̌, then, by Proposition 8.17 (p, τ̌ , ξ̌) is geo-
metrically regular. By (8.55), (8.47) is equivalent to the decoupling condition (8.9).
Moreover, (8.48) implies that there is a diagonal matrix with positive entries d]

j =

d[
j/q

[
j such that ReD]B] > 0. Consider the diagonal matrix C = (D])−1/2 = diag(cj)

and the new basis ẽj = cjej. The new dual basis is ˜̀
j = c−1

j cj and the new matrix
B̃] is C−1B]C = CD]B]C and therefore Re B̃] = CRe (D]B])C is definite positive.

8.5. Existence of K-families of symmetrizers
We can now state the main results of [MéZu2] and [GMWZ6].

Theorem 8.28. Suppose that the Assumptions of Section 2 are satisfied. Assume
further that one of the following two condition is satisfied:

i) all the real characteristic roots (p, τ, ξ) with |ξ| = 1 satisfy the condition (BS)
of Definition 8.9.

ii) the system is symmetric dissipative in the sense of Definition 2.5 and the
real characteristic roots (p, τ, ξ) with |ξ| = 1 are either totally nonglancing in the
sense of Definition 8.3 or satisfy the condition (BS) of Definition 8.9.

Then, for all ζ̌ ∈ Sd
+, there exist K-families of smooth symmetrizers for Ȟ(p, ζ, ρ)

near (p, ζ̌, 0).

Recall that Theorem 8.10 gives sufficient conditions for the condition (BS) to be
satisfied. In particular, there holds

Corollary 8.29. Suppose that the full system (2.1) is symmetric dispersive in the
sense of Definition 2.5. Suppose in addition that the eigenvalues of the inviscid
system are either semi-simple with constant multiplicity or totally nonglancing in the
sense of Definition 8.3. Then, there are K-families of symmetrizers for the associated
reduced system Ȟ.

Finally, we recall that the existence of a K-family of symmetrizers implies that
the maximal estimates are satisfied when the uniform spectral stability condition is
verified.

Theorem 8.30. Suppose that there exists a K-family of symmetrizers for Ȟ near
(p, ζ̌, 0) and suppose that the boundary conditions are such that the uniform spec-
tral stability condition is satisfied for low frequencies. Then the uniform stability
estimates (4.38) are satisfied.
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Similarly, if the reduced boundary conditions satisfy the reduced uniform stability
condition then the uniform estimates (5.17) and (5.18) hold true.

9. The high frequency analysis

9.1. The main high frequency estimate
This section is devoted to an analysis of uniform maximal estimates for high frequen-
cies. We still assume that the Assumptions of Section 2 are satisfied and we prove
that the anticipated estimates (4.42) are satisfied when the uniform spectral stabil-
ity conditions are satisfied, under the following additional structural assumptions
which strengthens (H3):

Assumption 9.1. (H8) For all u ∈ U∗, L11(u, ∂) is hyperbolic with constant mul-
tiplicities in the direction dt.

(H9) L11(u, ∂) is also hyperbolic with respect to the normal direction dxd.

For Navier-Stokes and MHD equations and in many examples L11 is a transport
field

L11 = ∂t +
d∑

j=1

aj(u)∂j (9.1)

and the condition reduces to ad(u) 6= 0 for u ∈ U∗, that is to Assumption 2.8, which
means inflow or outflow boundary conditions. The hyperbolicity condition (H9) in
the normal direction is important as shown on an example below. On the other hand
the constant multiplicity condition (H8) is more technical, and could be replaced by
symmetry conditions: this is briefly discussed in Remark 9.12.

We consider the linearized equation (4.6):

∂zu = G(z, ζ)u+ f, Γ(ζ)u(0) = g (9.2)

with u = t(u1, u2, u3), f = t(f 1, f2, f3), Γ as in (4.40) and g = t(g1, g2, g3).

Theorem 9.2. With assumptions as indicated above, assume that the uniform spec-
tral stability condition is satisfied for high frequencies. Then there are ρ1 > 0 and C
such that for all ζ ∈ Rd+1

+ with |ζ| ≥ ρ1, the solutions of (9.2) satisfy

(1 + γ)‖u1‖L2 + Λ‖u2‖L2 + ‖u3‖L2

+(1 + γ)
1
2 |u1(0)|+ Λ

1
2 |u2(0)|+ Λ−

1
2 |u3(0)|

≤ C
(
‖f 1‖L2 + ‖f 2‖L2 + Λ−1‖f 3‖L2

)
+ C

(
(1 + γ)

1
2 |g1|+ Λ

1
2 |g2|+ Λ−

1
2 |g3|

)
.

(9.3)

High frequencies require a particular analysis for two reasons. First, the splitting
hyperbolic vs parabolic is quite different in this regime and second the conjuga-
tion operator Φ of Lemma 4.1 is not uniform for large ζ. The analysis is made in
[MéZu1] for full viscosities and Dirichlet boundary conditions. For partial viscosities
and shocks, that is for transmission condition, the problem is solved in [GMWZ4].
The presentation below is more systematic and allows for more general boundary
conditions of the form (2.11).
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We now explain the general strategy of the proof. We use the notations

‖u‖sc = (1 + γ)‖u1‖L2 + Λ‖u2‖L2 + ‖u3‖L2 ,

‖f‖′sc = ‖f 1‖L2 + ‖f 2‖L2 + Λ−1‖f 3‖L2 ,

|u(0)|sc = (1 + γ)
1
2 |u1(0)|+ Λ

1
2 |u2(0)|+ Λ−

1
2 |u3(0)|,

|g|sc = (1 + γ)
1
2 |g1|+ Λ

1
2 |g2|+ Λ−

1
2 |g3|.

(9.4)

1) The main step in the proof of the theorem is to separate off the incoming and
outgoing components of u. This is done using a change of variables û = V−1(z, ζ)u
which transforms the equation (9.2) to

∂zû = Ĝ(z, ζ)û+ f̂ , Γ̂(ζ)û(0) = g. (9.5)

There are norms similar to (9.4) for û and f̂ as well; with little risk of confusion, we
use here the same notations. An important property is that:

‖u‖sc ≤ C‖û‖sc, ‖f̂‖′sc ≤ C‖f‖′sc,
|u(0)|sc ≤ C|û(0)|sc, |û(0)|sc ≤ C|u(0)|sc,

(9.6)

with C independent of ζ. Moreover, Γ̂(ζ) = Γ(ζ)V(0, ζ) satisfies

|Γ̂(ζ)û(0)|sc ≤ C|û(0)|sc. (9.7)

The new matrix Ĝ has the important property that

Ĝ =

(
Ĝ+ 0

0 Ĝ−

)
+ Ĝ ′ (9.8)

with
‖Ĝ ′û‖′sc ≤ ε(ζ)‖û‖sc (9.9)

where ε(ζ) tends to 0 as |ζ| tends to infinity. The block structure corresponds to a
splitting û = (û+, û−) with û− ∈ CNb and û+ ∈ CN+N2−Nb denoting the incoming
and outgoing components respectively.

2) One proves separate estimates for the incoming and outgoing components:

‖û+‖sc + |û+(0)| ≤ C‖(∂z − Ĝ+)û+‖sc, (9.10)

‖û−‖sc ≤ C‖(∂z − Ĝ−)û−‖sc + C|û−(0)|, (9.11)

with C independent of ζ. (The norms are defined, identifying û− ∈ CNb to (0, û−) ∈
CN etc). As a result, with (9.9), this implies that if û is a solution of (9.5), then

‖û+‖sc + |û+(0)| ≤ C‖f̂‖sc + ε(ζ)‖û‖sc, (9.12)

‖û−‖sc ≤ C‖f̂‖sc + ε(ζ)‖û‖sc + C|û−(0)|, (9.13)

3) We show that the estimates above imply that, if the uniform spectral stability
condition is satisfied, then the solutions of (9.5) satisfy for |ζ| large enough

‖û‖sc + |û(0)|sc ≤ C
(
‖f̂‖sc + |g|sc

)
(9.14)

implying that the solutions of (9.2) satisfy

‖u‖sc + |u(0)|sc ≤ C
(
‖f‖sc + |g|sc

)
(9.15)

that is (9.3).
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• Indeed, by definition, h ∈ E−(ζ) if and only if there is u solution of ∂zu = Gu
with u(0) = h. The corresponding û = V−1u satisfies by (9.13)

‖û−‖sc ≤ C|u−(0)|+ ε(ζ)‖û+‖sc

if ζ is large enough. Therefore, (9.12) implies that for ζ large and all h ∈ E−(ζ),
ĥ = V−1(0, ζ)h = (ĥ+, ĥ−) satisfies

|ĥ+|sc ≤ ε(ζ)|ĥ−|sc. (9.16)

• In addition Ê−(ζ) := V−1(0, ζ)E−(ζ) has dimension equal to Nb, as the space of
the ĥ−. Therefore, (9.16) shows that for ζ large, the projection h 7→ h− is bĳective
from Ê−(ζ) to CNb , with inverse uniformly bounded in the norm | · |sc.

The uniform spectral stability condition reads

∀h ∈ E−(ζ), |h|sc ≤ C|Γ(ζ)h|sc (9.17)

(see (4.44)). Using (9.6), this implies

∀ĥ ∈ Ê−(ζ), |ĥ|sc ≤ C|Γ̂(ζ)ĥ|sc. (9.18)

Using the isomorphism between Ê−(ζ) and CNb , we see that for ζ large enough and
ĥ− ∈ CNb , there is ĥ+ such that (ĥ+, ĥ−) ∈ Ê−(ζ). Together with (9.16) and (9.7),
there holds

|ĥ−|sc ≤ |ĥ|sc ≤ C|Γ̂(ζ)ĥ|sc ≤ C|Γ̂(ζ)(0, ĥ−)|sc + ε(ζ)|ĥ−|sc.

For ζ large, the last term can be dropped, increasing C. Finally, we conclude that
for all ĥ ∈ CN

|ĥ|sc ≤ C|Γ̂(ζ)ĥ|sc + C|ĥ+|sc. (9.19)
Applying this estimate to û(0), combining with (9.10) and (9.11) and absorbing the
error term Ĝ ′û for ζ large, we immediately obtain (9.14).

The third part of the proof will not be repeated. We will focus on the reduction
(9.5) and on the proof of the estimates for û±.

9.2. Spectral analysis of the symbol
Consider the linearized operator (4.5)

−B∂2
z +A∂z +M.

The coefficients satisfy

B(z) = Bd,d(w(z))

A(z, ζ) = Ad(w(z))−
d−1∑
j=1

iηj

(
Bj,d +Bd,j

)
(w(z)) + Ed(z)

M(z, ζ) = (iτ + γ)A0(w(z)) +
d−1∑
j=1

iηj

(
Aj(w(z)) + Ej(z)

)

+
d−1∑

j,k=1

ηjηkBj,k(w(z)) + E0(z)

(9.20)
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where the Ek are functions, independent of ζ, which involve derivatives of w and
thus converge to 0 at an exponential rate when z tends to infinity. Moreover, we
note that

E11
k = 0, E12

k = 0 for k > 0. (9.21)
With (2.3), we also remark that M12 does not depend on τ and γ.

We start with a spectral analysis of the matrix G in (4.6). It is convenient to use
here the notations u = (u1, u2, u3) ∈ CN−N2 × CN2 × CN2 . In the corresponding
block decomposition of matrices and using the notations above, there holds

G =

G
11 G12 G13

0 0 Id
G31 G32 G33

 (9.22)

where

G11 =− (A11)−1M11, G31 =(B22)−1(A21G11 +M21),

G12 =− (A11)−1M12, G32 =(B22)−1(A21G12 +M22),

G13 =− (A11)−1A12, G33 =(B22)−1(A21G13 +A22).

Note that G11, G12, G31 and G33 are first order (linear or affine in ζ), that G32 is
second order (at most quadratic in ζ) and that G13 is of order zero (independent of
ζ). We denote by Gab

p their principal part (leading order part as polynomials). We
note that

Gab
p (z, ζ) = Gab

p (w(z), ζ) when (a, b) 6= (3, 1), (9.23)
with

G11
p (u, ζ) = −(A11

d (u))−1
(
(γ + iτ)A11

0 (u) +
∑d−1

j=1 iηjA
11
j (u)

)
,

G12
p (u, ζ) = −(A12

d (u))−1∑d−1
j=1 iηjA

12
j (u)

G13
p (u) = −(A11

d (u))−1A12
d (u)

G32
p (u, ζ) = (B22(u))−1∑d−1

j,k=1 ηjηkB
22
j,k(u)

)
,

G33
p (u, ζ) = −(B22(u))−1∑d−1

j=1 iηj

(
B22

j,d(u) +B22
d,j(u)

)
.

The principal term of G31 involves derivatives of the profile w. Denoting by p =
limz→+∞w(z) = w(∞) the end state of the profile w, we note that the end state of
G31

p is

G31
p (∞, ζ) = (B22(p))−1

(
(γ + iτ)A21

0 (p) +
d−1∑
j=1

iηjA
21
j (p) + A21

d (p)G11
p (p, ζ)

)
.

There are similar formulas using the matrices Aj and Bj,k of (2.4).
The spectral analysis is easier when all the terms are reduced to first order. If

u = (u1, u2, u3) is replaced by ũ = h|ζ|u := (u1, u2, |ζ|−1u3), G is replaced by

G̃ = h|ζ|Gh−1
|ζ| =

 G11 G12 |ζ|G13

0 0 |ζ|Id
|ζ|−1G31 |ζ|−1G32 G33

 :=

(
G11 P12

P21 P22

)
(9.24)

with obvious definitions of Pab. Note that G̃ is or order one, while P21 is of order
zero. Thus

G̃(z, ζ) = G̃p(z, ζ) +O(1), G̃p =

(
G̃11

p P12
p

0 P22
p

)
= O(|ζ|). (9.25)
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Moreover, since the coefficients in G converge exponentially at infinity, the remainder
in (9.25) is uniform in z ∈ R+ and |ζ| ≥ 1. Moreover, the principal part of P̃22 is if
the form P̃22

p (z, ζ) = P 22
p (w(z), ζ).

Lemma 9.3. i) For all ζ ∈ Rd+1

+ with γ > 0 and η 6= 0 and for all and z ≥ 0, G̃p(z, ζ)
has no eigenvalues on the imaginary axis; moreover, the number of eigenvalues in
{Reµ < 0} is Nb = N1

+ +N2.
ii) for all compact subset of U∗, there are c > 0 and δ > 0 such that for all u

in the given compact and all ζ ∈ Rd+1

+ such that either γ ≤ δ|ζ| or |η| ≤ δ|ζ|, the
distance between the spectrum of G11

p (u, ζ) and the spectrum of P 22
p (u, ζ) is larger

than c|ζ|.

Proof. The spectrum of G̃p is the union of the spectra of G11
p and P 22

p . By homo-
geneity, it suffices to consider ζ ∈ Sd

+.
a) G11

p is related to L11 since A11
d (iξ +G11

p (u, ζ)) = L11(u, γ + iτ, iη, iξ). By As-
sumption (H3), L11 is hyperbolic in the time direction, hence G11

p has no eigenvalues
on the imaginary axis when γ > 0; moreover, the boundary is noncharacteristic for
L11 by Assumption 2.8, implying that the number of eigenvalues ofG11

p in {Reµ < 0}
is equal to the number of positive eigenvalues of A11

d , that is is N1
+.

Next, note that

P 22
p =

(
0 |ζ|Id

|ζ|−1G32
p G33

p

)
.

Thus, iξ is an eigenvalue of P 22
p if and only if 0 is an eigenvalue of B22(η, ξ), which is

impossible by (H2) if η 6= 0. Thus, the eigenvalues of P 22
p are not purely imaginary

when η 6= 0. Moreover, the number of eigenvalues in {Reµ < 0} is N2 (see [MéZu1]).
This finishes the proof of i).

b) If η = 0, G32
p and G33

p vanish, hence the spectrum of P 22
p is {0}. On the other

hand 0 is not an eigenvalue of G11
p = −(γ + iτ)(A11

d )−1A11
0 since A11

d and A11
0 are

invertible and |γ + iτ | = |ζ| = 1.
If γ = 0 and η 6= 0, the eigenvalues of P 22

p are not in iR. On the other hand,
by Assumption (H9) the eigenvalues of G11

p are purely imaginary, thus P 22
p and G11

p

have no common eigenvalue. This finishes the proof of ii). �

The analysis in a purely “elliptic” zone {γ ≥ δ|ζ| and |η| ≥ δ|ζ|} with δ >
0, is easy, see below. The most difficult and important part is to understand the
“hyperbolic-parabolic” decoupling in an arbitrarily small cone

Cδ = {0 ≤ γ ≤ δ|ζ|} ∪ {|η| ≤ δ|ζ|} (9.26)

with δ such that property ii) of Lemma 9.3 holds for u in a simply connected
neighborhood U∗0 of a compact set which contains the curve {w(z), z ∈ [0,+∞[}.
There, the usual homogeneity and the parabolic homogeneity are in competition,
leading to different classes of symbols. We use the following terminology: let ζ =
(τ, γ, η) and for a multi-index α = (ατ , αη, αγ) ∈ N× Nd−1 × N, set

|α| = ατ + |αη| and 〈α〉 = 2(ατ + αγ) + |αη|.

Recall that the parabolic weight is Λ = (1 + τ 2 + γ2 + |η|4) 1
4 .
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Definition 9.4. i ) Γm(Ω) denotes the space of homogeneous symbols of order m,
that is of functions h(z, ζ) ∈ C∞(R+ × Ω) such that there is θ > 0 such that for all
α ∈ Nd+1 and all k ∈ N, there are constants Cα,k such that for |ζ| ≥ 1 :

|∂α
ζ h| ≤ Cα,0|ζ|m−|α|, if k = 0, (9.27)

|∂k
z∂

α
ζ h| ≤ Cα,ke

−θz|ζ|m−|α|, if k > 0, (9.28)

ii ) PΓm(Ω) denotes the space of parabolic symbols of order m, that is of functions
h(z, ζ) ∈ C∞(R+ ×Ω) satisfying similar estimates with |ζ|m−|α| replaced by Λm−〈α〉.

We use the same notation for spaces of homogeneous or parabolic matrix symbols
of any fixed dimension.

Lemma 9.5. For all ζ̂ ∈ Sd∩Cδ, there is a a conical neighborhood Ω of ζ̂ and there
are matrices W12

p ∈ Γ0(Ω) and W21
p , homogenous of degree 0 in ζ for u ∈ U∗0 such

that

W21
p G11

p − P22
p W21

p = |ζ|P21
p , (9.29)

G11
p W12

p −W12
p P22

p = −P12
p . (9.30)

Proof. By homogeneity, it is sufficient to construct W21
p for |ζ| = 1. By Lemma 9.3,

for ζ ∈ Sd+1∩Cδ and u ∈ U∗0 , the spectra of G11
p (u, ζ) and P 22

p (u, ζ) do not intersect,
so that the linear system of equation

XG11
p (u, ζ)− P 22

p (u, ζ)X = Y

has a unique solution X = X (u, ζ)Y . Therefore W21
p (z, ζ) = |ζ|X (w(z), ζ)P21

p (z, ζ)

satisfies (9.29) (Note that P21 is of degree 0).
The construction of W12

p is similar, noticing that P12
p is of degree 1. �

In the block structure of G, there holds

W21
p =

(
V21

p

V31
p

)
, W12

p =
(
V12

p V13
p

)
(9.31)

and (9.29) reads

V21
p G11

p − |ζ|V31
p = 0, (9.32)

V31
p G11

p − |ζ|−1G32
p V21

p − G33
p V31

p = G31
p . (9.33)

Similarly,

G11
p V12

p − |ζ|−1V13
p G32

p = −G12
p (9.34)

G11
p V13

p − |ζ|V12
p − V13

p G33
p = |ζ|G13

p . (9.35)

For further use, we make the following remark : by (9.23), we see that G12
p and G32

p

vanish when η = 0. Therefore, (9.34) implies that V12 also vanishes when η = 0 and
hence

V12(z, ζ) = O(|η|/|ζ|). (9.36)

With these notations, let

VI(z, ζ) =

 Id 0 0
|ζ|−1V21

p Id 0
V31

p 0 Id

 , VII(z, ζ) =

Id V12
p |ζ|−1V13

p

0 Id 0
0 0 Id


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and V = VIVII . Using the conjugation u = Vû, f = V f̂ , for ζ in the in the cone Cδ,
the equation (9.2) is transformed to

∂zû = Ĝû+ f̂ , Γ̂û(0) = g (9.37)

with Ĝ = V−1GV − V−1∂zV and Γ̂(ζ) = Γ(ζ)V(0, ζ).

Lemma 9.6. The entries of Ĝ satisfy:

Ĝ11 −
(
G11 + |ζ|−1G12V21

p + G13V31
p

)
∈ Γ−1,

Ĝ12 ∈ Γ0, Ĝ13 ∈ Γ−1, Ĝ21 ∈ Γ−1, Ĝ31 ∈ Γ0,

Ĝ22 ∈ Γ0, Ĝ23 − Id ∈ Γ−1,

Ĝ32 − (G32 − V 31G12) ∈ Γ0, Ĝ33 − G33 ∈ Γ0.

Proof. We first compute the entries of GI = V−1
I GVI . Direct computations show that

G11
I = G11 + |ζ|−1G12V21

p + G13V31
p , G12

I = G12, G13
I = G13

G32
I = G32 − V 31G12, G33

I = G33 − V 31G13.

Moreover,

G21
I = −|ζ|−1V21

p G11 + V31 − |ζ|−1V21
(
|ζ|−1G12V21

p + G13V31
p

)
.

The first two terms are of degree zero, and by (9.32), the sum of their principal
terms vanishes; the third term is of degree −1 thus G21

I ∈ Γ−1. Similarly, G31
I is of

degree 1 and its principal part vanishes by (9.33). Thus,

G21
I ∈ Γ−1, G31

I ∈ Γ0.

Next
G22

I = −|ζ|−1V21
p G12 ∈ Γ0, G22

I − Id = −|ζ|−1V21G13 ∈ Γ−1.

The computations for GII = V−1
II GIVII are quite similar. This new conjugation

annihilates the principal parts of G12
I and G13

I and contributes to remainder terms
in the other entries.

Finally, direct computations show that V−1∂zV only contributes to remainder. �

The main idea is to consider (9.37) as a perturbation of the decoupled system

∂zû
1 = Ĝ11û1 + f̂1, (9.38)

∂z

(
û2

û3

)
=

(
0 Id
G32 G33

)(
û2

û3

)
+

(
f̂ 2

f̂ 3

)
. (9.39)

Introduce then

G ′ = Ĝ −

Ĝ11 0 0
0 0 Id
0 G32 G33

 . (9.40)

The next lemma how the estimates are transported by the change of variables u =
Vû. We use the notations (9.4) for the scaled norms.
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Lemma 9.7. There are constant C and ρ1 such that for all ζ in the cone Cδ with
|ζ| ≥ ρ1, there holds

‖V−1û‖sc ≤ C‖û‖sc, ‖Vf‖′sc ≤ C‖f‖′sc,
|V−1û(0)|sc ≤ C|û(0)|sc, |Vu(0)|sc ≤ C|u(0)|sc,

(9.41)

and
|Γ̂(ζ)û(0)|sc ≤ C|û(0)|sc. (9.42)

Moreover,
‖G ′û‖sc ≤ CΛ−1‖û‖sc. (9.43)

Proof. Direct computations, using (9.36), show that u = Vû satisfies

u1 = O(1)û1 +O(|η| |ζ|−1)û2 +O(|ζ|−1)û3,

u2 = O(|ζ|−1)û1 +O(1)û2 +O(|ζ|−1)û3,

u3 = O(1)û1 +O(1)û2 +O(1)û3.

This implies the first estimate in (9.41), using the inequalities

(1 + γ)|η|/|ζ| . Λ, (1 + γ)/|ζ| . 1, Λ/|ζ| . 1.

The proof of the other estimates of (9.41) is similar, using in particular for the traces
the inequality (1 + γ)

1
2 |η|/|ζ| . Λ

1
2 .

The inequality (9.42) follows from the second line of (9.41) and the estimate
|Γu(0)|sc ≤ |u(0)|sc which is a direct consequence of the form (4.40) of the boundary
conditions.

Finally, Lemma 9.6 implies that f̂ = G ′û satisfies

f̂ 1 = O(1)û2 +O(|ζ|−1)û3,

f̂ 2 = O(|ζ|−1)û1 +O(1)û2 +O(|ζ|−1)û3,

f 3 = O(1)û1 +O(1)û2 +O(1)û3,

and (9.43) follows. �

The parabolic bloc (9.39) is studied in [MéZu1]. We now focus on the hyperbolic
block (9.38), recalling and extending the analysis of [GMWZ4].

9.3. Analysis of the hyperbolic block.
9.3.1. The genuine coupling condition

For u ∈ U∗, denote by λj(u, ξ) the distinct eigenvalues of A11
(u, ξ), which are real

and have constant multiplicity νj by Assumption (H8). Assumption (H9) implies
the following:

Lemma 9.8. For all u ∈ U∗, all ξ ∈ Rd and all j, there holds ∂ξd
λj(u, ξ) 6= 0, and

all these derivatives have the same sign.

Proof. If ∂ξd
λj(u, η, ξd

) = 0, then the equation τ + λ(η, ξd) = 0 would have complex
roots in ξd for some τ close to τ = −λj(u, η, ξd

) (recall that λj is real analytic). Thus
hyperbolicity in the normal direction prevents glancing. Moroever, by continuity
the sign of ∂ξd

λj(u, η, ξd) is constant for all ξd ∈ R when η 6= 0. Thus the functions
ξd 7→ λj(u, η, ξd) are monotone and tend to infinity as ξd tends to ±∞. Since λj 6= λk
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when j 6= k, they must be all increasing or all decreasing. This remains true for η = 0
by continuity. �

According to the terminology of Section 4, we will say that the hyperbolic block
L11 is incoming [resp. outgoing ] when the derivatives ∂ξd

λj(u, ξ) are positive [resp.
negative].

Corollary 9.9. i) The matrix G11
p (u, ζ) has no purely imaginary eigenvalues when

γ > 0. They are all lying in {Reµ > 0} if the 11-block is outgoing and in {Reµ < 0}
if it is incoming.

ii) Near points ζ with γ = 0, G11
p (u, ζ) has semi-simple eigenvalues µj(u, ζ) of con-

stant multiplicity νj, which are purely imaginary when γ = 0. Moreover, ∂γReµj > 0
when the 11-block is outgoing and ∂γReµj < 0 when the 11-block is incoming.

Proof. Note that µ is an eigenvalue of G11
p (u, ζ) if and only if −τ+iγ is an eigenvalue

of A11
(u, η, ξ) with ξ = −iµ.

Consider the equations in ξd : τ + λj(u, η, ξd) = 0. Since λj is strictly monotone
and tends to infinity at both infinity, it always have a unique solution, ψj(u, η, τ)
and ∂τψj has the same sign as −∂ξd

λj. This solution extends analytically for Im τ
small. This yields distinct eigenvalues µj(u, ζ) = iψj(u, η, τ−iγ) of G11

p for ζ close to
the real domain. In particular ∂γµj = ∂τψj and the eigenvalues all lie in {Reµ > 0}
if the 11-block is outgoing and in {Reµ > 0} if it is incoming.

The kernel of G11
p − µj is the kernel of A11 − λj, thus has dimension equal to the

multiplicity of λj. Since these dimensions add up to N1, this shows that G11
p has

only semi-simple eigenvalues of constant multiplicity, which all lie in a given half
space when γ > 0.

Hyperbolicity of L11 implies that G11
p (u, ζ) has no purely imaginary eigenvalues

when γ 6= 0 and by continuity they all lie in the same half space. �

Next we need more information on the zero-th order correction of Ĝ11. From (9.20)
(9.21) and (9.22) we see that

Ĝ11(z, ζ)− (V−1∂zV)11 = G11
p (w(z), ζ) + E(z, ζ), (9.44)

where E ∈ Γ0. Denote its principal part by Ep. Its limit at z = ∞ is

Ep(p, ζ) = |ζ|−1G12
p (p, ζ)V 21

p (p, ζ)G13
p (p, ζ)V 31

p (p, ζ) (9.45)

where p = limz→+∞w(z) and V 21
p (p, ζ), V 31

p (p, ζ) denote the end points of V21
p and

V31
p , that is the solutions of the intertwining relations (9.32) (9.33) with matrices Gab

p

replaced bay their endpoint values Gab
p (p, ζ). The next result is crucial and follows

from the genuine coupling condition (H4).

Proposition 9.10. Fix ζ with |ζ| = 1 and γ = 0. For ζ in a neighborhood of ζ,
consider a basis where G11(u, ζ) has the block diagonal form diag(µjIdνj

). Denote
by Ej,k(u, ζ) the corresponding blocks of E is this basis. Then, for u ∈ U the eingen-
values of the diagonal blocks ReEj,j have a positive [resp. negative] real part if the
11-block is outgoing [resp. incoming].

Proof. It is sufficient to prove the positivity at ζ. Suppose that γ = 0, denote
by ϕj,p with p ∈ {1, . . . , νj} a basis of eigenvectors of G11(u, ζ). Fix j and set
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ξd = −iµj(u, ζ) ∈ R, ξ = (η, ξd). Then the ϕj,p are right eigenvectors of A11
(u, ξ)

associated to the eigenvalue −τ = λj(u, ξ).
Consider left eigenvectors `j,p of A11

(u, ξ), dual to the ϕj,p. Then, the left eigenvec-
tors ofG11

p (u, ζ) associated to µj are 1
βj
`jA

11
d with βj = ∂ξd

λj(u, η, ξ), see Lemma 8.20.
The entries of the block Ej,j are

1

βj

`j,pA
11
d Ep(u, ζ)ϕj,p′ . (9.46)

Computing the eigenvalues of order ε of B(u, ξ) + iεA(u, ξ), leads to consider the
matrix

iA
11

+ εA
12

(B
22

)−1A
21
. (9.47)

The genuine coupling condition (H4) implies that for u ∈ U , its spectrum lies in
Reµ > cε for ε small, and this implies that the matrix Fj,j with entries

`j,pA
12

(B
22

)−1A
21
ϕj,p′ (9.48)

has its eigenvalues in the right half plane {Reµ > 0}.
Because G11

p ϕj,p′ = iξdϕj,p′ , the relation (9.32) implies

V 31
p ϕj,p′ = |ζ|−1V 21

p G11
p ϕj,p′ = iξd|ζ|−1V 21

p ϕj,p′ ,

and, using the expressions of the matrices Ga,b yields

(|ζ|−1G12
p V

21
p +G13

p V
31
p )ϕj,p′ = −i|ζ|−1(A

11
d )−1A

12
(η, ξ)V 21

p ϕj,p′

and

(|ζ|−1G32
p V

21
p +G33

p V
31
p − V 31

p G11
p )ϕj,p′ = |ζ|−1(B

22
dd)

−1B22(η, ξ)V
21
p ϕj,p′

By (9.33) this is equal to

−G31
p ϕj,p′ = −i(B22

dd)
−1A

21
(η, ξ)ϕj,p′ .

Thus
|ζ|−1V 21

p ϕj,p′ = −i
(
B22(η, ξ)

)−1
A

21
(η, ξ)ϕj,p′ .

and
Epϕj,p′ = −(A

11
d )−1A

12
(η, ξ)

(
B22(η, ξ)

)−1
A

21
(η, ξ)ϕj,p′ .

Multiplying on the left by `jA
11
d , this shows that the coefficients in (9.46) and (9.48)

only differ by the factor −1/βj, and the proposition follows. �

9.3.2. Estimates

We are now in position to prove maximal estimates for the solutions of the equation
(9.38).

Proposition 9.11. There are constants C and ρ1 ≥ 1 such that for all ζ in the
cone Cδ with |ζ| ≥ ρ1 and all û1 and f̂ 1 in L2(R+) satisfying (9.38), there holds

(1 + γ)‖û1‖L2 + (1+γ)
1
2 |û1+(0)|

≤ C
(
‖f̂ 1‖L2 + (1 + γ)

1
2 |û1−(0)|

) (9.49)

where û1+ = û1 and û1− = 0 if the 11-block is outgoing and û1+ = 0 and û1− = û1

if it is incoming.
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Proof. a) Fix ζ ∈ Sd+1
+ . We prove the estimate for ζ in a conical neighborhood of ζ.

Suppose first that γ = 0 (the most difficult case). By Corollary 9.9 there is a matrix
V11(z, ζ) homogeneous of degree 0 such that (V11)−1G11

p V11 = diag(µj(w(z), ζ)Idνj
).

Setting û1 = V11u1 transforms the equation to

∂zu
1 = (diag(µj(w(z), ζ)Idνj

) + Ẽ)u1 + f 1 (9.50)

with Ẽ = E − (V11)−1∂zV11 ∈ Γ0, whose principal part Ẽp has the same end point
Ep(p, ζ) as Ep.

As usual, since the µj are pairwise distinct, there is a new change u1 = (Id+V−1)ũ
1

with V11
−1 ∈ Γ−1, such that the resulting system has the same form with the additional

property that the zero-th order part is also block diagonal, so that Ẽp = diag(Ej,j)
and the end points of the blocks Ej,j are Ej,j introduced in Proposition 9.10.

The term (Ẽ − Ẽp)u is O(|ζ|−1|u|), is incorporated to f 1 and finally absorbed from
the right to the left of the inequality by choosing |ζ| large enough. This reduces the
proof to the case where the equation reads

∂zû
1 = µj(w(z), ζ)û1 + Ej,j(ζ)û

1 + Fj,j(z, ζ)û
1 + f̂ 1 (9.51)

with |Fj,j| ≤ C0e
−θz.

Consider the outgoing case. Then, Corollary 9.9 implies that there is a constant
c > 0 such that Reµj(u, ζ) ≥ cγ. Moreover, Proposition 9.10 implies that the eigen-
values of Ej,j have a positive real part. Thus, there is a positive definite (constant)
matrix S(ζ) ≥ Id such that ReSEj,j is definite positive, say ReSEj,j ≥ Id. Intro-
duce a = C0|S|

∫ z
0 e

−θsds such that ∂za ≥ |SFj,j| and a is bounded in L∞ uniformly
with respect to ζ. Therefore, multiplying the equation by e2a(z)S and taking the L2

scalar product with û1 implies that

(1 + cγ)‖eaû1‖2
L2 + |û1(0)|2 ≤ C‖eaû1‖L2‖eaf̂ 1‖L2

which implies (9.49). The proof in the incoming case is similar.

b) Suppose next that γ = 0. Consider again the outgoing case. Then, the eigen-
values of G11

p satisfy Reµ ≥ c|ζ| in a conical neighborhood of ζ. This is the classical
“elliptic” case. There is a symmetric definite positive matrix S(u, ζ) ∈ Γ0 such that
ReSG11 ≥ c|ζ|Id and usual integrations by parts imply that

c|ζ|‖û1‖2
L2 + |û1(0)|2 ≤ C‖û1‖L2‖f̂ 1‖L2 + C1‖û1‖2

L2

where C1 involve estimates of the zero-th order terms, which include ∂zS(w(z), ζ).
This term is eliminated choosing |ζ| large enough. The proof in the incoming case
is similar. �

Remark 9.12. The proof above contains two ingredients. First, the 11-block is
totally incoming or totally outgoing, in analogy with the terminology of Section
4. Thus the decoupling incoming/outgoing is trivial. More generally, this could be
replaced by a decoupling condition in the spirit of Section 4. For instance, for shocks,
such a decoupling is immediate in [GMWZ4] corresponding to equations on each
side of the front. Next, we construct symmetrizers for the incoming and outgoing
components. There we use the genuine coupling condition. If the eigenvalues are not
of constant multiplicity one can introduce adapted bases or use symmetry also in
the spirit of Section 4.
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9.3.3. About Assumption (H9)

We show on an example that hyperbolicity in the normal direction is crucial in the
proof of estimates of the form (9.49). Suppose that the L11- block reads{

∂tu− ∂yu+ ∂xv,
∂tv + ∂yv + ∂xu.

(9.52)

Then, on the Fourier side, the 11 equation will be of the form{
(i(τ − η) + γ)u+ ∂zv + a(z)u = f,
(i(τ + η) + γ)v + ∂zu+ a(z)v = g,

(9.53)

and the only information we have from the genuine coupling condition is that a is
positive at z = +∞. Suppose that a(z0) < 0 for some z0 > 0. Then glancing waves
for (9.52) will propagate parallel to the boundary and thus may remain in a region
where a is negative and thus may never be damped. This is illustrated by choosing
τ = η, large, γ = −a(z0) > and

uτ (z) = χ(τ
1
3 (z − z0)), vτ (z) =

−∂zuτ

2iτ + γ + a
,

with χ ∈ C∞0 (R). Then (9.53) is satisfied with f = (a(z)−a(z0))uτ +∂zvτ and g = 0.
Moreover, ‖f‖L2 = O(τ−

1
3 )‖u‖L2 and u(0) = v(0) = 0, showing that no estimate of

the form (9.49) can be valid.

9.4. Proof of Theorem 9.2
9.4.1. In the cone Cδ

We consider now the equation (9.39) and briefly recall the results from [MéZu1].
It is natural to rescale the problem using the parabolic weights: with v2 = û2 and
v3 = Λ−1û3 and g2 = f̂ 2 and g3 = Λ−1f̂ 3the system reads

∂z

(
v2

v3

)
= GP

(
v2

v3

)
+

(
g2

g3

)
, (9.54)

with

GP =

(
0 ΛId

Λ−1G32 G31

)
∈ PΓ1

of quasi-homogenenous degree one and principal part GP (w(z), ζ) with

GP (u, ζ) =

(
0 ΛId

Λ−1
(
(iτ + γ)(B

22
)−1 +G32

p (u, η)
)

G31
p (u, η)

)
. (9.55)

Lemma 9.13 ([MéZu1]). There is c > 0 such that the spectrum of GP lies in
{|Reµ| ≥ cΛ}, with N2 eigenvalues, counted with their multiplicity, of positive real
part. There is a smooth change of variables W ∈ PΓ0 such that

W−1GPW =

(
P+ 0
0 P−

)
,

with P± ∈ PΓ1 having their eigenvalues satisfying ±Reµ ≥ cΛ.
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Introduce (
v+

v−

)
= W−1

(
v2

v3

)
.

Corollary 9.14 ( [MéZu1]). There are C and ρ1 such that for all ζ ∈ Cδ with
|ζ| ≥ ρ1, there holds

Λ‖v+‖L2 + Λ
1
2 |v+(0)| ≤ C‖(∂z − P+)v+‖L2 ,

Λ‖v−‖L2 ≤ C‖(∂z − P−)v−‖L2 + CΛ
1
2 |v−(0)|.

Scaling back, introduce(
û2,+

û3,+

)
=

(
Id 0
0 Λ

)
W
(
v+

0

)
,

(
û2,−

û3,−

)
=

(
Id 0
0 Λ

)
W
(

0
v−

)
. (9.56)

Because, W−1∂zW is uniformly bounded, the Corollary implies the following esti-
mate:

Proposition 9.15. There are C and ρ1 such that for all ζ ∈ Cδ with |ζ| ≥ ρ1, there
holds

Λ‖u2,+‖L2+‖u3,+‖L2 + Λ
1
2 |u2,+(0)|+ Λ−

1
2 |u3,+(0)|

≤ C‖f̂ 2‖L2 + CΛ−1‖f̂ 3‖L2 + ‖û2‖L2 + CΛ−1‖û3‖L2 ,

Λ‖u2,−‖L2+‖u3,−‖L2 ≤ CΛ
1
2 |u2,−(0)|+ CΛ−

1
2 |u3,−(0)|

+ C‖f̂ 2‖L2 + CΛ−1‖f̂ 3‖L2 + ‖û2‖L2 + CΛ−1‖û3‖L2 .

Finally, with û1,± as in Proposition 9.11, introduce

û± = t(û1,±, û2,±, û2,±). (9.57)

Adding up the various estimates and using (9.43), one obtains the following esti-
mates.

Proposition 9.16. There are C and ρ1 such that for all ζ ∈ Cδ with |ζ| ≥ ρ1 and
all û ∈ H1(R+):

‖û+‖sc + |û+(0)| ≤ C‖(∂z − G)û‖sc + Λ−1‖û‖sc, (9.58)
‖û−‖sc ≤ C‖(∂z − G)û‖sc + Λ−1‖û‖sc + C|û−(0)|. (9.59)

As indicated at the end of Section 7.1, these estimates imply the maximal esti-
mates of Theorem 9.2 provided that the boundary conditions are uniformly spectral
stable.

9.4.2. Analysis in the central zone

We now consider the remaining cone where

ζ ∈ Rd+1, γ ≥ δ|ζ| and |η| ≥ δ|ζ|. (9.60)

We consider the rescaled G̃ matrix (9.25), for the rescaled unknows ũ = h|ζ|u :=

(u1, u2, |ζ|−1u3), f̃ = h|ζ|f := (f 1, f2, |ζ|−1f 3). We note that in the region under
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consideration we now have (1 + γ) ≈ Λ ≈ |ζ|, so that the rescaled norms (9.4) are
equivalent to

‖u‖sc ≈ |ζ|‖ũ‖L2 ,

|u(0)|sc ≈ |ζ|
1
2 |ũ(0)|,

‖f‖′sc ≈ ‖f̃‖L2 .

(9.61)

By Lemma 9.3, there is a smooth matrix V ∈ Γ0 such that

V−1(zζ)Gp(z, ζ)V(z, ζ) =

(
G+

p 0
0 G−p

)
:= Gdiag

p

where the spectrum of G±p ∈ Γ1 is contained in {±Reµ ≥ c|ζ|}. We use the notations

û := Vũ =

(
û+

û−

)
. (9.62)

ũ+ has dimension N +N2−Nb and u− has dimension Nb. The equation for û reads

∂zû = Ĝû+ f̂ , (9.63)

with Ĝ = Gdiag + O(1). The ellipticity of Gdiag immediately implies the following
estimates.

Proposition 9.17. There are constants C and ρ1 such that for all ζ satisfying
(9.60) and |ζ| ≥ ρ1 and all ũ ∈ H1(R+) satisfying (9.63), there holds

|ζ| ‖û+‖L2 + |ζ|
1
2 |u+(0)| ≤ C‖f̂‖L2 + C‖û‖L2 , (9.64)

|ζ| ‖û−‖L2 ≤ C‖f̂‖L2 + C‖û‖L2 + C|ζ|
1
2 |û−(0)|2. (9.65)

Thanks to (9.61), this is the exact analogue of Proposition 9.16 and these estimates
imply the maximal estimates of Theorem 9.2 provided that the boundary conditions
are uniformly spectral stable, as explained in Section 7.1.

10. Linear stability

In the previous sections, we have studied the validity of maximal estimates (see
(4.36) and (4.42) in Section 4) for the spectral equation. Scaling back to the original
variables, and using Plancherel’s formula for inverting the Laplace-Fourier trans-
form, they imply weighted L2 estimates for the linearized equations (4.3) near a
function uε(t, y, x) = w(x/ε) where w satisfies (4.1). The main goal of this section is
to extend these estimates (see (10.14) below) for the linearized equation near slow
perturbations of w(x/ε), considering the Fourier-Laplace calculus developed in the
preceding sections as a symbolic calculus for suitable pseudo-differential symmetriz-
ers.

10.1. Linearized equations, spectral stability conditions
A possible formalism is the following. Instead of considering a single profile as in
Section 4, we consider now a family of profiles W (p, z), which are smooth functions
defined for p in a domain P and z ∈ R+, with values in U∗ and such that their
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derivatives converge at an exponential rate as z → +∞: there are δ > 0 and a
smooth function W on P with values in U , such that

sup
p,z

eδz
∣∣∣∂α

p,z(W (p, z)−W (p))
∣∣∣ < +∞ (10.1)

We further assume that we are given a family of functions pε(t, x, y) on R1+d, with
values in a compact subset of P , with at least

sup
ε
‖pε‖W 1,∞(R1+d) < +∞. (10.2)

The functions pε stand for the coordinates themselves or some additional function
depending on the iteration process in the resolution of the nonlinear problem.

For ε ∈]0, 1], we consider the linearized equations from (2.1) (2.10) around

ũε(t, x, y) = W
(
pε(t, x, y),

x

ε

)
. (10.3)

With abbreviated notations, they read

L′ũε
u̇ = ḟ , Υ′

ũε
u̇|x=0 = ġ. (10.4)

L′ũε
is a differential operator with coefficients that are smooth functions of (t, y, x),

z := x/ε and ε ∈ [0, 1]. Factoring out ε−1 it also appears as an operator in
ε∂t, ε∂y, ε∂x:

L′ũε
=

1

ε
L̃ε

(
t, y, x,

x

ε
, ε∂t, ε∂y, ε∂x

)
. (10.5)

The analysis of Section 4 applies for all fixed p ∈ P to the linearized equations

L′up,ε
u̇ = ḟ , Υ′

up,ε
u̇|x=0 = ġ. (10.6)

near

up,ε(x) = W
(
p,
x

ε

)
. (10.7)

With notations parallel to (4.3), we haveL
′
up,ε

u̇ =
1

ε
L
(
p,
x

ε
, ε∂t, ε∂y, ε∂x

)
u̇,

Υ′
up,ε

u̇ = Υ′(p, u̇, ε∂yu̇, ε∂xu̇).
(10.8)

The main idea is that, as far as local stability properties are studied, the operator
Lũε is sort of a perturbation of the family of operators L′uε(p), meaning that

- the terms which involve derivatives of ũε with respect to the slow variables
(t, y, x) in (10.3) (i.e. derivatives of pε) contribute only to admissible errors which
do not change the form of the estimates;

- the stability conditions are expressed by freezing the slow coefficients of L̃ε at
each point (t, y, x).

Accordingly, we set

Assumption 10.1. (H10) For all p ∈ P, the linearized equations (10.6) satisfy the
uniform spectral stability conditions of Definitions 4.15 and 4.17.

I–68



10.2. Maximal stability estimates
In order to use the symmetrizers of Sections 8 and 9, we supplement the structural
assumptions of Section 2 with the following “technical” conditions:
Assumption 10.2. (H11) (Existence of low frequency symmetrizers) Near all p ∈
P and ζ̌ ∈ S

d
+, there exist a K-family of symmetrizers for the matrix Ȟ(p, ζ̌, ρ)

associated to the profile W (p, ·).
We refer to Section 8 for geometric sufficient conditions which imply (H11). For

the existence of high frequency symmetrizers, we will further assume that the As-
sumptions (H8) and (H9) of Section 9 are satisfied.

The stability estimates for (10.5) are expressed using weighted estimates. Define
the weights

Λε(ζ) = Λ(εζ) = (1 + (ετ)2 + (εγ)2 + |εη|4)
1
4 , (10.9)

λε(ζ) =

(γ + ε|ζ|2) 1
2 , when |εζ| ≤ 1,

1√
ε
, when ε|ζ| ≥ 1.

(10.10)

Observe that the expressions defining λε in the two frequency regimes are of the same
order when |εζ| ≈ 1. Moreover, on any set of frequencies such that 0 ≤ |εζ| ≤ R, we
have 1 ≤ Λε ≤ CR.

Given a weight function φ(ζ) we use the notation

|u|φ =
(∫

Rd
φ(τ, γ, η)2|û(τ, η)|2dτdη

) 1
2

. (10.11)

where û denotes the Fourier transform of u. When u also depends on x, we set

‖u‖φ =
(∫ ∞

0
|u( · , x)|2φdx

) 1
2

. (10.12)

Theorem 10.3 (L2 estimate). Suppose that W and pε satisfy (10.1) and (10.2)
respectively. Assume (H1) to (H11). Then, there exist positive constants C, γ0 > 0,
and ε0 > 0 such that for γ and ε satisfying

γ ≥ γ0, ε ∈ (0, ε0] (10.13)

and all solution u̇ of the linearized boundary value problem (10.4), with u̇, and ḟ C∞

with compact support on Rd+1

+ and ġ C∞ with compact support on Rd, there holds

‖e−γtu1‖λ2
ε
+ ‖e−γtu2‖λ2

εΛε
+
√
ε‖∂xe

−γtu2‖λε

+|e−γtu1
|x=0|λε+|e−γtu2

|x=0|
λεΛ

1
2
ε

+ ε|e−γt∂xu2|x=0|
λεΛ

− 1
2

ε

≤

C
(
‖e−γtf 1‖+‖e−γtf 2‖Λ−1

ε

)
+C

(
|e−γtg1|λε + |e−γtg2|

λεΛ
1
2
ε

+ |e−γtg3|
λεΛ

− 1
2

ε

)
.

(10.14)

For instance, this implies the following uniform estimates:
Corollary 10.4. With assumptions as in Theorem 10.3, if g = 0, then

γ‖e−γtu‖L2(R1+d
+ ) +

√
γ‖e−γtu|x=0‖L2(Rd) ≤

C‖e−γtf‖L2(R1+d
+ ).

(10.15)
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10.3. Hints for the proof

Consider the linearized equations (10.4). Introduce uγ = e−γtu̇, fγ = e−γtḟ and
gγ = e−γtġ. Thus

1

ε
L̃ε

(
t, y, x,

x

ε
, ε(∂t + γ), ε∂y, ε∂x

)
uγ = fγ, Υ′

ũε
uγ |x=0 = gγ. (10.16)

We prove estimates for the uγ similar to (10.14), with additional “error” terms in
the right hand side, which are arbitrarily small compared to the left hand side,
uniformly in ε, when γ is large.

a) We note that the terms in
1

ε

(
L̃ε

(
t, y, x,

x

ε
, ε(∂t + γ), ε∂y, ε∂x

)
− L

(
pε(t, y, x),

x

ε
, ε(∂t + γ), ε∂y, ε∂x

))
uγ

and
Υ′

ũε
uγ −Υ(pε(t, y, 0), uγ, ε∂yuγ, ε∂xuγ)

only contribute to error terms and thus can be neglected. Therefore, it is sufficient
to study the equations

1

ε
L
(
pε,

x

ε
, ε(∂t + γ), ε∂y, ε∂x

)
u = f,

Υ′(pε, u, ε∂yu, ε∂xu)|x=0 = g.
(10.17)

and prove estimates

‖u1‖λ2
ε
+ ‖u2‖λ2

εΛε
+
√
ε‖∂xu

2‖λε

+|u1
|x=0|λε+|u2

|x=0|
λεΛ

1
2
ε

+ ε|∂xu2|x=0|
λεΛ

− 1
2

ε

≤ C
(
‖f 1‖+ ‖f 2‖Λ−1

ε
+|g1|λε + |g2|

λεΛ
1
2
ε

+ |g3|
λεΛ

− 1
2

ε

)
+ errors,

(10.18)

where the errors are arbitrarily small compared to the left hand side when γ is large.

Next, we transform (10.17) to a first order system in x, introducing U = t(u, ε∂xu
2): ∂xU =

1

ε
G
(
pε,

x

ε
, ε(∂t + γ), ε∂y, εγ

)
U + F,

Γ(pε)U|x=0 = g.
(10.19)

b) In Sections 4 to 9, we have studied these equations, when pε is a constant,
using localizations and symmetrizers. We follow the same analysis. The LF / MF /
HF localizations are performed with semi-classical operators

UI = χ(εDt, εDy, εγ)U,

with χ(ζ) supported in a neighborhood of the origin / in compact sets in Rd+1\{0}
/ in |ζ| large respectively. Here Dt = 1

i
∂t, Dy = 1

i
∂y and χ(εDt, εDy, εγ) is defined

as a Fourier multiplier. We use the notation

D = (Dt, Dy, γ). (10.20)

Rule 1 : Commutators

[
1

ε
G(pε,

x

ε
, εD), χ(εD)]

contribute to error terms.
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Indeed, the semiclassical calculus does not touch the fast variable x
ε

and the
commutators win one factor ε, erasing the singular factor 1

ε
in front of G, and one

semiclassical derivative.

c) In the LF and MF regime, we use conjugation operators

UII = Φ(pε,
x

ε
, εD)UI

with symbols Φ(p, z, ζ) given by Lemma 4.1 for all fixed p. Using the same commu-
tator argument as in Rule 1, we see that ∂xUII =

1

ε
G
(
pε(t, y, x), εD

)
UII + FII ,

Γ̃(pε)UII |x=0 = gII ,
(10.21)

where fII and gII are controlled by the right hand side of (10.18).

d) The symbols S(p, ζ) of the MF symmetrizers are given by Proposition 6.6.
We consider the operators Sε := S(pε(t, x, y), εD). The semiclassical calculus implies
the following :

Rule 2 (Semi-classical elliptic Gårding’s inequality) Because ReS(p, ζ)G(p, ζ) ≥
cId, the following inequality is satisfied in the sense of symmetric operators:

ReS(pε, εD)
1

ε
G(pε, εD) +

1

2
∂xS(pε, εD) ≥ c

ε
−O(1).

Together with similar estimates for the boundary terms (using now ii) of (6.19)),
this implies L2 estimates for χMF (εD)U and its traces.

e) In the LF regime, we use now the block diagonalization(
uH

uP

)
= V (pε, εD)UII (10.22)

with symbol V (p, ζ) given by Lemma 4.3. This leads to equations

∂xuH =
1

ε
H(pε, εD)uH + fH , (10.23)

∂xuP =
1

ε
P (pε, εD)uP + fP . (10.24)

For the elliptic block uP , we use the symmetrizers given by Proposition 6.8 and
use Rule 2 again.

For the hyperbolic block uH , we use the polar coordinates

H(p, ζ) = |ζ|Ȟ(p, ζ̌, |ζ|), ζ̌ =
ζ

|ζ|
,

and we note that
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Lemma 10.5.
1

ε
H(pε, εD) = |D|Ȟ(pε, Ď, ε|D|), Ď =

D

|D|
is a classical pseudo-differential operator of degree 1 in (t, y) with parameter γ,
depending smoothly on x.

As a consequence, for the component uH , we use the classical pseudo-differential
(tangential) calculus with parameter γ (see [ChPi]). In particular, the LF sym-
metrizers are given by symbols S(p, ζ̌, ρ) (see Definition 6.9) and we quantify them
as classical tangential pseudo’s of degree 0: Sε = S(pε, Ď, ε|D|).
Rule 3 (Classical elliptic Gårding’s inequality) The conditions of Definition 6.9
imply that

Re
(
S(pε, Ď, ε|D|)|D|Ȟ(pε, Ď, ε|D|)

)
≥ c(γ̌ + |εD|)|D| −O(1)

≥ c(γ + ε|D|2)−O(1).

Note that the conditions of Definition 6.9 imply but are stronger than

ReS(p, ζ̌, ρ)Ȟ(p, ζ̌, ρ) ≥ c(γ̌ + ρ).

Knowing only this weaker estimate would force to use the sharp Gårding’s inequal-
ity. With the stronger conditions of Definition 6.9, one can use the usual elliptic
estimates.

Combining the estimates for uP and uH , one obtains the desired interior estimates
for ULF . To deal with the traces, we note that semiclassical operators of degree 0
supported in a compact frequency set, are classical pseudo-differential operators of
degree 0. Thus, we can again convert the ellipticity of the operators acting on the
traces into estimates.

f) In the HF regime, part of the analysis is made with semi-classical operators
S(pε,

x
ε
, εD) : this concerns the block reduction and the use of symmetrizers in the

central zone and also in the cone {γ ≤ δ|ζ|} ∪ {|η| ≤ δ|ζ|} for the hyperbolic 1-1
block. In this cone, for the parabolic block, as already noticed in Section 9, the
correct homogeneity is the parabolic homogeneity given by the weight Λ. There we
use a semi-classical quasi-homogeneous calculus

S(pε,
x

ε
, εD), S(p, z, ζ) ∈ PΓ.

where PΓ denotes here classes of symbols analogous to those introduced in Defini-
tion 9.4, depending smoothly on the parameter p.

g) To deal with Lipschitzean coefficients, we use para-differential calculi in place
of pseudo-differential calculi. To summarize, we need three different calculi:

- the semiclassical homogeneous calculus,
- the semiclassical quasi-homogeneous calculus,
- the classical homogeneous calculus,

all depending on the parameter γ. We also need to compare them and to combine
them in certain zones.

For details on these calculi, we refer to the Appendix of [MéZu1] and for the com-
plete proof of the estimates, to the papers [MéZu1, GMWZ3, GMWZ4, GMWZ5].
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10.4. Further steps
Theorem 10.3 gives global in time weighted L2 a-priori estimates. From here, the
path to the nonlinear stability analysis follows more or less classical steps. We briefly
overview four of them, without precise statements.

a) Sobolev estimates. The classical analysis for noncharacteristic problems is to
obtain first tangential Hs estimates and then get the normal derivatives from the
equation. However, in the equation (10.19),

1

ε
G(pε,

x

ε
, εD)

contains 0-th order terms of amplitude O(1
ε
). They depend on (t, y) and commuting

the equation (10.19) with ∂t,y yields terms in O(1
ε
) which are not admissible errors

in the LF regime.
To obtain tangential Hs low frequency estimates, one can follow the scheme of

the proof of the L2 estimates. After the reduction to equations (10.23)-(10.24), the
commutator

[∂t,y,
1

ε
P (pε, εD)]uP = O(

1

ε
)uP

is admissible because of ε−1uP is controlled. Moreover, since H(p, ζ) vanishes at
ζ = 0, the commutator

[∂t,y,
1

ε
H(pε,

x

ε
, εD)]uH = O(1)uH

is non singular and yields admissible errors.
Following these ideas, one can actually prove tangential Hs estimates, see [MéZu1]

an also the next section. But, for purely technical reasons, the proof given in this
paper requires W s,∞ smoothness for the coefficients in place of the expected Hs

smoothness (for s large enough). Clearing up this difficulty is an open question.

On the other hand semiclassical Hs tangential estimates are easy to prove, since
the commutators of εDt,y with the equation (10.19) contains no singular terms.

One final word about the normal derivatives. Because the equation (10.19) is
singular, the easy thing is to get estimates for ε∂x derivatives. Moreover, the presence
of the boundary layer implies large variations in x at the scale ε. Thus the ε∂x

derivatives are natural in the problem. However, note that the maximal estimate of
Theorem 10.3 implies that

√
ε∂xu

2 ∈ L2.
To make better the transition with the interior estimates, one can also introduce

the x∂x derivatives. This shows that conormal Sobolev regularity plays a natural role
in this problem. This also indicates some similarity with characteristic problems in
the proof of Sobolev estimates.

b) Existence of smooth solutions to the linear boundary value problem.
For fully parabolic problems, at any fixed ε > 0, this follows from the general theory
of parabolic equations. For hyperbolic-parabolic problems, the existence of smooth
solutions is less classical. It follows from the usual semi-group approach at least
for dissipative equations and boundary conditions. One can also follow the general
scheme of hyperbolic equations (see [ChPi]): study the backward dual problem and
prove that it has the same form as the original system with time reversed; prove that
it satisfies the uniform stability conditions (only the HF part is necessary for fixed
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ε); deduce uniform estimates for the backward dual problem which imply existence
of weak solutions for the forward system; prove a weak=strong theorem, showing
that the weak solutions are unique and satisfy the a-priori estimates; and finally
prove smoothness of the solutions along the lines of a), for fixed ε.

c) The causality principle and local in time estimates. Roughly speaking,
letting γ →∞ in the estimates, one proves local uniqueness : if the data vanish for
t < 0, then u = 0 for t < 0. One can replace 0 by any time T , and this shows that
the solution up to time t depends only on the data for smaller time. This implies
that the estimates (10.14) or (10.15) can be localized on ] −∞, T ] × Rd

+. We refer
to [ChPi] or [Mét4] for details concerning this general consequence of the estimates.

d) The mixed initial boundary value problem and semi-group estimates.
Using steps b) and c) one solves the initial boundary value (IBV) problem with
vanishing initial data, provided that the data can be extended by 0 in the past. For
general initial data and source terms, compatibility conditions at the edge {t = x =
0} are needed, their number depending on the desired smoothness of the solution
(see e.g. [ChPi] or [Mét4]). For general data, one can solve first the equation in the
sense of Taylor expansions at {t = 0} (that is one determines the traces ∂j

tu|t=0

and lift up the traces). Using the compatibility conditions, this reduces the question
to finding smooth solutions of the boundary value problem which vanish in the
past. For fully parabolic problem, this method is perfectly efficient (see e.g; [Mét4]).
For hyperbolic problem this method yields a loss of 1/2 derivatives from the initial
data to the solution. This difficulty persists for hyperbolic-parabolic problem. The
important question hidden behind this difficulty is the proof of semi-group estimates
(pointwise in time with values in Sobolev spaces). The general proof for hyperbolic
problems is not easy (see [Rau1]), unless the system is symmetric, because then
usual integrations by parts yield pointwise estimates in time, knowing L2 in space-
time estimates of the traces, which are given by the main Kreiss estimate (see e.g.
[Mét3]). This extends to hyperbolic-parabolic systems.

11. Nonlinear stability

11.1. Statement of the problem and main result
We consider the viscous boundary value problem (2.1) (2.10), assuming that the
Assumptions (H1)–(H10) are satisfied. For simplicity, we restrict here our attention
to problems in a half space, but Rd

+ could be replaced by any smooth open set
Ω ⊂ Rd. To start the discussion, we assume that a family of solutions of the profile
equation is chosen, connecting 0 to a set of end states C ⊂ U :

Assumption 11.1. (H12) We are given a smooth manifold C ⊂ U of dimension
N −N+ and a smooth function W from C × [0,∞[ to U∗, such that for all u ∈ C,

i) W (u, ·) is a solution of (3.3)(3.4);
ii) W (u, z) converges to u when z tends to +∞, at an exponential rate, which

can be chosen uniform on compact subsets of C;
iii) the layer profile W (u, ·) is transversal in the sense of Definition 4.4;
iv) the uniform spectral stability condition is satisfied for the linearized equation

associated to the profile W (u, ·).
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In particular, by Theorem 5.5, the inviscid problem

L0(u0) = 0, u0|x=0 ∈ C. (11.1)

satisfies the uniform stability condition. Following A. Majda [Maj2], this implies
that the mixed boundary value-Cauchy problem

L0(u0) = 0, u0|x=0 ∈ C, u|t=0 = h0, (11.2)

is locally well posed, provided that h0 satisfies sufficiently many compatibility condi-
tions at the edge. In order to avoid technical discussions on compatibility conditions
at the edge {t = x = 0}, we consider here the simple case where the Cauchy data is
compactly supported away from the boundary and takes its values in U and

Assumption 11.2. (H13) 0 ∈ C and W (0, z) = 0. In particular, Υ(0) = 0.

Of course, the state 0 has no real significance and can be replaced by any fixed
constant u ∈ U , changing u into u− u.

For ε > 0, consider next the viscous problems:

Lε(u) = 0, Υ(uε)|x=0 = 0, uε|t=0 = hε, (11.3)

where the family {hε}ε≥0 is uniformly bounded in Hs(Rd
+), supported in a fixed

compact subset of {x > 0}, and such that hε → h0 as ε → 0. The goal is to
prove that the solution exists on a fixed interval of time [0, T ] independent of ε
and that uε → u0 as ε → 0. However, the essence of the problem is that this
convergence cannot be uniform, due to the existence of boundary layers. Instead,
a first approximation of the expected solution is obtained by adding to u0 a layer
corrector, so that to satisfy the viscous boundary conditions:

ũ0,ε(t, x, y) = W (u0(t, y, 0), x/ε)− u0(t, y, 0) + u0(t, y, x). (11.4)

Note that ũ0,ε converges to u0 when x > 0.

Theorem 11.3 (Non linear stability). Suppose that the Assumptions (H1) to (H10)
and (H12), (H13) are satisfied. Then if the regularity index s is large enough, there
are T > 0 and ε0 > 0 such that for all ε ∈]0, ε0], the problem (11.3) has a unique
solution uε ∈ W 2,∞([0, T ]× Rd

+) and uε − ũ0,ε tends to 0 in L∞([0, T ]× Rd
+).

Remark 11.4. In general, (H13) must be replaced by suitable compatibility con-
ditions. Another possible statement is of the form : given a very smooth invis-
cid solution u0 of (11.1), there are uε solutions of the viscous equations such that
uε− u0,ε → 0. We refer to [GMWZ2, GMWZ3, GMWZ4] for such statements in the
case of shock waves.

As usual, solving initial-boundary value problems involves technicalities, in part
because the linearized estimates of Section 10 are not semi-group estimates. It is
more convenient to reduce first the problem to solving a continuation theorem, that
is constructing an extension of a solution known in the past {t < 0}, to the price of
introducing source terms. One can proceed as follows.

First, using the equation, one computes the Taylor expansion at t = 0 of the
solutions

∂j
tuε|t=0 = hj,ε.
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They are uniformly bounded in Hs−2j− 1
2 , if s is large, and supported in a fixed

compact subset of Rd
+. Next we lift the traces to find uTay,ε ∈ Hs−J(R1+d such that

∂j
tuTay,ε|t=0 = hj,ε for j ≤ J.

and uTay,ε = 0 near x = 0. fε = Lε(uTay,ε) satisfies

∂j
t fε|t=0 = 0 for j ≤ J − 1.

With f̃ε = fε in the past and f̃ε = 0 for t > 0, we are thus reduced to solve

Lε(uε) = f̃ε, Υ(uε)|x=0 = 0, uε = uTay,ε for t < 0. (11.5)

11.2. High order approximate solutions

By suitable extension of the methods of [GrGu, GuWi, GMWZ3, Mét4], one proves
that provided (i) the inviscid solution u0 satisfies the spectral stability condition
imposed by Majda on his constructed solutions and (ii) each tangent profile equa-
tion has a transversal planar viscous profile, then we may construct a hierarchy of
approximate solutions

uε,M
a =

∑
0≤n≤M

εnUn(t, y, x, x/ε) , (11.6)

of (2.1). In this expansion one can look for Un as

Un(t, y, x, z) = un(t, y, x) + Vn(t, y, z) (11.7)

where the Vn(t, y, z) decays exponentially to zero as z → +∞; they describe the
successive terms of the viscous boundary layer. The first term u0 is a solution of the
limiting inviscid hyperbolic boundary value problem and W0(t, y, z) := U0(t, y, 0, z)
satisfies the viscous profile equation (3.3), (3.4). The approximate solution uε,M

a

solves the equation with an error O(εM).
The terms Un are obtained inductively:

- un satisfies the linearized hyperbolic boundary value problem at u0, with
source term depending on (U0, . . . , Un−1);

- Vn satisfies the linearized profile equation and initial condition at W0, with
source term depending on (U0, . . . , Un−1);

- the boundary conditions of un are precisely those needed for the existence
of Wn(t, x, y) = un(t, y, 0) + Vn(t, y, z) satisfying the linearized profile equation and
initial condition, converging to un(t, y, 0) when z tends to +∞.

Knowing the approximate solution uε,M
a , we look for exact solutions as

uε = ũε,M
a + vε.

11.3. Parabolic methods

When the perturbation is fully parabolic one can use the standard local inversion
theorem to solve the equation for the remainder vε. We recall here the principle of
the method developed in [MéZu1].

I–76



We assume here that the perturbation is fully parabolic that is N2 = N . For
simplicity we consider Dirichlet boundary conditions and the following problem
similar to (11.5)

Lε(uε) = f, uε|x=0 = 0, uε = 0 for t < 0. (11.8)

assuming that fε is smooth and vanishes for t < 0 (see the more general form in
[MéZu1]).

Consider a smooth solution u0 on [−T, T ]×Rd
+, of the hyperbolic boundary value

problem. Let u0,ε be given by (11.4) and consider a first order corrector u1,ε such
that

ua,ε = u0,ε + εu1,ε (11.9)
satisfies

Lε(ua,ε) = f +O(ε), ua,ε|x=0 = 0, ua,ε = 0 for t < 0. (11.10)

The solution of (11.8) is constructed as

uε = ua,ε + εvε. (11.11)

The equation for vε is written as

L′ua,ε
vε + εQε(vε) = eε, (11.12)

where Qε is at least quadratic in v and eε = 0(1) is a given source term which
vanishes in the past.

As mentioned in the previous section, conormal Sobolev spaces play an important
role. Such spaces have already been widely used in the study of boundary value
problems, see e.g. [Rau2], [Gue2]. Let {Zk}0≤k≤d denote a finite set of generators of
vector fields tangent to {x = 0}:

Z0 = ∂t, Zj = ∂yj
for 1 ≤ j ≤ d− 1, Zd =

x

1 + x
∂x.

For U ⊂ R× Ω and m ∈ N, define the space

Hm(U) :=
{
u ∈ L2(U) :Zk1 . . . Zkpu ∈ L2(U) ,

∀p ≤ m,∀(k1, . . . , kp) ∈ {0, . . . d}p
}
.

(11.13)

This space is equipped with the obvious norm, denoted by ‖ · ‖Hm(U).
In order to solve nonlinear problems, we need work in Banach algebras which

means here that we have to supplement the Hm estimates with L∞ estimates. In-
troduce the following norms

‖u‖Wµ(U) = ‖u‖L∞ +
µ∑

p=1

∑
1≤k1,...,kp≤k

‖Zk1 . . . Zkpu‖L∞ . (11.14)

We first give estimates for the linearized equation at ua,ε:

L′ua,ε
u = f, u|x=0 = 0, ut<0 = 0. (11.15)

Assume that on ΩT0 := [−T0, T0]× Ω,
u0 ∈ Wm+2,∞(ΩT0) ,

sup
ε∈]0,1]

‖u1,ε‖Wm + ε‖∇t,xu1,ε‖Wm + ε2‖∇2
xu1,ε‖Wm <∞ . (11.16)
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Theorem 11.5. There are C > 0 and ε0 > 0 such that for all ε ∈]0, ε0] and all
f ∈ Hm([−T0, T0]×Ω) vanishing for t < 0, the solution of equation (11.15) satisfies

‖u‖Hm +
√
ε‖∂xu‖Hm + ε3/2‖∂2

xu‖Hm ≤ C‖f‖Hm (11.17)

If in addition m ≥ 2 + d+1
2

and f ∈ L∞([−T0, T0] × Ω), then the solution u also
satisfies

‖u‖W2 + ε‖∂xu‖W1 + ε2‖∂2
xu‖L∞ ≤ C

(
‖f‖Hm + ε‖f‖L∞

)
. (11.18)

Denote by ‖ · ‖Xm
ε

[resp. ‖ · ‖Ym
ε

] the norm given by adding the left [resp. right]
hand sides of (11.17) and (11.18). Then the theorem implies the estimates

‖u‖Xm
ε
≤ C‖L′ua,ε

u‖Ym
ε

(11.19)

with C independent of ε.

Suppose that (11.16) holds with indices m such that

m >
d+ 1

2
· (11.20)

Proposition 11.6. The quadratic term in (11.8) satisfies the following estimates:

‖εQε(v
ε)‖Ym

ε
≤ ε1/4C(M) ,

‖ε(Qε(v
ε
1)−Qε(v

ε
2))‖Ym

ε
≤ ε1/4C(M) ‖v1 − v2‖Xm

ε
,

(11.21)

provided that
ε‖v1‖L∞ ≤ 1 , ε‖v1‖L∞ ≤ 1,

ε‖v1‖Xm
ε
≤M , ε‖v1‖Xm

ε
≤M ,

(11.22)

where C(M) is independent of ε ∈]0, 1].

The nonlinear equations (11.12) and thus (11.8) can be solved using (11.19)-
(11.21) and the standard local inversion theorem in Xm

ε (see [MéZu1] for details).

Theorem 11.7. There is ε0 > 0 such that for all ε ∈]0, ε0] the problem (11.8) has
a unique solution uε = ua,ε + εvε with vε bounded in Xm

ε . In particular,

‖uε − uε
0‖Hm + ‖u− uε

0‖L∞ = O(ε) . (11.23)

11.4. Hyperbolic-like methods
The method sketched in the preceding section relies on inverting the linearized op-
erator L′ua,ε

at the approximate solution. The key argument uses maximal parabolic
type estimates (with precised dependence on ε) for all the components of u. For par-
tial viscosities this property fails and, one has to switch to iterative schemes which
use the linearized operators L′un

for a sequence of un, following the lines of iterative
schemes for hyperbolic equations.

We mention here a method of proof for Theorem 11.3 which has been used for ex-
ample in [GrGu, Gue1, GMWZ4]. The idea is to start form a high order approximate
solution

uM
a,ε =

M∑
k=0

εkUk(t, y, x,
x

ε
)
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which solves the equation up to an error O(εM) (see Section 11.2). Next one looks
for the solution as

uε = uM
a,ε + εMvε,

where vε solves an equation of the form

L′uM
a,ε+εMvε

vε = fε = O(1).

To solve this equation, one uses Picard’s iterates

L′uM
a,ε+εMvn

ε
vn+1

ε = fε

in semiclassical Sobolev spaces Hs
ε . The core of the analysis is to prove maximal

estimate in Hs
ε -type spaces for vn+1

ε using only the same control for vn
ε . They are

obtained by commutator arguments, as mentioned in Section 10.4, using Moser-
Gagliardo-Nirenberg inequalities in Hs

ε . Just to give one typical ingredient, a mini-
mal requirement is a Lipschitzean control of the coefficients a(uM

a,ε + εMvnε) of the
linearized equation which follows from the estimate

‖εM∇v‖L∞ ≤ C‖v‖Hs
ε

if s > 1 + d/2 and M ≥ 1 + d/2. Here we see that it is crucial for this method
that M can be chosen large enough. This means here that we do start from a high
order approximate solution. We refer to the cited references for details and precise
statements.
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